peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/linalg
/linalg.pyi
from collections.abc import Iterable | |
from typing import ( | |
Literal as L, | |
overload, | |
TypeVar, | |
Any, | |
SupportsIndex, | |
SupportsInt, | |
NamedTuple, | |
Generic, | |
) | |
from numpy import ( | |
generic, | |
floating, | |
complexfloating, | |
int32, | |
float64, | |
complex128, | |
) | |
from numpy.linalg import LinAlgError as LinAlgError | |
from numpy._typing import ( | |
NDArray, | |
ArrayLike, | |
_ArrayLikeInt_co, | |
_ArrayLikeFloat_co, | |
_ArrayLikeComplex_co, | |
_ArrayLikeTD64_co, | |
_ArrayLikeObject_co, | |
) | |
_T = TypeVar("_T") | |
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any]) | |
_SCT = TypeVar("_SCT", bound=generic, covariant=True) | |
_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True) | |
_2Tuple = tuple[_T, _T] | |
_ModeKind = L["reduced", "complete", "r", "raw"] | |
__all__: list[str] | |
class EigResult(NamedTuple): | |
eigenvalues: NDArray[Any] | |
eigenvectors: NDArray[Any] | |
class EighResult(NamedTuple): | |
eigenvalues: NDArray[Any] | |
eigenvectors: NDArray[Any] | |
class QRResult(NamedTuple): | |
Q: NDArray[Any] | |
R: NDArray[Any] | |
class SlogdetResult(NamedTuple): | |
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and | |
# a `(x.ndim - 2)`` dimensionl arrays otherwise | |
sign: Any | |
logabsdet: Any | |
class SVDResult(NamedTuple): | |
U: NDArray[Any] | |
S: NDArray[Any] | |
Vh: NDArray[Any] | |
def tensorsolve( | |
a: _ArrayLikeInt_co, | |
b: _ArrayLikeInt_co, | |
axes: None | Iterable[int] =..., | |
) -> NDArray[float64]: ... | |
def tensorsolve( | |
a: _ArrayLikeFloat_co, | |
b: _ArrayLikeFloat_co, | |
axes: None | Iterable[int] =..., | |
) -> NDArray[floating[Any]]: ... | |
def tensorsolve( | |
a: _ArrayLikeComplex_co, | |
b: _ArrayLikeComplex_co, | |
axes: None | Iterable[int] =..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def solve( | |
a: _ArrayLikeInt_co, | |
b: _ArrayLikeInt_co, | |
) -> NDArray[float64]: ... | |
def solve( | |
a: _ArrayLikeFloat_co, | |
b: _ArrayLikeFloat_co, | |
) -> NDArray[floating[Any]]: ... | |
def solve( | |
a: _ArrayLikeComplex_co, | |
b: _ArrayLikeComplex_co, | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def tensorinv( | |
a: _ArrayLikeInt_co, | |
ind: int = ..., | |
) -> NDArray[float64]: ... | |
def tensorinv( | |
a: _ArrayLikeFloat_co, | |
ind: int = ..., | |
) -> NDArray[floating[Any]]: ... | |
def tensorinv( | |
a: _ArrayLikeComplex_co, | |
ind: int = ..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ... | |
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... | |
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
# TODO: The supported input and output dtypes are dependent on the value of `n`. | |
# For example: `n < 0` always casts integer types to float64 | |
def matrix_power( | |
a: _ArrayLikeComplex_co | _ArrayLikeObject_co, | |
n: SupportsIndex, | |
) -> NDArray[Any]: ... | |
def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ... | |
def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... | |
def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ... | |
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ... | |
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ... | |
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ... | |
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ... | |
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... | |
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ... | |
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ... | |
def eig(a: _ArrayLikeInt_co) -> EigResult: ... | |
def eig(a: _ArrayLikeFloat_co) -> EigResult: ... | |
def eig(a: _ArrayLikeComplex_co) -> EigResult: ... | |
def eigh( | |
a: _ArrayLikeInt_co, | |
UPLO: L["L", "U", "l", "u"] = ..., | |
) -> EighResult: ... | |
def eigh( | |
a: _ArrayLikeFloat_co, | |
UPLO: L["L", "U", "l", "u"] = ..., | |
) -> EighResult: ... | |
def eigh( | |
a: _ArrayLikeComplex_co, | |
UPLO: L["L", "U", "l", "u"] = ..., | |
) -> EighResult: ... | |
def svd( | |
a: _ArrayLikeInt_co, | |
full_matrices: bool = ..., | |
compute_uv: L[True] = ..., | |
hermitian: bool = ..., | |
) -> SVDResult: ... | |
def svd( | |
a: _ArrayLikeFloat_co, | |
full_matrices: bool = ..., | |
compute_uv: L[True] = ..., | |
hermitian: bool = ..., | |
) -> SVDResult: ... | |
def svd( | |
a: _ArrayLikeComplex_co, | |
full_matrices: bool = ..., | |
compute_uv: L[True] = ..., | |
hermitian: bool = ..., | |
) -> SVDResult: ... | |
def svd( | |
a: _ArrayLikeInt_co, | |
full_matrices: bool = ..., | |
compute_uv: L[False] = ..., | |
hermitian: bool = ..., | |
) -> NDArray[float64]: ... | |
def svd( | |
a: _ArrayLikeComplex_co, | |
full_matrices: bool = ..., | |
compute_uv: L[False] = ..., | |
hermitian: bool = ..., | |
) -> NDArray[floating[Any]]: ... | |
# TODO: Returns a scalar for 2D arrays and | |
# a `(x.ndim - 2)`` dimensionl array otherwise | |
def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ... | |
# TODO: Returns `int` for <2D arrays and `intp` otherwise | |
def matrix_rank( | |
A: _ArrayLikeComplex_co, | |
tol: None | _ArrayLikeFloat_co = ..., | |
hermitian: bool = ..., | |
) -> Any: ... | |
def pinv( | |
a: _ArrayLikeInt_co, | |
rcond: _ArrayLikeFloat_co = ..., | |
hermitian: bool = ..., | |
) -> NDArray[float64]: ... | |
def pinv( | |
a: _ArrayLikeFloat_co, | |
rcond: _ArrayLikeFloat_co = ..., | |
hermitian: bool = ..., | |
) -> NDArray[floating[Any]]: ... | |
def pinv( | |
a: _ArrayLikeComplex_co, | |
rcond: _ArrayLikeFloat_co = ..., | |
hermitian: bool = ..., | |
) -> NDArray[complexfloating[Any, Any]]: ... | |
# TODO: Returns a 2-tuple of scalars for 2D arrays and | |
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise | |
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ... | |
# TODO: Returns a 2-tuple of scalars for 2D arrays and | |
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise | |
def det(a: _ArrayLikeComplex_co) -> Any: ... | |
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[ | |
NDArray[float64], | |
NDArray[float64], | |
int32, | |
NDArray[float64], | |
]: ... | |
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[ | |
NDArray[floating[Any]], | |
NDArray[floating[Any]], | |
int32, | |
NDArray[floating[Any]], | |
]: ... | |
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[ | |
NDArray[complexfloating[Any, Any]], | |
NDArray[floating[Any]], | |
int32, | |
NDArray[floating[Any]], | |
]: ... | |
def norm( | |
x: ArrayLike, | |
ord: None | float | L["fro", "nuc"] = ..., | |
axis: None = ..., | |
keepdims: bool = ..., | |
) -> floating[Any]: ... | |
def norm( | |
x: ArrayLike, | |
ord: None | float | L["fro", "nuc"] = ..., | |
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ..., | |
keepdims: bool = ..., | |
) -> Any: ... | |
# TODO: Returns a scalar or array | |
def multi_dot( | |
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co], | |
*, | |
out: None | NDArray[Any] = ..., | |
) -> Any: ... | |