peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_parallel.py
import time | |
import joblib | |
import numpy as np | |
import pytest | |
from numpy.testing import assert_array_equal | |
from sklearn import config_context, get_config | |
from sklearn.compose import make_column_transformer | |
from sklearn.datasets import load_iris | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.model_selection import GridSearchCV | |
from sklearn.pipeline import make_pipeline | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.utils.parallel import Parallel, delayed | |
def get_working_memory(): | |
return get_config()["working_memory"] | |
def test_configuration_passes_through_to_joblib(n_jobs, backend): | |
# Tests that the global global configuration is passed to joblib jobs | |
with config_context(working_memory=123): | |
results = Parallel(n_jobs=n_jobs, backend=backend)( | |
delayed(get_working_memory)() for _ in range(2) | |
) | |
assert_array_equal(results, [123] * 2) | |
def test_parallel_delayed_warnings(): | |
"""Informative warnings should be raised when mixing sklearn and joblib API""" | |
# We should issue a warning when one wants to use sklearn.utils.fixes.Parallel | |
# with joblib.delayed. The config will not be propagated to the workers. | |
warn_msg = "`sklearn.utils.parallel.Parallel` needs to be used in conjunction" | |
with pytest.warns(UserWarning, match=warn_msg) as records: | |
Parallel()(joblib.delayed(time.sleep)(0) for _ in range(10)) | |
assert len(records) == 10 | |
# We should issue a warning if one wants to use sklearn.utils.fixes.delayed with | |
# joblib.Parallel | |
warn_msg = ( | |
"`sklearn.utils.parallel.delayed` should be used with " | |
"`sklearn.utils.parallel.Parallel` to make it possible to propagate" | |
) | |
with pytest.warns(UserWarning, match=warn_msg) as records: | |
joblib.Parallel()(delayed(time.sleep)(0) for _ in range(10)) | |
assert len(records) == 10 | |
def test_dispatch_config_parallel(n_jobs): | |
"""Check that we properly dispatch the configuration in parallel processing. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/25239 | |
""" | |
pd = pytest.importorskip("pandas") | |
iris = load_iris(as_frame=True) | |
class TransformerRequiredDataFrame(StandardScaler): | |
def fit(self, X, y=None): | |
assert isinstance(X, pd.DataFrame), "X should be a DataFrame" | |
return super().fit(X, y) | |
def transform(self, X, y=None): | |
assert isinstance(X, pd.DataFrame), "X should be a DataFrame" | |
return super().transform(X, y) | |
dropper = make_column_transformer( | |
("drop", [0]), | |
remainder="passthrough", | |
n_jobs=n_jobs, | |
) | |
param_grid = {"randomforestclassifier__max_depth": [1, 2, 3]} | |
search_cv = GridSearchCV( | |
make_pipeline( | |
dropper, | |
TransformerRequiredDataFrame(), | |
RandomForestClassifier(n_estimators=5, n_jobs=n_jobs), | |
), | |
param_grid, | |
cv=5, | |
n_jobs=n_jobs, | |
error_score="raise", # this search should not fail | |
) | |
# make sure that `fit` would fail in case we don't request dataframe | |
with pytest.raises(AssertionError, match="X should be a DataFrame"): | |
search_cv.fit(iris.data, iris.target) | |
with config_context(transform_output="pandas"): | |
# we expect each intermediate steps to output a DataFrame | |
search_cv.fit(iris.data, iris.target) | |
assert not np.isnan(search_cv.cv_results_["mean_test_score"]).any() | |