peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/multioutput.py
""" | |
This module implements multioutput regression and classification. | |
The estimators provided in this module are meta-estimators: they require | |
a base estimator to be provided in their constructor. The meta-estimator | |
extends single output estimators to multioutput estimators. | |
""" | |
# Author: Tim Head <[email protected]> | |
# Author: Hugo Bowne-Anderson <[email protected]> | |
# Author: Chris Rivera <[email protected]> | |
# Author: Michael Williamson | |
# Author: James Ashton Nichols <[email protected]> | |
# | |
# License: BSD 3 clause | |
from abc import ABCMeta, abstractmethod | |
from numbers import Integral | |
import numpy as np | |
import scipy.sparse as sp | |
from .base import ( | |
BaseEstimator, | |
ClassifierMixin, | |
MetaEstimatorMixin, | |
RegressorMixin, | |
_fit_context, | |
clone, | |
is_classifier, | |
) | |
from .model_selection import cross_val_predict | |
from .utils import Bunch, _print_elapsed_time, check_random_state | |
from .utils._param_validation import HasMethods, StrOptions | |
from .utils.metadata_routing import ( | |
MetadataRouter, | |
MethodMapping, | |
_raise_for_params, | |
_routing_enabled, | |
process_routing, | |
) | |
from .utils.metaestimators import available_if | |
from .utils.multiclass import check_classification_targets | |
from .utils.parallel import Parallel, delayed | |
from .utils.validation import _check_method_params, check_is_fitted, has_fit_parameter | |
__all__ = [ | |
"MultiOutputRegressor", | |
"MultiOutputClassifier", | |
"ClassifierChain", | |
"RegressorChain", | |
] | |
def _fit_estimator(estimator, X, y, sample_weight=None, **fit_params): | |
estimator = clone(estimator) | |
if sample_weight is not None: | |
estimator.fit(X, y, sample_weight=sample_weight, **fit_params) | |
else: | |
estimator.fit(X, y, **fit_params) | |
return estimator | |
def _partial_fit_estimator( | |
estimator, X, y, classes=None, partial_fit_params=None, first_time=True | |
): | |
partial_fit_params = {} if partial_fit_params is None else partial_fit_params | |
if first_time: | |
estimator = clone(estimator) | |
if classes is not None: | |
estimator.partial_fit(X, y, classes=classes, **partial_fit_params) | |
else: | |
estimator.partial_fit(X, y, **partial_fit_params) | |
return estimator | |
def _available_if_estimator_has(attr): | |
"""Return a function to check if the sub-estimator(s) has(have) `attr`. | |
Helper for Chain implementations. | |
""" | |
def _check(self): | |
if hasattr(self, "estimators_"): | |
return all(hasattr(est, attr) for est in self.estimators_) | |
if hasattr(self.estimator, attr): | |
return True | |
return False | |
return available_if(_check) | |
class _MultiOutputEstimator(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta): | |
_parameter_constraints: dict = { | |
"estimator": [HasMethods(["fit", "predict"])], | |
"n_jobs": [Integral, None], | |
} | |
def __init__(self, estimator, *, n_jobs=None): | |
self.estimator = estimator | |
self.n_jobs = n_jobs | |
def partial_fit(self, X, y, classes=None, sample_weight=None, **partial_fit_params): | |
"""Incrementally fit a separate model for each class output. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
y : {array-like, sparse matrix} of shape (n_samples, n_outputs) | |
Multi-output targets. | |
classes : list of ndarray of shape (n_outputs,), default=None | |
Each array is unique classes for one output in str/int. | |
Can be obtained via | |
``[np.unique(y[:, i]) for i in range(y.shape[1])]``, where `y` | |
is the target matrix of the entire dataset. | |
This argument is required for the first call to partial_fit | |
and can be omitted in the subsequent calls. | |
Note that `y` doesn't need to contain all labels in `classes`. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If `None`, then samples are equally weighted. | |
Only supported if the underlying regressor supports sample | |
weights. | |
**partial_fit_params : dict of str -> object | |
Parameters passed to the ``estimator.partial_fit`` method of each | |
sub-estimator. | |
Only available if `enable_metadata_routing=True`. See the | |
:ref:`User Guide <metadata_routing>`. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
_raise_for_params(partial_fit_params, self, "partial_fit") | |
first_time = not hasattr(self, "estimators_") | |
y = self._validate_data(X="no_validation", y=y, multi_output=True) | |
if y.ndim == 1: | |
raise ValueError( | |
"y must have at least two dimensions for " | |
"multi-output regression but has only one." | |
) | |
if _routing_enabled(): | |
if sample_weight is not None: | |
partial_fit_params["sample_weight"] = sample_weight | |
routed_params = process_routing( | |
self, | |
"partial_fit", | |
**partial_fit_params, | |
) | |
else: | |
if sample_weight is not None and not has_fit_parameter( | |
self.estimator, "sample_weight" | |
): | |
raise ValueError( | |
"Underlying estimator does not support sample weights." | |
) | |
if sample_weight is not None: | |
routed_params = Bunch( | |
estimator=Bunch(partial_fit=Bunch(sample_weight=sample_weight)) | |
) | |
else: | |
routed_params = Bunch(estimator=Bunch(partial_fit=Bunch())) | |
self.estimators_ = Parallel(n_jobs=self.n_jobs)( | |
delayed(_partial_fit_estimator)( | |
self.estimators_[i] if not first_time else self.estimator, | |
X, | |
y[:, i], | |
classes[i] if classes is not None else None, | |
partial_fit_params=routed_params.estimator.partial_fit, | |
first_time=first_time, | |
) | |
for i in range(y.shape[1]) | |
) | |
if first_time and hasattr(self.estimators_[0], "n_features_in_"): | |
self.n_features_in_ = self.estimators_[0].n_features_in_ | |
if first_time and hasattr(self.estimators_[0], "feature_names_in_"): | |
self.feature_names_in_ = self.estimators_[0].feature_names_in_ | |
return self | |
def fit(self, X, y, sample_weight=None, **fit_params): | |
"""Fit the model to data, separately for each output variable. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
y : {array-like, sparse matrix} of shape (n_samples, n_outputs) | |
Multi-output targets. An indicator matrix turns on multilabel | |
estimation. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If `None`, then samples are equally weighted. | |
Only supported if the underlying regressor supports sample | |
weights. | |
**fit_params : dict of string -> object | |
Parameters passed to the ``estimator.fit`` method of each step. | |
.. versionadded:: 0.23 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
if not hasattr(self.estimator, "fit"): | |
raise ValueError("The base estimator should implement a fit method") | |
y = self._validate_data(X="no_validation", y=y, multi_output=True) | |
if is_classifier(self): | |
check_classification_targets(y) | |
if y.ndim == 1: | |
raise ValueError( | |
"y must have at least two dimensions for " | |
"multi-output regression but has only one." | |
) | |
if _routing_enabled(): | |
if sample_weight is not None: | |
fit_params["sample_weight"] = sample_weight | |
routed_params = process_routing( | |
self, | |
"fit", | |
**fit_params, | |
) | |
else: | |
if sample_weight is not None and not has_fit_parameter( | |
self.estimator, "sample_weight" | |
): | |
raise ValueError( | |
"Underlying estimator does not support sample weights." | |
) | |
fit_params_validated = _check_method_params(X, params=fit_params) | |
routed_params = Bunch(estimator=Bunch(fit=fit_params_validated)) | |
if sample_weight is not None: | |
routed_params.estimator.fit["sample_weight"] = sample_weight | |
self.estimators_ = Parallel(n_jobs=self.n_jobs)( | |
delayed(_fit_estimator)( | |
self.estimator, X, y[:, i], **routed_params.estimator.fit | |
) | |
for i in range(y.shape[1]) | |
) | |
if hasattr(self.estimators_[0], "n_features_in_"): | |
self.n_features_in_ = self.estimators_[0].n_features_in_ | |
if hasattr(self.estimators_[0], "feature_names_in_"): | |
self.feature_names_in_ = self.estimators_[0].feature_names_in_ | |
return self | |
def predict(self, X): | |
"""Predict multi-output variable using model for each target variable. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
y : {array-like, sparse matrix} of shape (n_samples, n_outputs) | |
Multi-output targets predicted across multiple predictors. | |
Note: Separate models are generated for each predictor. | |
""" | |
check_is_fitted(self) | |
if not hasattr(self.estimators_[0], "predict"): | |
raise ValueError("The base estimator should implement a predict method") | |
y = Parallel(n_jobs=self.n_jobs)( | |
delayed(e.predict)(X) for e in self.estimators_ | |
) | |
return np.asarray(y).T | |
def _more_tags(self): | |
return {"multioutput_only": True} | |
def get_metadata_routing(self): | |
"""Get metadata routing of this object. | |
Please check :ref:`User Guide <metadata_routing>` on how the routing | |
mechanism works. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
routing : MetadataRouter | |
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating | |
routing information. | |
""" | |
router = MetadataRouter(owner=self.__class__.__name__).add( | |
estimator=self.estimator, | |
method_mapping=MethodMapping() | |
.add(callee="partial_fit", caller="partial_fit") | |
.add(callee="fit", caller="fit"), | |
) | |
return router | |
class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator): | |
"""Multi target regression. | |
This strategy consists of fitting one regressor per target. This is a | |
simple strategy for extending regressors that do not natively support | |
multi-target regression. | |
.. versionadded:: 0.18 | |
Parameters | |
---------- | |
estimator : estimator object | |
An estimator object implementing :term:`fit` and :term:`predict`. | |
n_jobs : int or None, optional (default=None) | |
The number of jobs to run in parallel. | |
:meth:`fit`, :meth:`predict` and :meth:`partial_fit` (if supported | |
by the passed estimator) will be parallelized for each target. | |
When individual estimators are fast to train or predict, | |
using ``n_jobs > 1`` can result in slower performance due | |
to the parallelism overhead. | |
``None`` means `1` unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all available processes / threads. | |
See :term:`Glossary <n_jobs>` for more details. | |
.. versionchanged:: 0.20 | |
`n_jobs` default changed from `1` to `None`. | |
Attributes | |
---------- | |
estimators_ : list of ``n_output`` estimators | |
Estimators used for predictions. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying `estimator` exposes such an attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Only defined if the | |
underlying estimators expose such an attribute when fit. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
RegressorChain : A multi-label model that arranges regressions into a | |
chain. | |
MultiOutputClassifier : Classifies each output independently rather than | |
chaining. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.datasets import load_linnerud | |
>>> from sklearn.multioutput import MultiOutputRegressor | |
>>> from sklearn.linear_model import Ridge | |
>>> X, y = load_linnerud(return_X_y=True) | |
>>> regr = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y) | |
>>> regr.predict(X[[0]]) | |
array([[176..., 35..., 57...]]) | |
""" | |
def __init__(self, estimator, *, n_jobs=None): | |
super().__init__(estimator, n_jobs=n_jobs) | |
def partial_fit(self, X, y, sample_weight=None, **partial_fit_params): | |
"""Incrementally fit the model to data, for each output variable. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
y : {array-like, sparse matrix} of shape (n_samples, n_outputs) | |
Multi-output targets. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If `None`, then samples are equally weighted. | |
Only supported if the underlying regressor supports sample | |
weights. | |
**partial_fit_params : dict of str -> object | |
Parameters passed to the ``estimator.partial_fit`` method of each | |
sub-estimator. | |
Only available if `enable_metadata_routing=True`. See the | |
:ref:`User Guide <metadata_routing>`. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
super().partial_fit(X, y, sample_weight=sample_weight, **partial_fit_params) | |
class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator): | |
"""Multi target classification. | |
This strategy consists of fitting one classifier per target. This is a | |
simple strategy for extending classifiers that do not natively support | |
multi-target classification. | |
Parameters | |
---------- | |
estimator : estimator object | |
An estimator object implementing :term:`fit` and :term:`predict`. | |
A :term:`predict_proba` method will be exposed only if `estimator` implements | |
it. | |
n_jobs : int or None, optional (default=None) | |
The number of jobs to run in parallel. | |
:meth:`fit`, :meth:`predict` and :meth:`partial_fit` (if supported | |
by the passed estimator) will be parallelized for each target. | |
When individual estimators are fast to train or predict, | |
using ``n_jobs > 1`` can result in slower performance due | |
to the parallelism overhead. | |
``None`` means `1` unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all available processes / threads. | |
See :term:`Glossary <n_jobs>` for more details. | |
.. versionchanged:: 0.20 | |
`n_jobs` default changed from `1` to `None`. | |
Attributes | |
---------- | |
classes_ : ndarray of shape (n_classes,) | |
Class labels. | |
estimators_ : list of ``n_output`` estimators | |
Estimators used for predictions. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying `estimator` exposes such an attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Only defined if the | |
underlying estimators expose such an attribute when fit. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
ClassifierChain : A multi-label model that arranges binary classifiers | |
into a chain. | |
MultiOutputRegressor : Fits one regressor per target variable. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.datasets import make_multilabel_classification | |
>>> from sklearn.multioutput import MultiOutputClassifier | |
>>> from sklearn.linear_model import LogisticRegression | |
>>> X, y = make_multilabel_classification(n_classes=3, random_state=0) | |
>>> clf = MultiOutputClassifier(LogisticRegression()).fit(X, y) | |
>>> clf.predict(X[-2:]) | |
array([[1, 1, 1], | |
[1, 0, 1]]) | |
""" | |
def __init__(self, estimator, *, n_jobs=None): | |
super().__init__(estimator, n_jobs=n_jobs) | |
def fit(self, X, Y, sample_weight=None, **fit_params): | |
"""Fit the model to data matrix X and targets Y. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Y : array-like of shape (n_samples, n_classes) | |
The target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Sample weights. If `None`, then samples are equally weighted. | |
Only supported if the underlying classifier supports sample | |
weights. | |
**fit_params : dict of string -> object | |
Parameters passed to the ``estimator.fit`` method of each step. | |
.. versionadded:: 0.23 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
super().fit(X, Y, sample_weight=sample_weight, **fit_params) | |
self.classes_ = [estimator.classes_ for estimator in self.estimators_] | |
return self | |
def _check_predict_proba(self): | |
if hasattr(self, "estimators_"): | |
# raise an AttributeError if `predict_proba` does not exist for | |
# each estimator | |
[getattr(est, "predict_proba") for est in self.estimators_] | |
return True | |
# raise an AttributeError if `predict_proba` does not exist for the | |
# unfitted estimator | |
getattr(self.estimator, "predict_proba") | |
return True | |
def predict_proba(self, X): | |
"""Return prediction probabilities for each class of each output. | |
This method will raise a ``ValueError`` if any of the | |
estimators do not have ``predict_proba``. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
p : array of shape (n_samples, n_classes), or a list of n_outputs \ | |
such arrays if n_outputs > 1. | |
The class probabilities of the input samples. The order of the | |
classes corresponds to that in the attribute :term:`classes_`. | |
.. versionchanged:: 0.19 | |
This function now returns a list of arrays where the length of | |
the list is ``n_outputs``, and each array is (``n_samples``, | |
``n_classes``) for that particular output. | |
""" | |
check_is_fitted(self) | |
results = [estimator.predict_proba(X) for estimator in self.estimators_] | |
return results | |
def score(self, X, y): | |
"""Return the mean accuracy on the given test data and labels. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Test samples. | |
y : array-like of shape (n_samples, n_outputs) | |
True values for X. | |
Returns | |
------- | |
scores : float | |
Mean accuracy of predicted target versus true target. | |
""" | |
check_is_fitted(self) | |
n_outputs_ = len(self.estimators_) | |
if y.ndim == 1: | |
raise ValueError( | |
"y must have at least two dimensions for " | |
"multi target classification but has only one" | |
) | |
if y.shape[1] != n_outputs_: | |
raise ValueError( | |
"The number of outputs of Y for fit {0} and" | |
" score {1} should be same".format(n_outputs_, y.shape[1]) | |
) | |
y_pred = self.predict(X) | |
return np.mean(np.all(y == y_pred, axis=1)) | |
def _more_tags(self): | |
# FIXME | |
return {"_skip_test": True} | |
def _available_if_base_estimator_has(attr): | |
"""Return a function to check if `base_estimator` or `estimators_` has `attr`. | |
Helper for Chain implementations. | |
""" | |
def _check(self): | |
return hasattr(self.base_estimator, attr) or all( | |
hasattr(est, attr) for est in self.estimators_ | |
) | |
return available_if(_check) | |
class _BaseChain(BaseEstimator, metaclass=ABCMeta): | |
_parameter_constraints: dict = { | |
"base_estimator": [HasMethods(["fit", "predict"])], | |
"order": ["array-like", StrOptions({"random"}), None], | |
"cv": ["cv_object", StrOptions({"prefit"})], | |
"random_state": ["random_state"], | |
"verbose": ["boolean"], | |
} | |
def __init__( | |
self, base_estimator, *, order=None, cv=None, random_state=None, verbose=False | |
): | |
self.base_estimator = base_estimator | |
self.order = order | |
self.cv = cv | |
self.random_state = random_state | |
self.verbose = verbose | |
def _log_message(self, *, estimator_idx, n_estimators, processing_msg): | |
if not self.verbose: | |
return None | |
return f"({estimator_idx} of {n_estimators}) {processing_msg}" | |
def fit(self, X, Y, **fit_params): | |
"""Fit the model to data matrix X and targets Y. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Y : array-like of shape (n_samples, n_classes) | |
The target values. | |
**fit_params : dict of string -> object | |
Parameters passed to the `fit` method of each step. | |
.. versionadded:: 0.23 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
X, Y = self._validate_data(X, Y, multi_output=True, accept_sparse=True) | |
random_state = check_random_state(self.random_state) | |
self.order_ = self.order | |
if isinstance(self.order_, tuple): | |
self.order_ = np.array(self.order_) | |
if self.order_ is None: | |
self.order_ = np.array(range(Y.shape[1])) | |
elif isinstance(self.order_, str): | |
if self.order_ == "random": | |
self.order_ = random_state.permutation(Y.shape[1]) | |
elif sorted(self.order_) != list(range(Y.shape[1])): | |
raise ValueError("invalid order") | |
self.estimators_ = [clone(self.base_estimator) for _ in range(Y.shape[1])] | |
if self.cv is None: | |
Y_pred_chain = Y[:, self.order_] | |
if sp.issparse(X): | |
X_aug = sp.hstack((X, Y_pred_chain), format="lil") | |
X_aug = X_aug.tocsr() | |
else: | |
X_aug = np.hstack((X, Y_pred_chain)) | |
elif sp.issparse(X): | |
Y_pred_chain = sp.lil_matrix((X.shape[0], Y.shape[1])) | |
X_aug = sp.hstack((X, Y_pred_chain), format="lil") | |
else: | |
Y_pred_chain = np.zeros((X.shape[0], Y.shape[1])) | |
X_aug = np.hstack((X, Y_pred_chain)) | |
del Y_pred_chain | |
if _routing_enabled(): | |
routed_params = process_routing(self, "fit", **fit_params) | |
else: | |
routed_params = Bunch(estimator=Bunch(fit=fit_params)) | |
for chain_idx, estimator in enumerate(self.estimators_): | |
message = self._log_message( | |
estimator_idx=chain_idx + 1, | |
n_estimators=len(self.estimators_), | |
processing_msg=f"Processing order {self.order_[chain_idx]}", | |
) | |
y = Y[:, self.order_[chain_idx]] | |
with _print_elapsed_time("Chain", message): | |
estimator.fit( | |
X_aug[:, : (X.shape[1] + chain_idx)], | |
y, | |
**routed_params.estimator.fit, | |
) | |
if self.cv is not None and chain_idx < len(self.estimators_) - 1: | |
col_idx = X.shape[1] + chain_idx | |
cv_result = cross_val_predict( | |
self.base_estimator, X_aug[:, :col_idx], y=y, cv=self.cv | |
) | |
if sp.issparse(X_aug): | |
X_aug[:, col_idx] = np.expand_dims(cv_result, 1) | |
else: | |
X_aug[:, col_idx] = cv_result | |
return self | |
def predict(self, X): | |
"""Predict on the data matrix X using the ClassifierChain model. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
Y_pred : array-like of shape (n_samples, n_classes) | |
The predicted values. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, accept_sparse=True, reset=False) | |
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_))) | |
for chain_idx, estimator in enumerate(self.estimators_): | |
previous_predictions = Y_pred_chain[:, :chain_idx] | |
if sp.issparse(X): | |
if chain_idx == 0: | |
X_aug = X | |
else: | |
X_aug = sp.hstack((X, previous_predictions)) | |
else: | |
X_aug = np.hstack((X, previous_predictions)) | |
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug) | |
inv_order = np.empty_like(self.order_) | |
inv_order[self.order_] = np.arange(len(self.order_)) | |
Y_pred = Y_pred_chain[:, inv_order] | |
return Y_pred | |
class ClassifierChain(MetaEstimatorMixin, ClassifierMixin, _BaseChain): | |
"""A multi-label model that arranges binary classifiers into a chain. | |
Each model makes a prediction in the order specified by the chain using | |
all of the available features provided to the model plus the predictions | |
of models that are earlier in the chain. | |
For an example of how to use ``ClassifierChain`` and benefit from its | |
ensemble, see | |
:ref:`ClassifierChain on a yeast dataset | |
<sphx_glr_auto_examples_multioutput_plot_classifier_chain_yeast.py>` example. | |
Read more in the :ref:`User Guide <classifierchain>`. | |
.. versionadded:: 0.19 | |
Parameters | |
---------- | |
base_estimator : estimator | |
The base estimator from which the classifier chain is built. | |
order : array-like of shape (n_outputs,) or 'random', default=None | |
If `None`, the order will be determined by the order of columns in | |
the label matrix Y.:: | |
order = [0, 1, 2, ..., Y.shape[1] - 1] | |
The order of the chain can be explicitly set by providing a list of | |
integers. For example, for a chain of length 5.:: | |
order = [1, 3, 2, 4, 0] | |
means that the first model in the chain will make predictions for | |
column 1 in the Y matrix, the second model will make predictions | |
for column 3, etc. | |
If order is `random` a random ordering will be used. | |
cv : int, cross-validation generator or an iterable, default=None | |
Determines whether to use cross validated predictions or true | |
labels for the results of previous estimators in the chain. | |
Possible inputs for cv are: | |
- None, to use true labels when fitting, | |
- integer, to specify the number of folds in a (Stratified)KFold, | |
- :term:`CV splitter`, | |
- An iterable yielding (train, test) splits as arrays of indices. | |
random_state : int, RandomState instance or None, optional (default=None) | |
If ``order='random'``, determines random number generation for the | |
chain order. | |
In addition, it controls the random seed given at each `base_estimator` | |
at each chaining iteration. Thus, it is only used when `base_estimator` | |
exposes a `random_state`. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
verbose : bool, default=False | |
If True, chain progress is output as each model is completed. | |
.. versionadded:: 1.2 | |
Attributes | |
---------- | |
classes_ : list | |
A list of arrays of length ``len(estimators_)`` containing the | |
class labels for each estimator in the chain. | |
estimators_ : list | |
A list of clones of base_estimator. | |
order_ : list | |
The order of labels in the classifier chain. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying `base_estimator` exposes such an attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
RegressorChain : Equivalent for regression. | |
MultiOutputClassifier : Classifies each output independently rather than | |
chaining. | |
References | |
---------- | |
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, "Classifier | |
Chains for Multi-label Classification", 2009. | |
Examples | |
-------- | |
>>> from sklearn.datasets import make_multilabel_classification | |
>>> from sklearn.linear_model import LogisticRegression | |
>>> from sklearn.model_selection import train_test_split | |
>>> from sklearn.multioutput import ClassifierChain | |
>>> X, Y = make_multilabel_classification( | |
... n_samples=12, n_classes=3, random_state=0 | |
... ) | |
>>> X_train, X_test, Y_train, Y_test = train_test_split( | |
... X, Y, random_state=0 | |
... ) | |
>>> base_lr = LogisticRegression(solver='lbfgs', random_state=0) | |
>>> chain = ClassifierChain(base_lr, order='random', random_state=0) | |
>>> chain.fit(X_train, Y_train).predict(X_test) | |
array([[1., 1., 0.], | |
[1., 0., 0.], | |
[0., 1., 0.]]) | |
>>> chain.predict_proba(X_test) | |
array([[0.8387..., 0.9431..., 0.4576...], | |
[0.8878..., 0.3684..., 0.2640...], | |
[0.0321..., 0.9935..., 0.0626...]]) | |
""" | |
def fit(self, X, Y, **fit_params): | |
"""Fit the model to data matrix X and targets Y. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Y : array-like of shape (n_samples, n_classes) | |
The target values. | |
**fit_params : dict of string -> object | |
Parameters passed to the `fit` method of each step. | |
Only available if `enable_metadata_routing=True`. See the | |
:ref:`User Guide <metadata_routing>`. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
self : object | |
Class instance. | |
""" | |
_raise_for_params(fit_params, self, "fit") | |
super().fit(X, Y, **fit_params) | |
self.classes_ = [estimator.classes_ for estimator in self.estimators_] | |
return self | |
def predict_proba(self, X): | |
"""Predict probability estimates. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
Y_prob : array-like of shape (n_samples, n_classes) | |
The predicted probabilities. | |
""" | |
X = self._validate_data(X, accept_sparse=True, reset=False) | |
Y_prob_chain = np.zeros((X.shape[0], len(self.estimators_))) | |
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_))) | |
for chain_idx, estimator in enumerate(self.estimators_): | |
previous_predictions = Y_pred_chain[:, :chain_idx] | |
if sp.issparse(X): | |
X_aug = sp.hstack((X, previous_predictions)) | |
else: | |
X_aug = np.hstack((X, previous_predictions)) | |
Y_prob_chain[:, chain_idx] = estimator.predict_proba(X_aug)[:, 1] | |
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug) | |
inv_order = np.empty_like(self.order_) | |
inv_order[self.order_] = np.arange(len(self.order_)) | |
Y_prob = Y_prob_chain[:, inv_order] | |
return Y_prob | |
def predict_log_proba(self, X): | |
"""Predict logarithm of probability estimates. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
Y_log_prob : array-like of shape (n_samples, n_classes) | |
The predicted logarithm of the probabilities. | |
""" | |
return np.log(self.predict_proba(X)) | |
def decision_function(self, X): | |
"""Evaluate the decision_function of the models in the chain. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data. | |
Returns | |
------- | |
Y_decision : array-like of shape (n_samples, n_classes) | |
Returns the decision function of the sample for each model | |
in the chain. | |
""" | |
X = self._validate_data(X, accept_sparse=True, reset=False) | |
Y_decision_chain = np.zeros((X.shape[0], len(self.estimators_))) | |
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_))) | |
for chain_idx, estimator in enumerate(self.estimators_): | |
previous_predictions = Y_pred_chain[:, :chain_idx] | |
if sp.issparse(X): | |
X_aug = sp.hstack((X, previous_predictions)) | |
else: | |
X_aug = np.hstack((X, previous_predictions)) | |
Y_decision_chain[:, chain_idx] = estimator.decision_function(X_aug) | |
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug) | |
inv_order = np.empty_like(self.order_) | |
inv_order[self.order_] = np.arange(len(self.order_)) | |
Y_decision = Y_decision_chain[:, inv_order] | |
return Y_decision | |
def get_metadata_routing(self): | |
"""Get metadata routing of this object. | |
Please check :ref:`User Guide <metadata_routing>` on how the routing | |
mechanism works. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
routing : MetadataRouter | |
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating | |
routing information. | |
""" | |
router = MetadataRouter(owner=self.__class__.__name__).add( | |
estimator=self.base_estimator, | |
method_mapping=MethodMapping().add(callee="fit", caller="fit"), | |
) | |
return router | |
def _more_tags(self): | |
return {"_skip_test": True, "multioutput_only": True} | |
class RegressorChain(MetaEstimatorMixin, RegressorMixin, _BaseChain): | |
"""A multi-label model that arranges regressions into a chain. | |
Each model makes a prediction in the order specified by the chain using | |
all of the available features provided to the model plus the predictions | |
of models that are earlier in the chain. | |
Read more in the :ref:`User Guide <regressorchain>`. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
base_estimator : estimator | |
The base estimator from which the regressor chain is built. | |
order : array-like of shape (n_outputs,) or 'random', default=None | |
If `None`, the order will be determined by the order of columns in | |
the label matrix Y.:: | |
order = [0, 1, 2, ..., Y.shape[1] - 1] | |
The order of the chain can be explicitly set by providing a list of | |
integers. For example, for a chain of length 5.:: | |
order = [1, 3, 2, 4, 0] | |
means that the first model in the chain will make predictions for | |
column 1 in the Y matrix, the second model will make predictions | |
for column 3, etc. | |
If order is 'random' a random ordering will be used. | |
cv : int, cross-validation generator or an iterable, default=None | |
Determines whether to use cross validated predictions or true | |
labels for the results of previous estimators in the chain. | |
Possible inputs for cv are: | |
- None, to use true labels when fitting, | |
- integer, to specify the number of folds in a (Stratified)KFold, | |
- :term:`CV splitter`, | |
- An iterable yielding (train, test) splits as arrays of indices. | |
random_state : int, RandomState instance or None, optional (default=None) | |
If ``order='random'``, determines random number generation for the | |
chain order. | |
In addition, it controls the random seed given at each `base_estimator` | |
at each chaining iteration. Thus, it is only used when `base_estimator` | |
exposes a `random_state`. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
verbose : bool, default=False | |
If True, chain progress is output as each model is completed. | |
.. versionadded:: 1.2 | |
Attributes | |
---------- | |
estimators_ : list | |
A list of clones of base_estimator. | |
order_ : list | |
The order of labels in the classifier chain. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. Only defined if the | |
underlying `base_estimator` exposes such an attribute when fit. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
ClassifierChain : Equivalent for classification. | |
MultiOutputRegressor : Learns each output independently rather than | |
chaining. | |
Examples | |
-------- | |
>>> from sklearn.multioutput import RegressorChain | |
>>> from sklearn.linear_model import LogisticRegression | |
>>> logreg = LogisticRegression(solver='lbfgs',multi_class='multinomial') | |
>>> X, Y = [[1, 0], [0, 1], [1, 1]], [[0, 2], [1, 1], [2, 0]] | |
>>> chain = RegressorChain(base_estimator=logreg, order=[0, 1]).fit(X, Y) | |
>>> chain.predict(X) | |
array([[0., 2.], | |
[1., 1.], | |
[2., 0.]]) | |
""" | |
def fit(self, X, Y, **fit_params): | |
"""Fit the model to data matrix X and targets Y. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data. | |
Y : array-like of shape (n_samples, n_classes) | |
The target values. | |
**fit_params : dict of string -> object | |
Parameters passed to the `fit` method at each step | |
of the regressor chain. | |
.. versionadded:: 0.23 | |
Returns | |
------- | |
self : object | |
Returns a fitted instance. | |
""" | |
super().fit(X, Y, **fit_params) | |
return self | |
def get_metadata_routing(self): | |
"""Get metadata routing of this object. | |
Please check :ref:`User Guide <metadata_routing>` on how the routing | |
mechanism works. | |
.. versionadded:: 1.3 | |
Returns | |
------- | |
routing : MetadataRouter | |
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating | |
routing information. | |
""" | |
router = MetadataRouter(owner=self.__class__.__name__).add( | |
estimator=self.base_estimator, | |
method_mapping=MethodMapping().add(callee="fit", caller="fit"), | |
) | |
return router | |
def _more_tags(self): | |
return {"multioutput_only": True} | |