peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/metrics
/cluster
/_bicluster.py
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
from ...utils._param_validation import StrOptions, validate_params | |
from ...utils.validation import check_array, check_consistent_length | |
__all__ = ["consensus_score"] | |
def _check_rows_and_columns(a, b): | |
"""Unpacks the row and column arrays and checks their shape.""" | |
check_consistent_length(*a) | |
check_consistent_length(*b) | |
checks = lambda x: check_array(x, ensure_2d=False) | |
a_rows, a_cols = map(checks, a) | |
b_rows, b_cols = map(checks, b) | |
return a_rows, a_cols, b_rows, b_cols | |
def _jaccard(a_rows, a_cols, b_rows, b_cols): | |
"""Jaccard coefficient on the elements of the two biclusters.""" | |
intersection = (a_rows * b_rows).sum() * (a_cols * b_cols).sum() | |
a_size = a_rows.sum() * a_cols.sum() | |
b_size = b_rows.sum() * b_cols.sum() | |
return intersection / (a_size + b_size - intersection) | |
def _pairwise_similarity(a, b, similarity): | |
"""Computes pairwise similarity matrix. | |
result[i, j] is the Jaccard coefficient of a's bicluster i and b's | |
bicluster j. | |
""" | |
a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) | |
n_a = a_rows.shape[0] | |
n_b = b_rows.shape[0] | |
result = np.array( | |
[ | |
[similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)] | |
for i in range(n_a) | |
] | |
) | |
return result | |
def consensus_score(a, b, *, similarity="jaccard"): | |
"""The similarity of two sets of biclusters. | |
Similarity between individual biclusters is computed. Then the | |
best matching between sets is found using the Hungarian algorithm. | |
The final score is the sum of similarities divided by the size of | |
the larger set. | |
Read more in the :ref:`User Guide <biclustering>`. | |
Parameters | |
---------- | |
a : tuple (rows, columns) | |
Tuple of row and column indicators for a set of biclusters. | |
b : tuple (rows, columns) | |
Another set of biclusters like ``a``. | |
similarity : 'jaccard' or callable, default='jaccard' | |
May be the string "jaccard" to use the Jaccard coefficient, or | |
any function that takes four arguments, each of which is a 1d | |
indicator vector: (a_rows, a_columns, b_rows, b_columns). | |
Returns | |
------- | |
consensus_score : float | |
Consensus score, a non-negative value, sum of similarities | |
divided by size of larger set. | |
References | |
---------- | |
* Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis | |
for bicluster acquisition | |
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. | |
Examples | |
-------- | |
>>> from sklearn.metrics import consensus_score | |
>>> a = ([[True, False], [False, True]], [[False, True], [True, False]]) | |
>>> b = ([[False, True], [True, False]], [[True, False], [False, True]]) | |
>>> consensus_score(a, b, similarity='jaccard') | |
1.0 | |
""" | |
if similarity == "jaccard": | |
similarity = _jaccard | |
matrix = _pairwise_similarity(a, b, similarity) | |
row_indices, col_indices = linear_sum_assignment(1.0 - matrix) | |
n_a = len(a[0]) | |
n_b = len(b[0]) | |
return matrix[row_indices, col_indices].sum() / max(n_a, n_b) | |