peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/_set_output.py
import importlib | |
from functools import wraps | |
from typing import Protocol, runtime_checkable | |
import numpy as np | |
from scipy.sparse import issparse | |
from .._config import get_config | |
from ._available_if import available_if | |
def check_library_installed(library): | |
"""Check library is installed.""" | |
try: | |
return importlib.import_module(library) | |
except ImportError as exc: | |
raise ImportError( | |
f"Setting output container to '{library}' requires {library} to be" | |
" installed" | |
) from exc | |
def get_columns(columns): | |
if callable(columns): | |
try: | |
return columns() | |
except Exception: | |
return None | |
return columns | |
class ContainerAdapterProtocol(Protocol): | |
container_lib: str | |
def create_container(self, X_output, X_original, columns, inplace=False): | |
"""Create container from `X_output` with additional metadata. | |
Parameters | |
---------- | |
X_output : {ndarray, dataframe} | |
Data to wrap. | |
X_original : {ndarray, dataframe} | |
Original input dataframe. This is used to extract the metadata that should | |
be passed to `X_output`, e.g. pandas row index. | |
columns : callable, ndarray, or None | |
The column names or a callable that returns the column names. The | |
callable is useful if the column names require some computation. If `None`, | |
then no columns are passed to the container's constructor. | |
inplace : bool, default=False | |
Whether or not we intend to modify `X_output` in-place. However, it does | |
not guarantee that we return the same object if the in-place operation | |
is not possible. | |
Returns | |
------- | |
wrapped_output : container_type | |
`X_output` wrapped into the container type. | |
""" | |
def is_supported_container(self, X): | |
"""Return True if X is a supported container. | |
Parameters | |
---------- | |
Xs: container | |
Containers to be checked. | |
Returns | |
------- | |
is_supported_container : bool | |
True if X is a supported container. | |
""" | |
def rename_columns(self, X, columns): | |
"""Rename columns in `X`. | |
Parameters | |
---------- | |
X : container | |
Container which columns is updated. | |
columns : ndarray of str | |
Columns to update the `X`'s columns with. | |
Returns | |
------- | |
updated_container : container | |
Container with new names. | |
""" | |
def hstack(self, Xs): | |
"""Stack containers horizontally (column-wise). | |
Parameters | |
---------- | |
Xs : list of containers | |
List of containers to stack. | |
Returns | |
------- | |
stacked_Xs : container | |
Stacked containers. | |
""" | |
class PandasAdapter: | |
container_lib = "pandas" | |
def create_container(self, X_output, X_original, columns, inplace=True): | |
pd = check_library_installed("pandas") | |
columns = get_columns(columns) | |
if not inplace or not isinstance(X_output, pd.DataFrame): | |
# In all these cases, we need to create a new DataFrame | |
# Unfortunately, we cannot use `getattr(container, "index")` | |
# because `list` exposes an `index` attribute. | |
if isinstance(X_output, pd.DataFrame): | |
index = X_output.index | |
elif isinstance(X_original, pd.DataFrame): | |
index = X_original.index | |
else: | |
index = None | |
# We don't pass columns here because it would intend columns selection | |
# instead of renaming. | |
X_output = pd.DataFrame(X_output, index=index, copy=not inplace) | |
if columns is not None: | |
return self.rename_columns(X_output, columns) | |
return X_output | |
def is_supported_container(self, X): | |
pd = check_library_installed("pandas") | |
return isinstance(X, pd.DataFrame) | |
def rename_columns(self, X, columns): | |
# we cannot use `rename` since it takes a dictionary and at this stage we have | |
# potentially duplicate column names in `X` | |
X.columns = columns | |
return X | |
def hstack(self, Xs): | |
pd = check_library_installed("pandas") | |
return pd.concat(Xs, axis=1) | |
class PolarsAdapter: | |
container_lib = "polars" | |
def create_container(self, X_output, X_original, columns, inplace=True): | |
pl = check_library_installed("polars") | |
columns = get_columns(columns) | |
columns = columns.tolist() if isinstance(columns, np.ndarray) else columns | |
if not inplace or not isinstance(X_output, pl.DataFrame): | |
# In all these cases, we need to create a new DataFrame | |
return pl.DataFrame(X_output, schema=columns, orient="row") | |
if columns is not None: | |
return self.rename_columns(X_output, columns) | |
return X_output | |
def is_supported_container(self, X): | |
pl = check_library_installed("polars") | |
return isinstance(X, pl.DataFrame) | |
def rename_columns(self, X, columns): | |
# we cannot use `rename` since it takes a dictionary and at this stage we have | |
# potentially duplicate column names in `X` | |
X.columns = columns | |
return X | |
def hstack(self, Xs): | |
pl = check_library_installed("polars") | |
return pl.concat(Xs, how="horizontal") | |
class ContainerAdaptersManager: | |
def __init__(self): | |
self.adapters = {} | |
def supported_outputs(self): | |
return {"default"} | set(self.adapters) | |
def register(self, adapter): | |
self.adapters[adapter.container_lib] = adapter | |
ADAPTERS_MANAGER = ContainerAdaptersManager() | |
ADAPTERS_MANAGER.register(PandasAdapter()) | |
ADAPTERS_MANAGER.register(PolarsAdapter()) | |
def _get_container_adapter(method, estimator=None): | |
"""Get container adapter.""" | |
dense_config = _get_output_config(method, estimator)["dense"] | |
try: | |
return ADAPTERS_MANAGER.adapters[dense_config] | |
except KeyError: | |
return None | |
def _get_output_config(method, estimator=None): | |
"""Get output config based on estimator and global configuration. | |
Parameters | |
---------- | |
method : {"transform"} | |
Estimator's method for which the output container is looked up. | |
estimator : estimator instance or None | |
Estimator to get the output configuration from. If `None`, check global | |
configuration is used. | |
Returns | |
------- | |
config : dict | |
Dictionary with keys: | |
- "dense": specifies the dense container for `method`. This can be | |
`"default"` or `"pandas"`. | |
""" | |
est_sklearn_output_config = getattr(estimator, "_sklearn_output_config", {}) | |
if method in est_sklearn_output_config: | |
dense_config = est_sklearn_output_config[method] | |
else: | |
dense_config = get_config()[f"{method}_output"] | |
supported_outputs = ADAPTERS_MANAGER.supported_outputs | |
if dense_config not in supported_outputs: | |
raise ValueError( | |
f"output config must be in {sorted(supported_outputs)}, got {dense_config}" | |
) | |
return {"dense": dense_config} | |
def _wrap_data_with_container(method, data_to_wrap, original_input, estimator): | |
"""Wrap output with container based on an estimator's or global config. | |
Parameters | |
---------- | |
method : {"transform"} | |
Estimator's method to get container output for. | |
data_to_wrap : {ndarray, dataframe} | |
Data to wrap with container. | |
original_input : {ndarray, dataframe} | |
Original input of function. | |
estimator : estimator instance | |
Estimator with to get the output configuration from. | |
Returns | |
------- | |
output : {ndarray, dataframe} | |
If the output config is "default" or the estimator is not configured | |
for wrapping return `data_to_wrap` unchanged. | |
If the output config is "pandas", return `data_to_wrap` as a pandas | |
DataFrame. | |
""" | |
output_config = _get_output_config(method, estimator) | |
if output_config["dense"] == "default" or not _auto_wrap_is_configured(estimator): | |
return data_to_wrap | |
dense_config = output_config["dense"] | |
if issparse(data_to_wrap): | |
raise ValueError( | |
"The transformer outputs a scipy sparse matrix. " | |
"Try to set the transformer output to a dense array or disable " | |
f"{dense_config.capitalize()} output with set_output(transform='default')." | |
) | |
adapter = ADAPTERS_MANAGER.adapters[dense_config] | |
return adapter.create_container( | |
data_to_wrap, | |
original_input, | |
columns=estimator.get_feature_names_out, | |
) | |
def _wrap_method_output(f, method): | |
"""Wrapper used by `_SetOutputMixin` to automatically wrap methods.""" | |
def wrapped(self, X, *args, **kwargs): | |
data_to_wrap = f(self, X, *args, **kwargs) | |
if isinstance(data_to_wrap, tuple): | |
# only wrap the first output for cross decomposition | |
return_tuple = ( | |
_wrap_data_with_container(method, data_to_wrap[0], X, self), | |
*data_to_wrap[1:], | |
) | |
# Support for namedtuples `_make` is a documented API for namedtuples: | |
# https://docs.python.org/3/library/collections.html#collections.somenamedtuple._make | |
if hasattr(type(data_to_wrap), "_make"): | |
return type(data_to_wrap)._make(return_tuple) | |
return return_tuple | |
return _wrap_data_with_container(method, data_to_wrap, X, self) | |
return wrapped | |
def _auto_wrap_is_configured(estimator): | |
"""Return True if estimator is configured for auto-wrapping the transform method. | |
`_SetOutputMixin` sets `_sklearn_auto_wrap_output_keys` to `set()` if auto wrapping | |
is manually disabled. | |
""" | |
auto_wrap_output_keys = getattr(estimator, "_sklearn_auto_wrap_output_keys", set()) | |
return ( | |
hasattr(estimator, "get_feature_names_out") | |
and "transform" in auto_wrap_output_keys | |
) | |
class _SetOutputMixin: | |
"""Mixin that dynamically wraps methods to return container based on config. | |
Currently `_SetOutputMixin` wraps `transform` and `fit_transform` and configures | |
it based on `set_output` of the global configuration. | |
`set_output` is only defined if `get_feature_names_out` is defined and | |
`auto_wrap_output_keys` is the default value. | |
""" | |
def __init_subclass__(cls, auto_wrap_output_keys=("transform",), **kwargs): | |
super().__init_subclass__(**kwargs) | |
# Dynamically wraps `transform` and `fit_transform` and configure it's | |
# output based on `set_output`. | |
if not ( | |
isinstance(auto_wrap_output_keys, tuple) or auto_wrap_output_keys is None | |
): | |
raise ValueError("auto_wrap_output_keys must be None or a tuple of keys.") | |
if auto_wrap_output_keys is None: | |
cls._sklearn_auto_wrap_output_keys = set() | |
return | |
# Mapping from method to key in configurations | |
method_to_key = { | |
"transform": "transform", | |
"fit_transform": "transform", | |
} | |
cls._sklearn_auto_wrap_output_keys = set() | |
for method, key in method_to_key.items(): | |
if not hasattr(cls, method) or key not in auto_wrap_output_keys: | |
continue | |
cls._sklearn_auto_wrap_output_keys.add(key) | |
# Only wrap methods defined by cls itself | |
if method not in cls.__dict__: | |
continue | |
wrapped_method = _wrap_method_output(getattr(cls, method), key) | |
setattr(cls, method, wrapped_method) | |
def set_output(self, *, transform=None): | |
"""Set output container. | |
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` | |
for an example on how to use the API. | |
Parameters | |
---------- | |
transform : {"default", "pandas"}, default=None | |
Configure output of `transform` and `fit_transform`. | |
- `"default"`: Default output format of a transformer | |
- `"pandas"`: DataFrame output | |
- `"polars"`: Polars output | |
- `None`: Transform configuration is unchanged | |
.. versionadded:: 1.4 | |
`"polars"` option was added. | |
Returns | |
------- | |
self : estimator instance | |
Estimator instance. | |
""" | |
if transform is None: | |
return self | |
if not hasattr(self, "_sklearn_output_config"): | |
self._sklearn_output_config = {} | |
self._sklearn_output_config["transform"] = transform | |
return self | |
def _safe_set_output(estimator, *, transform=None): | |
"""Safely call estimator.set_output and error if it not available. | |
This is used by meta-estimators to set the output for child estimators. | |
Parameters | |
---------- | |
estimator : estimator instance | |
Estimator instance. | |
transform : {"default", "pandas"}, default=None | |
Configure output of the following estimator's methods: | |
- `"transform"` | |
- `"fit_transform"` | |
If `None`, this operation is a no-op. | |
Returns | |
------- | |
estimator : estimator instance | |
Estimator instance. | |
""" | |
set_output_for_transform = ( | |
hasattr(estimator, "transform") | |
or hasattr(estimator, "fit_transform") | |
and transform is not None | |
) | |
if not set_output_for_transform: | |
# If estimator can not transform, then `set_output` does not need to be | |
# called. | |
return | |
if not hasattr(estimator, "set_output"): | |
raise ValueError( | |
f"Unable to configure output for {estimator} because `set_output` " | |
"is not available." | |
) | |
return estimator.set_output(transform=transform) | |