Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step60/zero/12.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step60/zero/12.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/numpy/_utils/__init__.py +29 -0
- venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_convertions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_inspect.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_utils/_convertions.py +18 -0
- venv/lib/python3.10/site-packages/numpy/_utils/_inspect.py +191 -0
- venv/lib/python3.10/site-packages/numpy/_utils/_pep440.py +487 -0
- venv/lib/python3.10/site-packages/numpy/linalg/__init__.py +80 -0
- venv/lib/python3.10/site-packages/numpy/linalg/__init__.pyi +30 -0
- venv/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/_umath_linalg.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/linalg.py +2836 -0
- venv/lib/python3.10/site-packages/numpy/linalg/linalg.pyi +297 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py +20 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py +2198 -0
- venv/lib/python3.10/site-packages/numpy/linalg/tests/test_regression.py +145 -0
- venv/lib/python3.10/site-packages/numpy/ma/LICENSE +24 -0
- venv/lib/python3.10/site-packages/numpy/ma/README.rst +236 -0
- venv/lib/python3.10/site-packages/numpy/ma/__init__.py +54 -0
- venv/lib/python3.10/site-packages/numpy/ma/__init__.pyi +234 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/extras.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/mrecords.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/setup.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/testutils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/core.py +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/core.pyi +471 -0
- venv/lib/python3.10/site-packages/numpy/ma/extras.pyi +85 -0
- venv/lib/python3.10/site-packages/numpy/ma/mrecords.pyi +90 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-310.pyc +0 -0
ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c5cf66504193ddfc2f1a66aab0560cd5eaa7453205ac8c09ac87876001e734b
|
3 |
+
size 33555612
|
ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38d6824ac47b721ab1a9e34448572f832bc7e5e60f18216cafb57b38fafe9fcc
|
3 |
+
size 33555627
|
ckpts/universal/global_step60/zero/10.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc7a15498a589c0fdde19f3e022679301f6ca0f35e7a901ac863216f9c03b3b
|
3 |
+
size 33555533
|
ckpts/universal/global_step60/zero/12.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27da9c6159be5e36247fd7e2e11deff175a7b49a0396079364f9422b1c34aca3
|
3 |
+
size 16778396
|
ckpts/universal/global_step60/zero/12.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d0385130c0db44568b7d1560887bb48b2c29039dd0d362e48106aa24ba14d5e
|
3 |
+
size 16778411
|
ckpts/universal/global_step60/zero/22.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6917da9b2c7e936632420afb61a22f551a9b5fba59e43be876f844343826482
|
3 |
+
size 33555612
|
ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9a59fbed1ed282cf87f7cea6ad615a54b186e8853e8abe12d7294a2f88efe8
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/numpy/_utils/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a module for defining private helpers which do not depend on the
|
3 |
+
rest of NumPy.
|
4 |
+
|
5 |
+
Everything in here must be self-contained so that it can be
|
6 |
+
imported anywhere else without creating circular imports.
|
7 |
+
If a utility requires the import of NumPy, it probably belongs
|
8 |
+
in ``numpy.core``.
|
9 |
+
"""
|
10 |
+
|
11 |
+
from ._convertions import asunicode, asbytes
|
12 |
+
|
13 |
+
|
14 |
+
def set_module(module):
|
15 |
+
"""Private decorator for overriding __module__ on a function or class.
|
16 |
+
|
17 |
+
Example usage::
|
18 |
+
|
19 |
+
@set_module('numpy')
|
20 |
+
def example():
|
21 |
+
pass
|
22 |
+
|
23 |
+
assert example.__module__ == 'numpy'
|
24 |
+
"""
|
25 |
+
def decorator(func):
|
26 |
+
if module is not None:
|
27 |
+
func.__module__ = module
|
28 |
+
return func
|
29 |
+
return decorator
|
venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_convertions.cpython-310.pyc
ADDED
Binary file (622 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_utils/__pycache__/_inspect.cpython-310.pyc
ADDED
Binary file (7.62 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_utils/_convertions.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A set of methods retained from np.compat module that
|
3 |
+
are still used across codebase.
|
4 |
+
"""
|
5 |
+
|
6 |
+
__all__ = ["asunicode", "asbytes"]
|
7 |
+
|
8 |
+
|
9 |
+
def asunicode(s):
|
10 |
+
if isinstance(s, bytes):
|
11 |
+
return s.decode('latin1')
|
12 |
+
return str(s)
|
13 |
+
|
14 |
+
|
15 |
+
def asbytes(s):
|
16 |
+
if isinstance(s, bytes):
|
17 |
+
return s
|
18 |
+
return str(s).encode('latin1')
|
venv/lib/python3.10/site-packages/numpy/_utils/_inspect.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Subset of inspect module from upstream python
|
2 |
+
|
3 |
+
We use this instead of upstream because upstream inspect is slow to import, and
|
4 |
+
significantly contributes to numpy import times. Importing this copy has almost
|
5 |
+
no overhead.
|
6 |
+
|
7 |
+
"""
|
8 |
+
import types
|
9 |
+
|
10 |
+
__all__ = ['getargspec', 'formatargspec']
|
11 |
+
|
12 |
+
# ----------------------------------------------------------- type-checking
|
13 |
+
def ismethod(object):
|
14 |
+
"""Return true if the object is an instance method.
|
15 |
+
|
16 |
+
Instance method objects provide these attributes:
|
17 |
+
__doc__ documentation string
|
18 |
+
__name__ name with which this method was defined
|
19 |
+
im_class class object in which this method belongs
|
20 |
+
im_func function object containing implementation of method
|
21 |
+
im_self instance to which this method is bound, or None
|
22 |
+
|
23 |
+
"""
|
24 |
+
return isinstance(object, types.MethodType)
|
25 |
+
|
26 |
+
def isfunction(object):
|
27 |
+
"""Return true if the object is a user-defined function.
|
28 |
+
|
29 |
+
Function objects provide these attributes:
|
30 |
+
__doc__ documentation string
|
31 |
+
__name__ name with which this function was defined
|
32 |
+
func_code code object containing compiled function bytecode
|
33 |
+
func_defaults tuple of any default values for arguments
|
34 |
+
func_doc (same as __doc__)
|
35 |
+
func_globals global namespace in which this function was defined
|
36 |
+
func_name (same as __name__)
|
37 |
+
|
38 |
+
"""
|
39 |
+
return isinstance(object, types.FunctionType)
|
40 |
+
|
41 |
+
def iscode(object):
|
42 |
+
"""Return true if the object is a code object.
|
43 |
+
|
44 |
+
Code objects provide these attributes:
|
45 |
+
co_argcount number of arguments (not including * or ** args)
|
46 |
+
co_code string of raw compiled bytecode
|
47 |
+
co_consts tuple of constants used in the bytecode
|
48 |
+
co_filename name of file in which this code object was created
|
49 |
+
co_firstlineno number of first line in Python source code
|
50 |
+
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
|
51 |
+
co_lnotab encoded mapping of line numbers to bytecode indices
|
52 |
+
co_name name with which this code object was defined
|
53 |
+
co_names tuple of names of local variables
|
54 |
+
co_nlocals number of local variables
|
55 |
+
co_stacksize virtual machine stack space required
|
56 |
+
co_varnames tuple of names of arguments and local variables
|
57 |
+
|
58 |
+
"""
|
59 |
+
return isinstance(object, types.CodeType)
|
60 |
+
|
61 |
+
# ------------------------------------------------ argument list extraction
|
62 |
+
# These constants are from Python's compile.h.
|
63 |
+
CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8
|
64 |
+
|
65 |
+
def getargs(co):
|
66 |
+
"""Get information about the arguments accepted by a code object.
|
67 |
+
|
68 |
+
Three things are returned: (args, varargs, varkw), where 'args' is
|
69 |
+
a list of argument names (possibly containing nested lists), and
|
70 |
+
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
71 |
+
|
72 |
+
"""
|
73 |
+
|
74 |
+
if not iscode(co):
|
75 |
+
raise TypeError('arg is not a code object')
|
76 |
+
|
77 |
+
nargs = co.co_argcount
|
78 |
+
names = co.co_varnames
|
79 |
+
args = list(names[:nargs])
|
80 |
+
|
81 |
+
# The following acrobatics are for anonymous (tuple) arguments.
|
82 |
+
# Which we do not need to support, so remove to avoid importing
|
83 |
+
# the dis module.
|
84 |
+
for i in range(nargs):
|
85 |
+
if args[i][:1] in ['', '.']:
|
86 |
+
raise TypeError("tuple function arguments are not supported")
|
87 |
+
varargs = None
|
88 |
+
if co.co_flags & CO_VARARGS:
|
89 |
+
varargs = co.co_varnames[nargs]
|
90 |
+
nargs = nargs + 1
|
91 |
+
varkw = None
|
92 |
+
if co.co_flags & CO_VARKEYWORDS:
|
93 |
+
varkw = co.co_varnames[nargs]
|
94 |
+
return args, varargs, varkw
|
95 |
+
|
96 |
+
def getargspec(func):
|
97 |
+
"""Get the names and default values of a function's arguments.
|
98 |
+
|
99 |
+
A tuple of four things is returned: (args, varargs, varkw, defaults).
|
100 |
+
'args' is a list of the argument names (it may contain nested lists).
|
101 |
+
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
102 |
+
'defaults' is an n-tuple of the default values of the last n arguments.
|
103 |
+
|
104 |
+
"""
|
105 |
+
|
106 |
+
if ismethod(func):
|
107 |
+
func = func.__func__
|
108 |
+
if not isfunction(func):
|
109 |
+
raise TypeError('arg is not a Python function')
|
110 |
+
args, varargs, varkw = getargs(func.__code__)
|
111 |
+
return args, varargs, varkw, func.__defaults__
|
112 |
+
|
113 |
+
def getargvalues(frame):
|
114 |
+
"""Get information about arguments passed into a particular frame.
|
115 |
+
|
116 |
+
A tuple of four things is returned: (args, varargs, varkw, locals).
|
117 |
+
'args' is a list of the argument names (it may contain nested lists).
|
118 |
+
'varargs' and 'varkw' are the names of the * and ** arguments or None.
|
119 |
+
'locals' is the locals dictionary of the given frame.
|
120 |
+
|
121 |
+
"""
|
122 |
+
args, varargs, varkw = getargs(frame.f_code)
|
123 |
+
return args, varargs, varkw, frame.f_locals
|
124 |
+
|
125 |
+
def joinseq(seq):
|
126 |
+
if len(seq) == 1:
|
127 |
+
return '(' + seq[0] + ',)'
|
128 |
+
else:
|
129 |
+
return '(' + ', '.join(seq) + ')'
|
130 |
+
|
131 |
+
def strseq(object, convert, join=joinseq):
|
132 |
+
"""Recursively walk a sequence, stringifying each element.
|
133 |
+
|
134 |
+
"""
|
135 |
+
if type(object) in [list, tuple]:
|
136 |
+
return join([strseq(_o, convert, join) for _o in object])
|
137 |
+
else:
|
138 |
+
return convert(object)
|
139 |
+
|
140 |
+
def formatargspec(args, varargs=None, varkw=None, defaults=None,
|
141 |
+
formatarg=str,
|
142 |
+
formatvarargs=lambda name: '*' + name,
|
143 |
+
formatvarkw=lambda name: '**' + name,
|
144 |
+
formatvalue=lambda value: '=' + repr(value),
|
145 |
+
join=joinseq):
|
146 |
+
"""Format an argument spec from the 4 values returned by getargspec.
|
147 |
+
|
148 |
+
The first four arguments are (args, varargs, varkw, defaults). The
|
149 |
+
other four arguments are the corresponding optional formatting functions
|
150 |
+
that are called to turn names and values into strings. The ninth
|
151 |
+
argument is an optional function to format the sequence of arguments.
|
152 |
+
|
153 |
+
"""
|
154 |
+
specs = []
|
155 |
+
if defaults:
|
156 |
+
firstdefault = len(args) - len(defaults)
|
157 |
+
for i in range(len(args)):
|
158 |
+
spec = strseq(args[i], formatarg, join)
|
159 |
+
if defaults and i >= firstdefault:
|
160 |
+
spec = spec + formatvalue(defaults[i - firstdefault])
|
161 |
+
specs.append(spec)
|
162 |
+
if varargs is not None:
|
163 |
+
specs.append(formatvarargs(varargs))
|
164 |
+
if varkw is not None:
|
165 |
+
specs.append(formatvarkw(varkw))
|
166 |
+
return '(' + ', '.join(specs) + ')'
|
167 |
+
|
168 |
+
def formatargvalues(args, varargs, varkw, locals,
|
169 |
+
formatarg=str,
|
170 |
+
formatvarargs=lambda name: '*' + name,
|
171 |
+
formatvarkw=lambda name: '**' + name,
|
172 |
+
formatvalue=lambda value: '=' + repr(value),
|
173 |
+
join=joinseq):
|
174 |
+
"""Format an argument spec from the 4 values returned by getargvalues.
|
175 |
+
|
176 |
+
The first four arguments are (args, varargs, varkw, locals). The
|
177 |
+
next four arguments are the corresponding optional formatting functions
|
178 |
+
that are called to turn names and values into strings. The ninth
|
179 |
+
argument is an optional function to format the sequence of arguments.
|
180 |
+
|
181 |
+
"""
|
182 |
+
def convert(name, locals=locals,
|
183 |
+
formatarg=formatarg, formatvalue=formatvalue):
|
184 |
+
return formatarg(name) + formatvalue(locals[name])
|
185 |
+
specs = [strseq(arg, convert, join) for arg in args]
|
186 |
+
|
187 |
+
if varargs:
|
188 |
+
specs.append(formatvarargs(varargs) + formatvalue(locals[varargs]))
|
189 |
+
if varkw:
|
190 |
+
specs.append(formatvarkw(varkw) + formatvalue(locals[varkw]))
|
191 |
+
return '(' + ', '.join(specs) + ')'
|
venv/lib/python3.10/site-packages/numpy/_utils/_pep440.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility to compare pep440 compatible version strings.
|
2 |
+
|
3 |
+
The LooseVersion and StrictVersion classes that distutils provides don't
|
4 |
+
work; they don't recognize anything like alpha/beta/rc/dev versions.
|
5 |
+
"""
|
6 |
+
|
7 |
+
# Copyright (c) Donald Stufft and individual contributors.
|
8 |
+
# All rights reserved.
|
9 |
+
|
10 |
+
# Redistribution and use in source and binary forms, with or without
|
11 |
+
# modification, are permitted provided that the following conditions are met:
|
12 |
+
|
13 |
+
# 1. Redistributions of source code must retain the above copyright notice,
|
14 |
+
# this list of conditions and the following disclaimer.
|
15 |
+
|
16 |
+
# 2. Redistributions in binary form must reproduce the above copyright
|
17 |
+
# notice, this list of conditions and the following disclaimer in the
|
18 |
+
# documentation and/or other materials provided with the distribution.
|
19 |
+
|
20 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
23 |
+
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
24 |
+
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
25 |
+
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
26 |
+
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
27 |
+
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
28 |
+
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
29 |
+
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
30 |
+
# POSSIBILITY OF SUCH DAMAGE.
|
31 |
+
|
32 |
+
import collections
|
33 |
+
import itertools
|
34 |
+
import re
|
35 |
+
|
36 |
+
|
37 |
+
__all__ = [
|
38 |
+
"parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
# BEGIN packaging/_structures.py
|
43 |
+
|
44 |
+
|
45 |
+
class Infinity:
|
46 |
+
def __repr__(self):
|
47 |
+
return "Infinity"
|
48 |
+
|
49 |
+
def __hash__(self):
|
50 |
+
return hash(repr(self))
|
51 |
+
|
52 |
+
def __lt__(self, other):
|
53 |
+
return False
|
54 |
+
|
55 |
+
def __le__(self, other):
|
56 |
+
return False
|
57 |
+
|
58 |
+
def __eq__(self, other):
|
59 |
+
return isinstance(other, self.__class__)
|
60 |
+
|
61 |
+
def __ne__(self, other):
|
62 |
+
return not isinstance(other, self.__class__)
|
63 |
+
|
64 |
+
def __gt__(self, other):
|
65 |
+
return True
|
66 |
+
|
67 |
+
def __ge__(self, other):
|
68 |
+
return True
|
69 |
+
|
70 |
+
def __neg__(self):
|
71 |
+
return NegativeInfinity
|
72 |
+
|
73 |
+
|
74 |
+
Infinity = Infinity()
|
75 |
+
|
76 |
+
|
77 |
+
class NegativeInfinity:
|
78 |
+
def __repr__(self):
|
79 |
+
return "-Infinity"
|
80 |
+
|
81 |
+
def __hash__(self):
|
82 |
+
return hash(repr(self))
|
83 |
+
|
84 |
+
def __lt__(self, other):
|
85 |
+
return True
|
86 |
+
|
87 |
+
def __le__(self, other):
|
88 |
+
return True
|
89 |
+
|
90 |
+
def __eq__(self, other):
|
91 |
+
return isinstance(other, self.__class__)
|
92 |
+
|
93 |
+
def __ne__(self, other):
|
94 |
+
return not isinstance(other, self.__class__)
|
95 |
+
|
96 |
+
def __gt__(self, other):
|
97 |
+
return False
|
98 |
+
|
99 |
+
def __ge__(self, other):
|
100 |
+
return False
|
101 |
+
|
102 |
+
def __neg__(self):
|
103 |
+
return Infinity
|
104 |
+
|
105 |
+
|
106 |
+
# BEGIN packaging/version.py
|
107 |
+
|
108 |
+
|
109 |
+
NegativeInfinity = NegativeInfinity()
|
110 |
+
|
111 |
+
_Version = collections.namedtuple(
|
112 |
+
"_Version",
|
113 |
+
["epoch", "release", "dev", "pre", "post", "local"],
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
def parse(version):
|
118 |
+
"""
|
119 |
+
Parse the given version string and return either a :class:`Version` object
|
120 |
+
or a :class:`LegacyVersion` object depending on if the given version is
|
121 |
+
a valid PEP 440 version or a legacy version.
|
122 |
+
"""
|
123 |
+
try:
|
124 |
+
return Version(version)
|
125 |
+
except InvalidVersion:
|
126 |
+
return LegacyVersion(version)
|
127 |
+
|
128 |
+
|
129 |
+
class InvalidVersion(ValueError):
|
130 |
+
"""
|
131 |
+
An invalid version was found, users should refer to PEP 440.
|
132 |
+
"""
|
133 |
+
|
134 |
+
|
135 |
+
class _BaseVersion:
|
136 |
+
|
137 |
+
def __hash__(self):
|
138 |
+
return hash(self._key)
|
139 |
+
|
140 |
+
def __lt__(self, other):
|
141 |
+
return self._compare(other, lambda s, o: s < o)
|
142 |
+
|
143 |
+
def __le__(self, other):
|
144 |
+
return self._compare(other, lambda s, o: s <= o)
|
145 |
+
|
146 |
+
def __eq__(self, other):
|
147 |
+
return self._compare(other, lambda s, o: s == o)
|
148 |
+
|
149 |
+
def __ge__(self, other):
|
150 |
+
return self._compare(other, lambda s, o: s >= o)
|
151 |
+
|
152 |
+
def __gt__(self, other):
|
153 |
+
return self._compare(other, lambda s, o: s > o)
|
154 |
+
|
155 |
+
def __ne__(self, other):
|
156 |
+
return self._compare(other, lambda s, o: s != o)
|
157 |
+
|
158 |
+
def _compare(self, other, method):
|
159 |
+
if not isinstance(other, _BaseVersion):
|
160 |
+
return NotImplemented
|
161 |
+
|
162 |
+
return method(self._key, other._key)
|
163 |
+
|
164 |
+
|
165 |
+
class LegacyVersion(_BaseVersion):
|
166 |
+
|
167 |
+
def __init__(self, version):
|
168 |
+
self._version = str(version)
|
169 |
+
self._key = _legacy_cmpkey(self._version)
|
170 |
+
|
171 |
+
def __str__(self):
|
172 |
+
return self._version
|
173 |
+
|
174 |
+
def __repr__(self):
|
175 |
+
return "<LegacyVersion({0})>".format(repr(str(self)))
|
176 |
+
|
177 |
+
@property
|
178 |
+
def public(self):
|
179 |
+
return self._version
|
180 |
+
|
181 |
+
@property
|
182 |
+
def base_version(self):
|
183 |
+
return self._version
|
184 |
+
|
185 |
+
@property
|
186 |
+
def local(self):
|
187 |
+
return None
|
188 |
+
|
189 |
+
@property
|
190 |
+
def is_prerelease(self):
|
191 |
+
return False
|
192 |
+
|
193 |
+
@property
|
194 |
+
def is_postrelease(self):
|
195 |
+
return False
|
196 |
+
|
197 |
+
|
198 |
+
_legacy_version_component_re = re.compile(
|
199 |
+
r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE,
|
200 |
+
)
|
201 |
+
|
202 |
+
_legacy_version_replacement_map = {
|
203 |
+
"pre": "c", "preview": "c", "-": "final-", "rc": "c", "dev": "@",
|
204 |
+
}
|
205 |
+
|
206 |
+
|
207 |
+
def _parse_version_parts(s):
|
208 |
+
for part in _legacy_version_component_re.split(s):
|
209 |
+
part = _legacy_version_replacement_map.get(part, part)
|
210 |
+
|
211 |
+
if not part or part == ".":
|
212 |
+
continue
|
213 |
+
|
214 |
+
if part[:1] in "0123456789":
|
215 |
+
# pad for numeric comparison
|
216 |
+
yield part.zfill(8)
|
217 |
+
else:
|
218 |
+
yield "*" + part
|
219 |
+
|
220 |
+
# ensure that alpha/beta/candidate are before final
|
221 |
+
yield "*final"
|
222 |
+
|
223 |
+
|
224 |
+
def _legacy_cmpkey(version):
|
225 |
+
# We hardcode an epoch of -1 here. A PEP 440 version can only have an epoch
|
226 |
+
# greater than or equal to 0. This will effectively put the LegacyVersion,
|
227 |
+
# which uses the defacto standard originally implemented by setuptools,
|
228 |
+
# as before all PEP 440 versions.
|
229 |
+
epoch = -1
|
230 |
+
|
231 |
+
# This scheme is taken from pkg_resources.parse_version setuptools prior to
|
232 |
+
# its adoption of the packaging library.
|
233 |
+
parts = []
|
234 |
+
for part in _parse_version_parts(version.lower()):
|
235 |
+
if part.startswith("*"):
|
236 |
+
# remove "-" before a prerelease tag
|
237 |
+
if part < "*final":
|
238 |
+
while parts and parts[-1] == "*final-":
|
239 |
+
parts.pop()
|
240 |
+
|
241 |
+
# remove trailing zeros from each series of numeric parts
|
242 |
+
while parts and parts[-1] == "00000000":
|
243 |
+
parts.pop()
|
244 |
+
|
245 |
+
parts.append(part)
|
246 |
+
parts = tuple(parts)
|
247 |
+
|
248 |
+
return epoch, parts
|
249 |
+
|
250 |
+
|
251 |
+
# Deliberately not anchored to the start and end of the string, to make it
|
252 |
+
# easier for 3rd party code to reuse
|
253 |
+
VERSION_PATTERN = r"""
|
254 |
+
v?
|
255 |
+
(?:
|
256 |
+
(?:(?P<epoch>[0-9]+)!)? # epoch
|
257 |
+
(?P<release>[0-9]+(?:\.[0-9]+)*) # release segment
|
258 |
+
(?P<pre> # pre-release
|
259 |
+
[-_\.]?
|
260 |
+
(?P<pre_l>(a|b|c|rc|alpha|beta|pre|preview))
|
261 |
+
[-_\.]?
|
262 |
+
(?P<pre_n>[0-9]+)?
|
263 |
+
)?
|
264 |
+
(?P<post> # post release
|
265 |
+
(?:-(?P<post_n1>[0-9]+))
|
266 |
+
|
|
267 |
+
(?:
|
268 |
+
[-_\.]?
|
269 |
+
(?P<post_l>post|rev|r)
|
270 |
+
[-_\.]?
|
271 |
+
(?P<post_n2>[0-9]+)?
|
272 |
+
)
|
273 |
+
)?
|
274 |
+
(?P<dev> # dev release
|
275 |
+
[-_\.]?
|
276 |
+
(?P<dev_l>dev)
|
277 |
+
[-_\.]?
|
278 |
+
(?P<dev_n>[0-9]+)?
|
279 |
+
)?
|
280 |
+
)
|
281 |
+
(?:\+(?P<local>[a-z0-9]+(?:[-_\.][a-z0-9]+)*))? # local version
|
282 |
+
"""
|
283 |
+
|
284 |
+
|
285 |
+
class Version(_BaseVersion):
|
286 |
+
|
287 |
+
_regex = re.compile(
|
288 |
+
r"^\s*" + VERSION_PATTERN + r"\s*$",
|
289 |
+
re.VERBOSE | re.IGNORECASE,
|
290 |
+
)
|
291 |
+
|
292 |
+
def __init__(self, version):
|
293 |
+
# Validate the version and parse it into pieces
|
294 |
+
match = self._regex.search(version)
|
295 |
+
if not match:
|
296 |
+
raise InvalidVersion("Invalid version: '{0}'".format(version))
|
297 |
+
|
298 |
+
# Store the parsed out pieces of the version
|
299 |
+
self._version = _Version(
|
300 |
+
epoch=int(match.group("epoch")) if match.group("epoch") else 0,
|
301 |
+
release=tuple(int(i) for i in match.group("release").split(".")),
|
302 |
+
pre=_parse_letter_version(
|
303 |
+
match.group("pre_l"),
|
304 |
+
match.group("pre_n"),
|
305 |
+
),
|
306 |
+
post=_parse_letter_version(
|
307 |
+
match.group("post_l"),
|
308 |
+
match.group("post_n1") or match.group("post_n2"),
|
309 |
+
),
|
310 |
+
dev=_parse_letter_version(
|
311 |
+
match.group("dev_l"),
|
312 |
+
match.group("dev_n"),
|
313 |
+
),
|
314 |
+
local=_parse_local_version(match.group("local")),
|
315 |
+
)
|
316 |
+
|
317 |
+
# Generate a key which will be used for sorting
|
318 |
+
self._key = _cmpkey(
|
319 |
+
self._version.epoch,
|
320 |
+
self._version.release,
|
321 |
+
self._version.pre,
|
322 |
+
self._version.post,
|
323 |
+
self._version.dev,
|
324 |
+
self._version.local,
|
325 |
+
)
|
326 |
+
|
327 |
+
def __repr__(self):
|
328 |
+
return "<Version({0})>".format(repr(str(self)))
|
329 |
+
|
330 |
+
def __str__(self):
|
331 |
+
parts = []
|
332 |
+
|
333 |
+
# Epoch
|
334 |
+
if self._version.epoch != 0:
|
335 |
+
parts.append("{0}!".format(self._version.epoch))
|
336 |
+
|
337 |
+
# Release segment
|
338 |
+
parts.append(".".join(str(x) for x in self._version.release))
|
339 |
+
|
340 |
+
# Pre-release
|
341 |
+
if self._version.pre is not None:
|
342 |
+
parts.append("".join(str(x) for x in self._version.pre))
|
343 |
+
|
344 |
+
# Post-release
|
345 |
+
if self._version.post is not None:
|
346 |
+
parts.append(".post{0}".format(self._version.post[1]))
|
347 |
+
|
348 |
+
# Development release
|
349 |
+
if self._version.dev is not None:
|
350 |
+
parts.append(".dev{0}".format(self._version.dev[1]))
|
351 |
+
|
352 |
+
# Local version segment
|
353 |
+
if self._version.local is not None:
|
354 |
+
parts.append(
|
355 |
+
"+{0}".format(".".join(str(x) for x in self._version.local))
|
356 |
+
)
|
357 |
+
|
358 |
+
return "".join(parts)
|
359 |
+
|
360 |
+
@property
|
361 |
+
def public(self):
|
362 |
+
return str(self).split("+", 1)[0]
|
363 |
+
|
364 |
+
@property
|
365 |
+
def base_version(self):
|
366 |
+
parts = []
|
367 |
+
|
368 |
+
# Epoch
|
369 |
+
if self._version.epoch != 0:
|
370 |
+
parts.append("{0}!".format(self._version.epoch))
|
371 |
+
|
372 |
+
# Release segment
|
373 |
+
parts.append(".".join(str(x) for x in self._version.release))
|
374 |
+
|
375 |
+
return "".join(parts)
|
376 |
+
|
377 |
+
@property
|
378 |
+
def local(self):
|
379 |
+
version_string = str(self)
|
380 |
+
if "+" in version_string:
|
381 |
+
return version_string.split("+", 1)[1]
|
382 |
+
|
383 |
+
@property
|
384 |
+
def is_prerelease(self):
|
385 |
+
return bool(self._version.dev or self._version.pre)
|
386 |
+
|
387 |
+
@property
|
388 |
+
def is_postrelease(self):
|
389 |
+
return bool(self._version.post)
|
390 |
+
|
391 |
+
|
392 |
+
def _parse_letter_version(letter, number):
|
393 |
+
if letter:
|
394 |
+
# We assume there is an implicit 0 in a pre-release if there is
|
395 |
+
# no numeral associated with it.
|
396 |
+
if number is None:
|
397 |
+
number = 0
|
398 |
+
|
399 |
+
# We normalize any letters to their lower-case form
|
400 |
+
letter = letter.lower()
|
401 |
+
|
402 |
+
# We consider some words to be alternate spellings of other words and
|
403 |
+
# in those cases we want to normalize the spellings to our preferred
|
404 |
+
# spelling.
|
405 |
+
if letter == "alpha":
|
406 |
+
letter = "a"
|
407 |
+
elif letter == "beta":
|
408 |
+
letter = "b"
|
409 |
+
elif letter in ["c", "pre", "preview"]:
|
410 |
+
letter = "rc"
|
411 |
+
elif letter in ["rev", "r"]:
|
412 |
+
letter = "post"
|
413 |
+
|
414 |
+
return letter, int(number)
|
415 |
+
if not letter and number:
|
416 |
+
# We assume that if we are given a number but not given a letter,
|
417 |
+
# then this is using the implicit post release syntax (e.g., 1.0-1)
|
418 |
+
letter = "post"
|
419 |
+
|
420 |
+
return letter, int(number)
|
421 |
+
|
422 |
+
|
423 |
+
_local_version_seperators = re.compile(r"[\._-]")
|
424 |
+
|
425 |
+
|
426 |
+
def _parse_local_version(local):
|
427 |
+
"""
|
428 |
+
Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
|
429 |
+
"""
|
430 |
+
if local is not None:
|
431 |
+
return tuple(
|
432 |
+
part.lower() if not part.isdigit() else int(part)
|
433 |
+
for part in _local_version_seperators.split(local)
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
def _cmpkey(epoch, release, pre, post, dev, local):
|
438 |
+
# When we compare a release version, we want to compare it with all of the
|
439 |
+
# trailing zeros removed. So we'll use a reverse the list, drop all the now
|
440 |
+
# leading zeros until we come to something non-zero, then take the rest,
|
441 |
+
# re-reverse it back into the correct order, and make it a tuple and use
|
442 |
+
# that for our sorting key.
|
443 |
+
release = tuple(
|
444 |
+
reversed(list(
|
445 |
+
itertools.dropwhile(
|
446 |
+
lambda x: x == 0,
|
447 |
+
reversed(release),
|
448 |
+
)
|
449 |
+
))
|
450 |
+
)
|
451 |
+
|
452 |
+
# We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
|
453 |
+
# We'll do this by abusing the pre-segment, but we _only_ want to do this
|
454 |
+
# if there is no pre- or a post-segment. If we have one of those, then
|
455 |
+
# the normal sorting rules will handle this case correctly.
|
456 |
+
if pre is None and post is None and dev is not None:
|
457 |
+
pre = -Infinity
|
458 |
+
# Versions without a pre-release (except as noted above) should sort after
|
459 |
+
# those with one.
|
460 |
+
elif pre is None:
|
461 |
+
pre = Infinity
|
462 |
+
|
463 |
+
# Versions without a post-segment should sort before those with one.
|
464 |
+
if post is None:
|
465 |
+
post = -Infinity
|
466 |
+
|
467 |
+
# Versions without a development segment should sort after those with one.
|
468 |
+
if dev is None:
|
469 |
+
dev = Infinity
|
470 |
+
|
471 |
+
if local is None:
|
472 |
+
# Versions without a local segment should sort before those with one.
|
473 |
+
local = -Infinity
|
474 |
+
else:
|
475 |
+
# Versions with a local segment need that segment parsed to implement
|
476 |
+
# the sorting rules in PEP440.
|
477 |
+
# - Alphanumeric segments sort before numeric segments
|
478 |
+
# - Alphanumeric segments sort lexicographically
|
479 |
+
# - Numeric segments sort numerically
|
480 |
+
# - Shorter versions sort before longer versions when the prefixes
|
481 |
+
# match exactly
|
482 |
+
local = tuple(
|
483 |
+
(i, "") if isinstance(i, int) else (-Infinity, i)
|
484 |
+
for i in local
|
485 |
+
)
|
486 |
+
|
487 |
+
return epoch, release, pre, post, dev, local
|
venv/lib/python3.10/site-packages/numpy/linalg/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
``numpy.linalg``
|
3 |
+
================
|
4 |
+
|
5 |
+
The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
|
6 |
+
low level implementations of standard linear algebra algorithms. Those
|
7 |
+
libraries may be provided by NumPy itself using C versions of a subset of their
|
8 |
+
reference implementations but, when possible, highly optimized libraries that
|
9 |
+
take advantage of specialized processor functionality are preferred. Examples
|
10 |
+
of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
|
11 |
+
are multithreaded and processor dependent, environmental variables and external
|
12 |
+
packages such as threadpoolctl may be needed to control the number of threads
|
13 |
+
or specify the processor architecture.
|
14 |
+
|
15 |
+
- OpenBLAS: https://www.openblas.net/
|
16 |
+
- threadpoolctl: https://github.com/joblib/threadpoolctl
|
17 |
+
|
18 |
+
Please note that the most-used linear algebra functions in NumPy are present in
|
19 |
+
the main ``numpy`` namespace rather than in ``numpy.linalg``. There are:
|
20 |
+
``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``,
|
21 |
+
``einsum_path`` and ``kron``.
|
22 |
+
|
23 |
+
Functions present in numpy.linalg are listed below.
|
24 |
+
|
25 |
+
|
26 |
+
Matrix and vector products
|
27 |
+
--------------------------
|
28 |
+
|
29 |
+
multi_dot
|
30 |
+
matrix_power
|
31 |
+
|
32 |
+
Decompositions
|
33 |
+
--------------
|
34 |
+
|
35 |
+
cholesky
|
36 |
+
qr
|
37 |
+
svd
|
38 |
+
|
39 |
+
Matrix eigenvalues
|
40 |
+
------------------
|
41 |
+
|
42 |
+
eig
|
43 |
+
eigh
|
44 |
+
eigvals
|
45 |
+
eigvalsh
|
46 |
+
|
47 |
+
Norms and other numbers
|
48 |
+
-----------------------
|
49 |
+
|
50 |
+
norm
|
51 |
+
cond
|
52 |
+
det
|
53 |
+
matrix_rank
|
54 |
+
slogdet
|
55 |
+
|
56 |
+
Solving equations and inverting matrices
|
57 |
+
----------------------------------------
|
58 |
+
|
59 |
+
solve
|
60 |
+
tensorsolve
|
61 |
+
lstsq
|
62 |
+
inv
|
63 |
+
pinv
|
64 |
+
tensorinv
|
65 |
+
|
66 |
+
Exceptions
|
67 |
+
----------
|
68 |
+
|
69 |
+
LinAlgError
|
70 |
+
|
71 |
+
"""
|
72 |
+
# To get sub-modules
|
73 |
+
from . import linalg
|
74 |
+
from .linalg import *
|
75 |
+
|
76 |
+
__all__ = linalg.__all__.copy()
|
77 |
+
|
78 |
+
from numpy._pytesttester import PytestTester
|
79 |
+
test = PytestTester(__name__)
|
80 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/linalg/__init__.pyi
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.linalg.linalg import (
|
2 |
+
matrix_power as matrix_power,
|
3 |
+
solve as solve,
|
4 |
+
tensorsolve as tensorsolve,
|
5 |
+
tensorinv as tensorinv,
|
6 |
+
inv as inv,
|
7 |
+
cholesky as cholesky,
|
8 |
+
eigvals as eigvals,
|
9 |
+
eigvalsh as eigvalsh,
|
10 |
+
pinv as pinv,
|
11 |
+
slogdet as slogdet,
|
12 |
+
det as det,
|
13 |
+
svd as svd,
|
14 |
+
eig as eig,
|
15 |
+
eigh as eigh,
|
16 |
+
lstsq as lstsq,
|
17 |
+
norm as norm,
|
18 |
+
qr as qr,
|
19 |
+
cond as cond,
|
20 |
+
matrix_rank as matrix_rank,
|
21 |
+
multi_dot as multi_dot,
|
22 |
+
)
|
23 |
+
|
24 |
+
from numpy._pytesttester import PytestTester
|
25 |
+
|
26 |
+
__all__: list[str]
|
27 |
+
__path__: list[str]
|
28 |
+
test: PytestTester
|
29 |
+
|
30 |
+
class LinAlgError(Exception): ...
|
venv/lib/python3.10/site-packages/numpy/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.98 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/__pycache__/linalg.cpython-310.pyc
ADDED
Binary file (83.6 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/_umath_linalg.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (217 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (29.8 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/linalg.py
ADDED
@@ -0,0 +1,2836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Lite version of scipy.linalg.
|
2 |
+
|
3 |
+
Notes
|
4 |
+
-----
|
5 |
+
This module is a lite version of the linalg.py module in SciPy which
|
6 |
+
contains high-level Python interface to the LAPACK library. The lite
|
7 |
+
version only accesses the following LAPACK functions: dgesv, zgesv,
|
8 |
+
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
|
9 |
+
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
|
10 |
+
"""
|
11 |
+
|
12 |
+
__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
|
13 |
+
'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
|
14 |
+
'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank',
|
15 |
+
'LinAlgError', 'multi_dot']
|
16 |
+
|
17 |
+
import functools
|
18 |
+
import operator
|
19 |
+
import warnings
|
20 |
+
from typing import NamedTuple, Any
|
21 |
+
|
22 |
+
from .._utils import set_module
|
23 |
+
from numpy.core import (
|
24 |
+
array, asarray, zeros, empty, empty_like, intc, single, double,
|
25 |
+
csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot,
|
26 |
+
add, multiply, sqrt, sum, isfinite,
|
27 |
+
finfo, errstate, geterrobj, moveaxis, amin, amax, prod, abs,
|
28 |
+
atleast_2d, intp, asanyarray, object_, matmul,
|
29 |
+
swapaxes, divide, count_nonzero, isnan, sign, argsort, sort,
|
30 |
+
reciprocal
|
31 |
+
)
|
32 |
+
from numpy.core.multiarray import normalize_axis_index
|
33 |
+
from numpy.core import overrides
|
34 |
+
from numpy.lib.twodim_base import triu, eye
|
35 |
+
from numpy.linalg import _umath_linalg
|
36 |
+
|
37 |
+
from numpy._typing import NDArray
|
38 |
+
|
39 |
+
class EigResult(NamedTuple):
|
40 |
+
eigenvalues: NDArray[Any]
|
41 |
+
eigenvectors: NDArray[Any]
|
42 |
+
|
43 |
+
class EighResult(NamedTuple):
|
44 |
+
eigenvalues: NDArray[Any]
|
45 |
+
eigenvectors: NDArray[Any]
|
46 |
+
|
47 |
+
class QRResult(NamedTuple):
|
48 |
+
Q: NDArray[Any]
|
49 |
+
R: NDArray[Any]
|
50 |
+
|
51 |
+
class SlogdetResult(NamedTuple):
|
52 |
+
sign: NDArray[Any]
|
53 |
+
logabsdet: NDArray[Any]
|
54 |
+
|
55 |
+
class SVDResult(NamedTuple):
|
56 |
+
U: NDArray[Any]
|
57 |
+
S: NDArray[Any]
|
58 |
+
Vh: NDArray[Any]
|
59 |
+
|
60 |
+
array_function_dispatch = functools.partial(
|
61 |
+
overrides.array_function_dispatch, module='numpy.linalg')
|
62 |
+
|
63 |
+
|
64 |
+
fortran_int = intc
|
65 |
+
|
66 |
+
|
67 |
+
@set_module('numpy.linalg')
|
68 |
+
class LinAlgError(ValueError):
|
69 |
+
"""
|
70 |
+
Generic Python-exception-derived object raised by linalg functions.
|
71 |
+
|
72 |
+
General purpose exception class, derived from Python's ValueError
|
73 |
+
class, programmatically raised in linalg functions when a Linear
|
74 |
+
Algebra-related condition would prevent further correct execution of the
|
75 |
+
function.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
None
|
80 |
+
|
81 |
+
Examples
|
82 |
+
--------
|
83 |
+
>>> from numpy import linalg as LA
|
84 |
+
>>> LA.inv(np.zeros((2,2)))
|
85 |
+
Traceback (most recent call last):
|
86 |
+
File "<stdin>", line 1, in <module>
|
87 |
+
File "...linalg.py", line 350,
|
88 |
+
in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
|
89 |
+
File "...linalg.py", line 249,
|
90 |
+
in solve
|
91 |
+
raise LinAlgError('Singular matrix')
|
92 |
+
numpy.linalg.LinAlgError: Singular matrix
|
93 |
+
|
94 |
+
"""
|
95 |
+
|
96 |
+
|
97 |
+
def _determine_error_states():
|
98 |
+
errobj = geterrobj()
|
99 |
+
bufsize = errobj[0]
|
100 |
+
|
101 |
+
with errstate(invalid='call', over='ignore',
|
102 |
+
divide='ignore', under='ignore'):
|
103 |
+
invalid_call_errmask = geterrobj()[1]
|
104 |
+
|
105 |
+
return [bufsize, invalid_call_errmask, None]
|
106 |
+
|
107 |
+
# Dealing with errors in _umath_linalg
|
108 |
+
_linalg_error_extobj = _determine_error_states()
|
109 |
+
del _determine_error_states
|
110 |
+
|
111 |
+
def _raise_linalgerror_singular(err, flag):
|
112 |
+
raise LinAlgError("Singular matrix")
|
113 |
+
|
114 |
+
def _raise_linalgerror_nonposdef(err, flag):
|
115 |
+
raise LinAlgError("Matrix is not positive definite")
|
116 |
+
|
117 |
+
def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
|
118 |
+
raise LinAlgError("Eigenvalues did not converge")
|
119 |
+
|
120 |
+
def _raise_linalgerror_svd_nonconvergence(err, flag):
|
121 |
+
raise LinAlgError("SVD did not converge")
|
122 |
+
|
123 |
+
def _raise_linalgerror_lstsq(err, flag):
|
124 |
+
raise LinAlgError("SVD did not converge in Linear Least Squares")
|
125 |
+
|
126 |
+
def _raise_linalgerror_qr(err, flag):
|
127 |
+
raise LinAlgError("Incorrect argument found while performing "
|
128 |
+
"QR factorization")
|
129 |
+
|
130 |
+
def get_linalg_error_extobj(callback):
|
131 |
+
extobj = list(_linalg_error_extobj) # make a copy
|
132 |
+
extobj[2] = callback
|
133 |
+
return extobj
|
134 |
+
|
135 |
+
def _makearray(a):
|
136 |
+
new = asarray(a)
|
137 |
+
wrap = getattr(a, "__array_prepare__", new.__array_wrap__)
|
138 |
+
return new, wrap
|
139 |
+
|
140 |
+
def isComplexType(t):
|
141 |
+
return issubclass(t, complexfloating)
|
142 |
+
|
143 |
+
_real_types_map = {single : single,
|
144 |
+
double : double,
|
145 |
+
csingle : single,
|
146 |
+
cdouble : double}
|
147 |
+
|
148 |
+
_complex_types_map = {single : csingle,
|
149 |
+
double : cdouble,
|
150 |
+
csingle : csingle,
|
151 |
+
cdouble : cdouble}
|
152 |
+
|
153 |
+
def _realType(t, default=double):
|
154 |
+
return _real_types_map.get(t, default)
|
155 |
+
|
156 |
+
def _complexType(t, default=cdouble):
|
157 |
+
return _complex_types_map.get(t, default)
|
158 |
+
|
159 |
+
def _commonType(*arrays):
|
160 |
+
# in lite version, use higher precision (always double or cdouble)
|
161 |
+
result_type = single
|
162 |
+
is_complex = False
|
163 |
+
for a in arrays:
|
164 |
+
type_ = a.dtype.type
|
165 |
+
if issubclass(type_, inexact):
|
166 |
+
if isComplexType(type_):
|
167 |
+
is_complex = True
|
168 |
+
rt = _realType(type_, default=None)
|
169 |
+
if rt is double:
|
170 |
+
result_type = double
|
171 |
+
elif rt is None:
|
172 |
+
# unsupported inexact scalar
|
173 |
+
raise TypeError("array type %s is unsupported in linalg" %
|
174 |
+
(a.dtype.name,))
|
175 |
+
else:
|
176 |
+
result_type = double
|
177 |
+
if is_complex:
|
178 |
+
result_type = _complex_types_map[result_type]
|
179 |
+
return cdouble, result_type
|
180 |
+
else:
|
181 |
+
return double, result_type
|
182 |
+
|
183 |
+
|
184 |
+
def _to_native_byte_order(*arrays):
|
185 |
+
ret = []
|
186 |
+
for arr in arrays:
|
187 |
+
if arr.dtype.byteorder not in ('=', '|'):
|
188 |
+
ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
|
189 |
+
else:
|
190 |
+
ret.append(arr)
|
191 |
+
if len(ret) == 1:
|
192 |
+
return ret[0]
|
193 |
+
else:
|
194 |
+
return ret
|
195 |
+
|
196 |
+
|
197 |
+
def _assert_2d(*arrays):
|
198 |
+
for a in arrays:
|
199 |
+
if a.ndim != 2:
|
200 |
+
raise LinAlgError('%d-dimensional array given. Array must be '
|
201 |
+
'two-dimensional' % a.ndim)
|
202 |
+
|
203 |
+
def _assert_stacked_2d(*arrays):
|
204 |
+
for a in arrays:
|
205 |
+
if a.ndim < 2:
|
206 |
+
raise LinAlgError('%d-dimensional array given. Array must be '
|
207 |
+
'at least two-dimensional' % a.ndim)
|
208 |
+
|
209 |
+
def _assert_stacked_square(*arrays):
|
210 |
+
for a in arrays:
|
211 |
+
m, n = a.shape[-2:]
|
212 |
+
if m != n:
|
213 |
+
raise LinAlgError('Last 2 dimensions of the array must be square')
|
214 |
+
|
215 |
+
def _assert_finite(*arrays):
|
216 |
+
for a in arrays:
|
217 |
+
if not isfinite(a).all():
|
218 |
+
raise LinAlgError("Array must not contain infs or NaNs")
|
219 |
+
|
220 |
+
def _is_empty_2d(arr):
|
221 |
+
# check size first for efficiency
|
222 |
+
return arr.size == 0 and prod(arr.shape[-2:]) == 0
|
223 |
+
|
224 |
+
|
225 |
+
def transpose(a):
|
226 |
+
"""
|
227 |
+
Transpose each matrix in a stack of matrices.
|
228 |
+
|
229 |
+
Unlike np.transpose, this only swaps the last two axes, rather than all of
|
230 |
+
them
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
----------
|
234 |
+
a : (...,M,N) array_like
|
235 |
+
|
236 |
+
Returns
|
237 |
+
-------
|
238 |
+
aT : (...,N,M) ndarray
|
239 |
+
"""
|
240 |
+
return swapaxes(a, -1, -2)
|
241 |
+
|
242 |
+
# Linear equations
|
243 |
+
|
244 |
+
def _tensorsolve_dispatcher(a, b, axes=None):
|
245 |
+
return (a, b)
|
246 |
+
|
247 |
+
|
248 |
+
@array_function_dispatch(_tensorsolve_dispatcher)
|
249 |
+
def tensorsolve(a, b, axes=None):
|
250 |
+
"""
|
251 |
+
Solve the tensor equation ``a x = b`` for x.
|
252 |
+
|
253 |
+
It is assumed that all indices of `x` are summed over in the product,
|
254 |
+
together with the rightmost indices of `a`, as is done in, for example,
|
255 |
+
``tensordot(a, x, axes=x.ndim)``.
|
256 |
+
|
257 |
+
Parameters
|
258 |
+
----------
|
259 |
+
a : array_like
|
260 |
+
Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
|
261 |
+
the shape of that sub-tensor of `a` consisting of the appropriate
|
262 |
+
number of its rightmost indices, and must be such that
|
263 |
+
``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
|
264 |
+
'square').
|
265 |
+
b : array_like
|
266 |
+
Right-hand tensor, which can be of any shape.
|
267 |
+
axes : tuple of ints, optional
|
268 |
+
Axes in `a` to reorder to the right, before inversion.
|
269 |
+
If None (default), no reordering is done.
|
270 |
+
|
271 |
+
Returns
|
272 |
+
-------
|
273 |
+
x : ndarray, shape Q
|
274 |
+
|
275 |
+
Raises
|
276 |
+
------
|
277 |
+
LinAlgError
|
278 |
+
If `a` is singular or not 'square' (in the above sense).
|
279 |
+
|
280 |
+
See Also
|
281 |
+
--------
|
282 |
+
numpy.tensordot, tensorinv, numpy.einsum
|
283 |
+
|
284 |
+
Examples
|
285 |
+
--------
|
286 |
+
>>> a = np.eye(2*3*4)
|
287 |
+
>>> a.shape = (2*3, 4, 2, 3, 4)
|
288 |
+
>>> b = np.random.randn(2*3, 4)
|
289 |
+
>>> x = np.linalg.tensorsolve(a, b)
|
290 |
+
>>> x.shape
|
291 |
+
(2, 3, 4)
|
292 |
+
>>> np.allclose(np.tensordot(a, x, axes=3), b)
|
293 |
+
True
|
294 |
+
|
295 |
+
"""
|
296 |
+
a, wrap = _makearray(a)
|
297 |
+
b = asarray(b)
|
298 |
+
an = a.ndim
|
299 |
+
|
300 |
+
if axes is not None:
|
301 |
+
allaxes = list(range(0, an))
|
302 |
+
for k in axes:
|
303 |
+
allaxes.remove(k)
|
304 |
+
allaxes.insert(an, k)
|
305 |
+
a = a.transpose(allaxes)
|
306 |
+
|
307 |
+
oldshape = a.shape[-(an-b.ndim):]
|
308 |
+
prod = 1
|
309 |
+
for k in oldshape:
|
310 |
+
prod *= k
|
311 |
+
|
312 |
+
if a.size != prod ** 2:
|
313 |
+
raise LinAlgError(
|
314 |
+
"Input arrays must satisfy the requirement \
|
315 |
+
prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])"
|
316 |
+
)
|
317 |
+
|
318 |
+
a = a.reshape(prod, prod)
|
319 |
+
b = b.ravel()
|
320 |
+
res = wrap(solve(a, b))
|
321 |
+
res.shape = oldshape
|
322 |
+
return res
|
323 |
+
|
324 |
+
|
325 |
+
def _solve_dispatcher(a, b):
|
326 |
+
return (a, b)
|
327 |
+
|
328 |
+
|
329 |
+
@array_function_dispatch(_solve_dispatcher)
|
330 |
+
def solve(a, b):
|
331 |
+
"""
|
332 |
+
Solve a linear matrix equation, or system of linear scalar equations.
|
333 |
+
|
334 |
+
Computes the "exact" solution, `x`, of the well-determined, i.e., full
|
335 |
+
rank, linear matrix equation `ax = b`.
|
336 |
+
|
337 |
+
Parameters
|
338 |
+
----------
|
339 |
+
a : (..., M, M) array_like
|
340 |
+
Coefficient matrix.
|
341 |
+
b : {(..., M,), (..., M, K)}, array_like
|
342 |
+
Ordinate or "dependent variable" values.
|
343 |
+
|
344 |
+
Returns
|
345 |
+
-------
|
346 |
+
x : {(..., M,), (..., M, K)} ndarray
|
347 |
+
Solution to the system a x = b. Returned shape is identical to `b`.
|
348 |
+
|
349 |
+
Raises
|
350 |
+
------
|
351 |
+
LinAlgError
|
352 |
+
If `a` is singular or not square.
|
353 |
+
|
354 |
+
See Also
|
355 |
+
--------
|
356 |
+
scipy.linalg.solve : Similar function in SciPy.
|
357 |
+
|
358 |
+
Notes
|
359 |
+
-----
|
360 |
+
|
361 |
+
.. versionadded:: 1.8.0
|
362 |
+
|
363 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
364 |
+
details.
|
365 |
+
|
366 |
+
The solutions are computed using LAPACK routine ``_gesv``.
|
367 |
+
|
368 |
+
`a` must be square and of full-rank, i.e., all rows (or, equivalently,
|
369 |
+
columns) must be linearly independent; if either is not true, use
|
370 |
+
`lstsq` for the least-squares best "solution" of the
|
371 |
+
system/equation.
|
372 |
+
|
373 |
+
References
|
374 |
+
----------
|
375 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
376 |
+
FL, Academic Press, Inc., 1980, pg. 22.
|
377 |
+
|
378 |
+
Examples
|
379 |
+
--------
|
380 |
+
Solve the system of equations ``x0 + 2 * x1 = 1`` and ``3 * x0 + 5 * x1 = 2``:
|
381 |
+
|
382 |
+
>>> a = np.array([[1, 2], [3, 5]])
|
383 |
+
>>> b = np.array([1, 2])
|
384 |
+
>>> x = np.linalg.solve(a, b)
|
385 |
+
>>> x
|
386 |
+
array([-1., 1.])
|
387 |
+
|
388 |
+
Check that the solution is correct:
|
389 |
+
|
390 |
+
>>> np.allclose(np.dot(a, x), b)
|
391 |
+
True
|
392 |
+
|
393 |
+
"""
|
394 |
+
a, _ = _makearray(a)
|
395 |
+
_assert_stacked_2d(a)
|
396 |
+
_assert_stacked_square(a)
|
397 |
+
b, wrap = _makearray(b)
|
398 |
+
t, result_t = _commonType(a, b)
|
399 |
+
|
400 |
+
# We use the b = (..., M,) logic, only if the number of extra dimensions
|
401 |
+
# match exactly
|
402 |
+
if b.ndim == a.ndim - 1:
|
403 |
+
gufunc = _umath_linalg.solve1
|
404 |
+
else:
|
405 |
+
gufunc = _umath_linalg.solve
|
406 |
+
|
407 |
+
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
408 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
|
409 |
+
r = gufunc(a, b, signature=signature, extobj=extobj)
|
410 |
+
|
411 |
+
return wrap(r.astype(result_t, copy=False))
|
412 |
+
|
413 |
+
|
414 |
+
def _tensorinv_dispatcher(a, ind=None):
|
415 |
+
return (a,)
|
416 |
+
|
417 |
+
|
418 |
+
@array_function_dispatch(_tensorinv_dispatcher)
|
419 |
+
def tensorinv(a, ind=2):
|
420 |
+
"""
|
421 |
+
Compute the 'inverse' of an N-dimensional array.
|
422 |
+
|
423 |
+
The result is an inverse for `a` relative to the tensordot operation
|
424 |
+
``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
|
425 |
+
``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
|
426 |
+
tensordot operation.
|
427 |
+
|
428 |
+
Parameters
|
429 |
+
----------
|
430 |
+
a : array_like
|
431 |
+
Tensor to 'invert'. Its shape must be 'square', i. e.,
|
432 |
+
``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
|
433 |
+
ind : int, optional
|
434 |
+
Number of first indices that are involved in the inverse sum.
|
435 |
+
Must be a positive integer, default is 2.
|
436 |
+
|
437 |
+
Returns
|
438 |
+
-------
|
439 |
+
b : ndarray
|
440 |
+
`a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.
|
441 |
+
|
442 |
+
Raises
|
443 |
+
------
|
444 |
+
LinAlgError
|
445 |
+
If `a` is singular or not 'square' (in the above sense).
|
446 |
+
|
447 |
+
See Also
|
448 |
+
--------
|
449 |
+
numpy.tensordot, tensorsolve
|
450 |
+
|
451 |
+
Examples
|
452 |
+
--------
|
453 |
+
>>> a = np.eye(4*6)
|
454 |
+
>>> a.shape = (4, 6, 8, 3)
|
455 |
+
>>> ainv = np.linalg.tensorinv(a, ind=2)
|
456 |
+
>>> ainv.shape
|
457 |
+
(8, 3, 4, 6)
|
458 |
+
>>> b = np.random.randn(4, 6)
|
459 |
+
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
|
460 |
+
True
|
461 |
+
|
462 |
+
>>> a = np.eye(4*6)
|
463 |
+
>>> a.shape = (24, 8, 3)
|
464 |
+
>>> ainv = np.linalg.tensorinv(a, ind=1)
|
465 |
+
>>> ainv.shape
|
466 |
+
(8, 3, 24)
|
467 |
+
>>> b = np.random.randn(24)
|
468 |
+
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
|
469 |
+
True
|
470 |
+
|
471 |
+
"""
|
472 |
+
a = asarray(a)
|
473 |
+
oldshape = a.shape
|
474 |
+
prod = 1
|
475 |
+
if ind > 0:
|
476 |
+
invshape = oldshape[ind:] + oldshape[:ind]
|
477 |
+
for k in oldshape[ind:]:
|
478 |
+
prod *= k
|
479 |
+
else:
|
480 |
+
raise ValueError("Invalid ind argument.")
|
481 |
+
a = a.reshape(prod, -1)
|
482 |
+
ia = inv(a)
|
483 |
+
return ia.reshape(*invshape)
|
484 |
+
|
485 |
+
|
486 |
+
# Matrix inversion
|
487 |
+
|
488 |
+
def _unary_dispatcher(a):
|
489 |
+
return (a,)
|
490 |
+
|
491 |
+
|
492 |
+
@array_function_dispatch(_unary_dispatcher)
|
493 |
+
def inv(a):
|
494 |
+
"""
|
495 |
+
Compute the (multiplicative) inverse of a matrix.
|
496 |
+
|
497 |
+
Given a square matrix `a`, return the matrix `ainv` satisfying
|
498 |
+
``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``.
|
499 |
+
|
500 |
+
Parameters
|
501 |
+
----------
|
502 |
+
a : (..., M, M) array_like
|
503 |
+
Matrix to be inverted.
|
504 |
+
|
505 |
+
Returns
|
506 |
+
-------
|
507 |
+
ainv : (..., M, M) ndarray or matrix
|
508 |
+
(Multiplicative) inverse of the matrix `a`.
|
509 |
+
|
510 |
+
Raises
|
511 |
+
------
|
512 |
+
LinAlgError
|
513 |
+
If `a` is not square or inversion fails.
|
514 |
+
|
515 |
+
See Also
|
516 |
+
--------
|
517 |
+
scipy.linalg.inv : Similar function in SciPy.
|
518 |
+
|
519 |
+
Notes
|
520 |
+
-----
|
521 |
+
|
522 |
+
.. versionadded:: 1.8.0
|
523 |
+
|
524 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
525 |
+
details.
|
526 |
+
|
527 |
+
Examples
|
528 |
+
--------
|
529 |
+
>>> from numpy.linalg import inv
|
530 |
+
>>> a = np.array([[1., 2.], [3., 4.]])
|
531 |
+
>>> ainv = inv(a)
|
532 |
+
>>> np.allclose(np.dot(a, ainv), np.eye(2))
|
533 |
+
True
|
534 |
+
>>> np.allclose(np.dot(ainv, a), np.eye(2))
|
535 |
+
True
|
536 |
+
|
537 |
+
If a is a matrix object, then the return value is a matrix as well:
|
538 |
+
|
539 |
+
>>> ainv = inv(np.matrix(a))
|
540 |
+
>>> ainv
|
541 |
+
matrix([[-2. , 1. ],
|
542 |
+
[ 1.5, -0.5]])
|
543 |
+
|
544 |
+
Inverses of several matrices can be computed at once:
|
545 |
+
|
546 |
+
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
|
547 |
+
>>> inv(a)
|
548 |
+
array([[[-2. , 1. ],
|
549 |
+
[ 1.5 , -0.5 ]],
|
550 |
+
[[-1.25, 0.75],
|
551 |
+
[ 0.75, -0.25]]])
|
552 |
+
|
553 |
+
"""
|
554 |
+
a, wrap = _makearray(a)
|
555 |
+
_assert_stacked_2d(a)
|
556 |
+
_assert_stacked_square(a)
|
557 |
+
t, result_t = _commonType(a)
|
558 |
+
|
559 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
560 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
|
561 |
+
ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
|
562 |
+
return wrap(ainv.astype(result_t, copy=False))
|
563 |
+
|
564 |
+
|
565 |
+
def _matrix_power_dispatcher(a, n):
|
566 |
+
return (a,)
|
567 |
+
|
568 |
+
|
569 |
+
@array_function_dispatch(_matrix_power_dispatcher)
|
570 |
+
def matrix_power(a, n):
|
571 |
+
"""
|
572 |
+
Raise a square matrix to the (integer) power `n`.
|
573 |
+
|
574 |
+
For positive integers `n`, the power is computed by repeated matrix
|
575 |
+
squarings and matrix multiplications. If ``n == 0``, the identity matrix
|
576 |
+
of the same shape as M is returned. If ``n < 0``, the inverse
|
577 |
+
is computed and then raised to the ``abs(n)``.
|
578 |
+
|
579 |
+
.. note:: Stacks of object matrices are not currently supported.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
----------
|
583 |
+
a : (..., M, M) array_like
|
584 |
+
Matrix to be "powered".
|
585 |
+
n : int
|
586 |
+
The exponent can be any integer or long integer, positive,
|
587 |
+
negative, or zero.
|
588 |
+
|
589 |
+
Returns
|
590 |
+
-------
|
591 |
+
a**n : (..., M, M) ndarray or matrix object
|
592 |
+
The return value is the same shape and type as `M`;
|
593 |
+
if the exponent is positive or zero then the type of the
|
594 |
+
elements is the same as those of `M`. If the exponent is
|
595 |
+
negative the elements are floating-point.
|
596 |
+
|
597 |
+
Raises
|
598 |
+
------
|
599 |
+
LinAlgError
|
600 |
+
For matrices that are not square or that (for negative powers) cannot
|
601 |
+
be inverted numerically.
|
602 |
+
|
603 |
+
Examples
|
604 |
+
--------
|
605 |
+
>>> from numpy.linalg import matrix_power
|
606 |
+
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
|
607 |
+
>>> matrix_power(i, 3) # should = -i
|
608 |
+
array([[ 0, -1],
|
609 |
+
[ 1, 0]])
|
610 |
+
>>> matrix_power(i, 0)
|
611 |
+
array([[1, 0],
|
612 |
+
[0, 1]])
|
613 |
+
>>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
|
614 |
+
array([[ 0., 1.],
|
615 |
+
[-1., 0.]])
|
616 |
+
|
617 |
+
Somewhat more sophisticated example
|
618 |
+
|
619 |
+
>>> q = np.zeros((4, 4))
|
620 |
+
>>> q[0:2, 0:2] = -i
|
621 |
+
>>> q[2:4, 2:4] = i
|
622 |
+
>>> q # one of the three quaternion units not equal to 1
|
623 |
+
array([[ 0., -1., 0., 0.],
|
624 |
+
[ 1., 0., 0., 0.],
|
625 |
+
[ 0., 0., 0., 1.],
|
626 |
+
[ 0., 0., -1., 0.]])
|
627 |
+
>>> matrix_power(q, 2) # = -np.eye(4)
|
628 |
+
array([[-1., 0., 0., 0.],
|
629 |
+
[ 0., -1., 0., 0.],
|
630 |
+
[ 0., 0., -1., 0.],
|
631 |
+
[ 0., 0., 0., -1.]])
|
632 |
+
|
633 |
+
"""
|
634 |
+
a = asanyarray(a)
|
635 |
+
_assert_stacked_2d(a)
|
636 |
+
_assert_stacked_square(a)
|
637 |
+
|
638 |
+
try:
|
639 |
+
n = operator.index(n)
|
640 |
+
except TypeError as e:
|
641 |
+
raise TypeError("exponent must be an integer") from e
|
642 |
+
|
643 |
+
# Fall back on dot for object arrays. Object arrays are not supported by
|
644 |
+
# the current implementation of matmul using einsum
|
645 |
+
if a.dtype != object:
|
646 |
+
fmatmul = matmul
|
647 |
+
elif a.ndim == 2:
|
648 |
+
fmatmul = dot
|
649 |
+
else:
|
650 |
+
raise NotImplementedError(
|
651 |
+
"matrix_power not supported for stacks of object arrays")
|
652 |
+
|
653 |
+
if n == 0:
|
654 |
+
a = empty_like(a)
|
655 |
+
a[...] = eye(a.shape[-2], dtype=a.dtype)
|
656 |
+
return a
|
657 |
+
|
658 |
+
elif n < 0:
|
659 |
+
a = inv(a)
|
660 |
+
n = abs(n)
|
661 |
+
|
662 |
+
# short-cuts.
|
663 |
+
if n == 1:
|
664 |
+
return a
|
665 |
+
|
666 |
+
elif n == 2:
|
667 |
+
return fmatmul(a, a)
|
668 |
+
|
669 |
+
elif n == 3:
|
670 |
+
return fmatmul(fmatmul(a, a), a)
|
671 |
+
|
672 |
+
# Use binary decomposition to reduce the number of matrix multiplications.
|
673 |
+
# Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
|
674 |
+
# increasing powers of 2, and multiply into the result as needed.
|
675 |
+
z = result = None
|
676 |
+
while n > 0:
|
677 |
+
z = a if z is None else fmatmul(z, z)
|
678 |
+
n, bit = divmod(n, 2)
|
679 |
+
if bit:
|
680 |
+
result = z if result is None else fmatmul(result, z)
|
681 |
+
|
682 |
+
return result
|
683 |
+
|
684 |
+
|
685 |
+
# Cholesky decomposition
|
686 |
+
|
687 |
+
|
688 |
+
@array_function_dispatch(_unary_dispatcher)
|
689 |
+
def cholesky(a):
|
690 |
+
"""
|
691 |
+
Cholesky decomposition.
|
692 |
+
|
693 |
+
Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
|
694 |
+
where `L` is lower-triangular and .H is the conjugate transpose operator
|
695 |
+
(which is the ordinary transpose if `a` is real-valued). `a` must be
|
696 |
+
Hermitian (symmetric if real-valued) and positive-definite. No
|
697 |
+
checking is performed to verify whether `a` is Hermitian or not.
|
698 |
+
In addition, only the lower-triangular and diagonal elements of `a`
|
699 |
+
are used. Only `L` is actually returned.
|
700 |
+
|
701 |
+
Parameters
|
702 |
+
----------
|
703 |
+
a : (..., M, M) array_like
|
704 |
+
Hermitian (symmetric if all elements are real), positive-definite
|
705 |
+
input matrix.
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
L : (..., M, M) array_like
|
710 |
+
Lower-triangular Cholesky factor of `a`. Returns a matrix object if
|
711 |
+
`a` is a matrix object.
|
712 |
+
|
713 |
+
Raises
|
714 |
+
------
|
715 |
+
LinAlgError
|
716 |
+
If the decomposition fails, for example, if `a` is not
|
717 |
+
positive-definite.
|
718 |
+
|
719 |
+
See Also
|
720 |
+
--------
|
721 |
+
scipy.linalg.cholesky : Similar function in SciPy.
|
722 |
+
scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
|
723 |
+
positive-definite matrix.
|
724 |
+
scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
|
725 |
+
`scipy.linalg.cho_solve`.
|
726 |
+
|
727 |
+
Notes
|
728 |
+
-----
|
729 |
+
|
730 |
+
.. versionadded:: 1.8.0
|
731 |
+
|
732 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
733 |
+
details.
|
734 |
+
|
735 |
+
The Cholesky decomposition is often used as a fast way of solving
|
736 |
+
|
737 |
+
.. math:: A \\mathbf{x} = \\mathbf{b}
|
738 |
+
|
739 |
+
(when `A` is both Hermitian/symmetric and positive-definite).
|
740 |
+
|
741 |
+
First, we solve for :math:`\\mathbf{y}` in
|
742 |
+
|
743 |
+
.. math:: L \\mathbf{y} = \\mathbf{b},
|
744 |
+
|
745 |
+
and then for :math:`\\mathbf{x}` in
|
746 |
+
|
747 |
+
.. math:: L.H \\mathbf{x} = \\mathbf{y}.
|
748 |
+
|
749 |
+
Examples
|
750 |
+
--------
|
751 |
+
>>> A = np.array([[1,-2j],[2j,5]])
|
752 |
+
>>> A
|
753 |
+
array([[ 1.+0.j, -0.-2.j],
|
754 |
+
[ 0.+2.j, 5.+0.j]])
|
755 |
+
>>> L = np.linalg.cholesky(A)
|
756 |
+
>>> L
|
757 |
+
array([[1.+0.j, 0.+0.j],
|
758 |
+
[0.+2.j, 1.+0.j]])
|
759 |
+
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
|
760 |
+
array([[1.+0.j, 0.-2.j],
|
761 |
+
[0.+2.j, 5.+0.j]])
|
762 |
+
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
|
763 |
+
>>> np.linalg.cholesky(A) # an ndarray object is returned
|
764 |
+
array([[1.+0.j, 0.+0.j],
|
765 |
+
[0.+2.j, 1.+0.j]])
|
766 |
+
>>> # But a matrix object is returned if A is a matrix object
|
767 |
+
>>> np.linalg.cholesky(np.matrix(A))
|
768 |
+
matrix([[ 1.+0.j, 0.+0.j],
|
769 |
+
[ 0.+2.j, 1.+0.j]])
|
770 |
+
|
771 |
+
"""
|
772 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef)
|
773 |
+
gufunc = _umath_linalg.cholesky_lo
|
774 |
+
a, wrap = _makearray(a)
|
775 |
+
_assert_stacked_2d(a)
|
776 |
+
_assert_stacked_square(a)
|
777 |
+
t, result_t = _commonType(a)
|
778 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
779 |
+
r = gufunc(a, signature=signature, extobj=extobj)
|
780 |
+
return wrap(r.astype(result_t, copy=False))
|
781 |
+
|
782 |
+
|
783 |
+
# QR decomposition
|
784 |
+
|
785 |
+
def _qr_dispatcher(a, mode=None):
|
786 |
+
return (a,)
|
787 |
+
|
788 |
+
|
789 |
+
@array_function_dispatch(_qr_dispatcher)
|
790 |
+
def qr(a, mode='reduced'):
|
791 |
+
"""
|
792 |
+
Compute the qr factorization of a matrix.
|
793 |
+
|
794 |
+
Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
|
795 |
+
upper-triangular.
|
796 |
+
|
797 |
+
Parameters
|
798 |
+
----------
|
799 |
+
a : array_like, shape (..., M, N)
|
800 |
+
An array-like object with the dimensionality of at least 2.
|
801 |
+
mode : {'reduced', 'complete', 'r', 'raw'}, optional
|
802 |
+
If K = min(M, N), then
|
803 |
+
|
804 |
+
* 'reduced' : returns Q, R with dimensions (..., M, K), (..., K, N) (default)
|
805 |
+
* 'complete' : returns Q, R with dimensions (..., M, M), (..., M, N)
|
806 |
+
* 'r' : returns R only with dimensions (..., K, N)
|
807 |
+
* 'raw' : returns h, tau with dimensions (..., N, M), (..., K,)
|
808 |
+
|
809 |
+
The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
|
810 |
+
see the notes for more information. The default is 'reduced', and to
|
811 |
+
maintain backward compatibility with earlier versions of numpy both
|
812 |
+
it and the old default 'full' can be omitted. Note that array h
|
813 |
+
returned in 'raw' mode is transposed for calling Fortran. The
|
814 |
+
'economic' mode is deprecated. The modes 'full' and 'economic' may
|
815 |
+
be passed using only the first letter for backwards compatibility,
|
816 |
+
but all others must be spelled out. See the Notes for more
|
817 |
+
explanation.
|
818 |
+
|
819 |
+
|
820 |
+
Returns
|
821 |
+
-------
|
822 |
+
When mode is 'reduced' or 'complete', the result will be a namedtuple with
|
823 |
+
the attributes `Q` and `R`.
|
824 |
+
|
825 |
+
Q : ndarray of float or complex, optional
|
826 |
+
A matrix with orthonormal columns. When mode = 'complete' the
|
827 |
+
result is an orthogonal/unitary matrix depending on whether or not
|
828 |
+
a is real/complex. The determinant may be either +/- 1 in that
|
829 |
+
case. In case the number of dimensions in the input array is
|
830 |
+
greater than 2 then a stack of the matrices with above properties
|
831 |
+
is returned.
|
832 |
+
R : ndarray of float or complex, optional
|
833 |
+
The upper-triangular matrix or a stack of upper-triangular
|
834 |
+
matrices if the number of dimensions in the input array is greater
|
835 |
+
than 2.
|
836 |
+
(h, tau) : ndarrays of np.double or np.cdouble, optional
|
837 |
+
The array h contains the Householder reflectors that generate q
|
838 |
+
along with r. The tau array contains scaling factors for the
|
839 |
+
reflectors. In the deprecated 'economic' mode only h is returned.
|
840 |
+
|
841 |
+
Raises
|
842 |
+
------
|
843 |
+
LinAlgError
|
844 |
+
If factoring fails.
|
845 |
+
|
846 |
+
See Also
|
847 |
+
--------
|
848 |
+
scipy.linalg.qr : Similar function in SciPy.
|
849 |
+
scipy.linalg.rq : Compute RQ decomposition of a matrix.
|
850 |
+
|
851 |
+
Notes
|
852 |
+
-----
|
853 |
+
This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
|
854 |
+
``dorgqr``, and ``zungqr``.
|
855 |
+
|
856 |
+
For more information on the qr factorization, see for example:
|
857 |
+
https://en.wikipedia.org/wiki/QR_factorization
|
858 |
+
|
859 |
+
Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
|
860 |
+
`a` is of type `matrix`, all the return values will be matrices too.
|
861 |
+
|
862 |
+
New 'reduced', 'complete', and 'raw' options for mode were added in
|
863 |
+
NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In
|
864 |
+
addition the options 'full' and 'economic' were deprecated. Because
|
865 |
+
'full' was the previous default and 'reduced' is the new default,
|
866 |
+
backward compatibility can be maintained by letting `mode` default.
|
867 |
+
The 'raw' option was added so that LAPACK routines that can multiply
|
868 |
+
arrays by q using the Householder reflectors can be used. Note that in
|
869 |
+
this case the returned arrays are of type np.double or np.cdouble and
|
870 |
+
the h array is transposed to be FORTRAN compatible. No routines using
|
871 |
+
the 'raw' return are currently exposed by numpy, but some are available
|
872 |
+
in lapack_lite and just await the necessary work.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
--------
|
876 |
+
>>> a = np.random.randn(9, 6)
|
877 |
+
>>> Q, R = np.linalg.qr(a)
|
878 |
+
>>> np.allclose(a, np.dot(Q, R)) # a does equal QR
|
879 |
+
True
|
880 |
+
>>> R2 = np.linalg.qr(a, mode='r')
|
881 |
+
>>> np.allclose(R, R2) # mode='r' returns the same R as mode='full'
|
882 |
+
True
|
883 |
+
>>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
|
884 |
+
>>> Q, R = np.linalg.qr(a)
|
885 |
+
>>> Q.shape
|
886 |
+
(3, 2, 2)
|
887 |
+
>>> R.shape
|
888 |
+
(3, 2, 2)
|
889 |
+
>>> np.allclose(a, np.matmul(Q, R))
|
890 |
+
True
|
891 |
+
|
892 |
+
Example illustrating a common use of `qr`: solving of least squares
|
893 |
+
problems
|
894 |
+
|
895 |
+
What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
|
896 |
+
the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
|
897 |
+
and you'll see that it should be y0 = 0, m = 1.) The answer is provided
|
898 |
+
by solving the over-determined matrix equation ``Ax = b``, where::
|
899 |
+
|
900 |
+
A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
|
901 |
+
x = array([[y0], [m]])
|
902 |
+
b = array([[1], [0], [2], [1]])
|
903 |
+
|
904 |
+
If A = QR such that Q is orthonormal (which is always possible via
|
905 |
+
Gram-Schmidt), then ``x = inv(R) * (Q.T) * b``. (In numpy practice,
|
906 |
+
however, we simply use `lstsq`.)
|
907 |
+
|
908 |
+
>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
|
909 |
+
>>> A
|
910 |
+
array([[0, 1],
|
911 |
+
[1, 1],
|
912 |
+
[1, 1],
|
913 |
+
[2, 1]])
|
914 |
+
>>> b = np.array([1, 2, 2, 3])
|
915 |
+
>>> Q, R = np.linalg.qr(A)
|
916 |
+
>>> p = np.dot(Q.T, b)
|
917 |
+
>>> np.dot(np.linalg.inv(R), p)
|
918 |
+
array([ 1., 1.])
|
919 |
+
|
920 |
+
"""
|
921 |
+
if mode not in ('reduced', 'complete', 'r', 'raw'):
|
922 |
+
if mode in ('f', 'full'):
|
923 |
+
# 2013-04-01, 1.8
|
924 |
+
msg = "".join((
|
925 |
+
"The 'full' option is deprecated in favor of 'reduced'.\n",
|
926 |
+
"For backward compatibility let mode default."))
|
927 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
928 |
+
mode = 'reduced'
|
929 |
+
elif mode in ('e', 'economic'):
|
930 |
+
# 2013-04-01, 1.8
|
931 |
+
msg = "The 'economic' option is deprecated."
|
932 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
933 |
+
mode = 'economic'
|
934 |
+
else:
|
935 |
+
raise ValueError(f"Unrecognized mode '{mode}'")
|
936 |
+
|
937 |
+
a, wrap = _makearray(a)
|
938 |
+
_assert_stacked_2d(a)
|
939 |
+
m, n = a.shape[-2:]
|
940 |
+
t, result_t = _commonType(a)
|
941 |
+
a = a.astype(t, copy=True)
|
942 |
+
a = _to_native_byte_order(a)
|
943 |
+
mn = min(m, n)
|
944 |
+
|
945 |
+
if m <= n:
|
946 |
+
gufunc = _umath_linalg.qr_r_raw_m
|
947 |
+
else:
|
948 |
+
gufunc = _umath_linalg.qr_r_raw_n
|
949 |
+
|
950 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
951 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
|
952 |
+
tau = gufunc(a, signature=signature, extobj=extobj)
|
953 |
+
|
954 |
+
# handle modes that don't return q
|
955 |
+
if mode == 'r':
|
956 |
+
r = triu(a[..., :mn, :])
|
957 |
+
r = r.astype(result_t, copy=False)
|
958 |
+
return wrap(r)
|
959 |
+
|
960 |
+
if mode == 'raw':
|
961 |
+
q = transpose(a)
|
962 |
+
q = q.astype(result_t, copy=False)
|
963 |
+
tau = tau.astype(result_t, copy=False)
|
964 |
+
return wrap(q), tau
|
965 |
+
|
966 |
+
if mode == 'economic':
|
967 |
+
a = a.astype(result_t, copy=False)
|
968 |
+
return wrap(a)
|
969 |
+
|
970 |
+
# mc is the number of columns in the resulting q
|
971 |
+
# matrix. If the mode is complete then it is
|
972 |
+
# same as number of rows, and if the mode is reduced,
|
973 |
+
# then it is the minimum of number of rows and columns.
|
974 |
+
if mode == 'complete' and m > n:
|
975 |
+
mc = m
|
976 |
+
gufunc = _umath_linalg.qr_complete
|
977 |
+
else:
|
978 |
+
mc = mn
|
979 |
+
gufunc = _umath_linalg.qr_reduced
|
980 |
+
|
981 |
+
signature = 'DD->D' if isComplexType(t) else 'dd->d'
|
982 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_qr)
|
983 |
+
q = gufunc(a, tau, signature=signature, extobj=extobj)
|
984 |
+
r = triu(a[..., :mc, :])
|
985 |
+
|
986 |
+
q = q.astype(result_t, copy=False)
|
987 |
+
r = r.astype(result_t, copy=False)
|
988 |
+
|
989 |
+
return QRResult(wrap(q), wrap(r))
|
990 |
+
|
991 |
+
# Eigenvalues
|
992 |
+
|
993 |
+
|
994 |
+
@array_function_dispatch(_unary_dispatcher)
|
995 |
+
def eigvals(a):
|
996 |
+
"""
|
997 |
+
Compute the eigenvalues of a general matrix.
|
998 |
+
|
999 |
+
Main difference between `eigvals` and `eig`: the eigenvectors aren't
|
1000 |
+
returned.
|
1001 |
+
|
1002 |
+
Parameters
|
1003 |
+
----------
|
1004 |
+
a : (..., M, M) array_like
|
1005 |
+
A complex- or real-valued matrix whose eigenvalues will be computed.
|
1006 |
+
|
1007 |
+
Returns
|
1008 |
+
-------
|
1009 |
+
w : (..., M,) ndarray
|
1010 |
+
The eigenvalues, each repeated according to its multiplicity.
|
1011 |
+
They are not necessarily ordered, nor are they necessarily
|
1012 |
+
real for real matrices.
|
1013 |
+
|
1014 |
+
Raises
|
1015 |
+
------
|
1016 |
+
LinAlgError
|
1017 |
+
If the eigenvalue computation does not converge.
|
1018 |
+
|
1019 |
+
See Also
|
1020 |
+
--------
|
1021 |
+
eig : eigenvalues and right eigenvectors of general arrays
|
1022 |
+
eigvalsh : eigenvalues of real symmetric or complex Hermitian
|
1023 |
+
(conjugate symmetric) arrays.
|
1024 |
+
eigh : eigenvalues and eigenvectors of real symmetric or complex
|
1025 |
+
Hermitian (conjugate symmetric) arrays.
|
1026 |
+
scipy.linalg.eigvals : Similar function in SciPy.
|
1027 |
+
|
1028 |
+
Notes
|
1029 |
+
-----
|
1030 |
+
|
1031 |
+
.. versionadded:: 1.8.0
|
1032 |
+
|
1033 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1034 |
+
details.
|
1035 |
+
|
1036 |
+
This is implemented using the ``_geev`` LAPACK routines which compute
|
1037 |
+
the eigenvalues and eigenvectors of general square arrays.
|
1038 |
+
|
1039 |
+
Examples
|
1040 |
+
--------
|
1041 |
+
Illustration, using the fact that the eigenvalues of a diagonal matrix
|
1042 |
+
are its diagonal elements, that multiplying a matrix on the left
|
1043 |
+
by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
|
1044 |
+
of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
|
1045 |
+
if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
|
1046 |
+
``A``:
|
1047 |
+
|
1048 |
+
>>> from numpy import linalg as LA
|
1049 |
+
>>> x = np.random.random()
|
1050 |
+
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
|
1051 |
+
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
|
1052 |
+
(1.0, 1.0, 0.0)
|
1053 |
+
|
1054 |
+
Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:
|
1055 |
+
|
1056 |
+
>>> D = np.diag((-1,1))
|
1057 |
+
>>> LA.eigvals(D)
|
1058 |
+
array([-1., 1.])
|
1059 |
+
>>> A = np.dot(Q, D)
|
1060 |
+
>>> A = np.dot(A, Q.T)
|
1061 |
+
>>> LA.eigvals(A)
|
1062 |
+
array([ 1., -1.]) # random
|
1063 |
+
|
1064 |
+
"""
|
1065 |
+
a, wrap = _makearray(a)
|
1066 |
+
_assert_stacked_2d(a)
|
1067 |
+
_assert_stacked_square(a)
|
1068 |
+
_assert_finite(a)
|
1069 |
+
t, result_t = _commonType(a)
|
1070 |
+
|
1071 |
+
extobj = get_linalg_error_extobj(
|
1072 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1073 |
+
signature = 'D->D' if isComplexType(t) else 'd->D'
|
1074 |
+
w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj)
|
1075 |
+
|
1076 |
+
if not isComplexType(t):
|
1077 |
+
if all(w.imag == 0):
|
1078 |
+
w = w.real
|
1079 |
+
result_t = _realType(result_t)
|
1080 |
+
else:
|
1081 |
+
result_t = _complexType(result_t)
|
1082 |
+
|
1083 |
+
return w.astype(result_t, copy=False)
|
1084 |
+
|
1085 |
+
|
1086 |
+
def _eigvalsh_dispatcher(a, UPLO=None):
|
1087 |
+
return (a,)
|
1088 |
+
|
1089 |
+
|
1090 |
+
@array_function_dispatch(_eigvalsh_dispatcher)
|
1091 |
+
def eigvalsh(a, UPLO='L'):
|
1092 |
+
"""
|
1093 |
+
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
|
1094 |
+
|
1095 |
+
Main difference from eigh: the eigenvectors are not computed.
|
1096 |
+
|
1097 |
+
Parameters
|
1098 |
+
----------
|
1099 |
+
a : (..., M, M) array_like
|
1100 |
+
A complex- or real-valued matrix whose eigenvalues are to be
|
1101 |
+
computed.
|
1102 |
+
UPLO : {'L', 'U'}, optional
|
1103 |
+
Specifies whether the calculation is done with the lower triangular
|
1104 |
+
part of `a` ('L', default) or the upper triangular part ('U').
|
1105 |
+
Irrespective of this value only the real parts of the diagonal will
|
1106 |
+
be considered in the computation to preserve the notion of a Hermitian
|
1107 |
+
matrix. It therefore follows that the imaginary part of the diagonal
|
1108 |
+
will always be treated as zero.
|
1109 |
+
|
1110 |
+
Returns
|
1111 |
+
-------
|
1112 |
+
w : (..., M,) ndarray
|
1113 |
+
The eigenvalues in ascending order, each repeated according to
|
1114 |
+
its multiplicity.
|
1115 |
+
|
1116 |
+
Raises
|
1117 |
+
------
|
1118 |
+
LinAlgError
|
1119 |
+
If the eigenvalue computation does not converge.
|
1120 |
+
|
1121 |
+
See Also
|
1122 |
+
--------
|
1123 |
+
eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
|
1124 |
+
(conjugate symmetric) arrays.
|
1125 |
+
eigvals : eigenvalues of general real or complex arrays.
|
1126 |
+
eig : eigenvalues and right eigenvectors of general real or complex
|
1127 |
+
arrays.
|
1128 |
+
scipy.linalg.eigvalsh : Similar function in SciPy.
|
1129 |
+
|
1130 |
+
Notes
|
1131 |
+
-----
|
1132 |
+
|
1133 |
+
.. versionadded:: 1.8.0
|
1134 |
+
|
1135 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1136 |
+
details.
|
1137 |
+
|
1138 |
+
The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.
|
1139 |
+
|
1140 |
+
Examples
|
1141 |
+
--------
|
1142 |
+
>>> from numpy import linalg as LA
|
1143 |
+
>>> a = np.array([[1, -2j], [2j, 5]])
|
1144 |
+
>>> LA.eigvalsh(a)
|
1145 |
+
array([ 0.17157288, 5.82842712]) # may vary
|
1146 |
+
|
1147 |
+
>>> # demonstrate the treatment of the imaginary part of the diagonal
|
1148 |
+
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
|
1149 |
+
>>> a
|
1150 |
+
array([[5.+2.j, 9.-2.j],
|
1151 |
+
[0.+2.j, 2.-1.j]])
|
1152 |
+
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
|
1153 |
+
>>> # with:
|
1154 |
+
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
|
1155 |
+
>>> b
|
1156 |
+
array([[5.+0.j, 0.-2.j],
|
1157 |
+
[0.+2.j, 2.+0.j]])
|
1158 |
+
>>> wa = LA.eigvalsh(a)
|
1159 |
+
>>> wb = LA.eigvals(b)
|
1160 |
+
>>> wa; wb
|
1161 |
+
array([1., 6.])
|
1162 |
+
array([6.+0.j, 1.+0.j])
|
1163 |
+
|
1164 |
+
"""
|
1165 |
+
UPLO = UPLO.upper()
|
1166 |
+
if UPLO not in ('L', 'U'):
|
1167 |
+
raise ValueError("UPLO argument must be 'L' or 'U'")
|
1168 |
+
|
1169 |
+
extobj = get_linalg_error_extobj(
|
1170 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1171 |
+
if UPLO == 'L':
|
1172 |
+
gufunc = _umath_linalg.eigvalsh_lo
|
1173 |
+
else:
|
1174 |
+
gufunc = _umath_linalg.eigvalsh_up
|
1175 |
+
|
1176 |
+
a, wrap = _makearray(a)
|
1177 |
+
_assert_stacked_2d(a)
|
1178 |
+
_assert_stacked_square(a)
|
1179 |
+
t, result_t = _commonType(a)
|
1180 |
+
signature = 'D->d' if isComplexType(t) else 'd->d'
|
1181 |
+
w = gufunc(a, signature=signature, extobj=extobj)
|
1182 |
+
return w.astype(_realType(result_t), copy=False)
|
1183 |
+
|
1184 |
+
def _convertarray(a):
|
1185 |
+
t, result_t = _commonType(a)
|
1186 |
+
a = a.astype(t).T.copy()
|
1187 |
+
return a, t, result_t
|
1188 |
+
|
1189 |
+
|
1190 |
+
# Eigenvectors
|
1191 |
+
|
1192 |
+
|
1193 |
+
@array_function_dispatch(_unary_dispatcher)
|
1194 |
+
def eig(a):
|
1195 |
+
"""
|
1196 |
+
Compute the eigenvalues and right eigenvectors of a square array.
|
1197 |
+
|
1198 |
+
Parameters
|
1199 |
+
----------
|
1200 |
+
a : (..., M, M) array
|
1201 |
+
Matrices for which the eigenvalues and right eigenvectors will
|
1202 |
+
be computed
|
1203 |
+
|
1204 |
+
Returns
|
1205 |
+
-------
|
1206 |
+
A namedtuple with the following attributes:
|
1207 |
+
|
1208 |
+
eigenvalues : (..., M) array
|
1209 |
+
The eigenvalues, each repeated according to its multiplicity.
|
1210 |
+
The eigenvalues are not necessarily ordered. The resulting
|
1211 |
+
array will be of complex type, unless the imaginary part is
|
1212 |
+
zero in which case it will be cast to a real type. When `a`
|
1213 |
+
is real the resulting eigenvalues will be real (0 imaginary
|
1214 |
+
part) or occur in conjugate pairs
|
1215 |
+
|
1216 |
+
eigenvectors : (..., M, M) array
|
1217 |
+
The normalized (unit "length") eigenvectors, such that the
|
1218 |
+
column ``eigenvectors[:,i]`` is the eigenvector corresponding to the
|
1219 |
+
eigenvalue ``eigenvalues[i]``.
|
1220 |
+
|
1221 |
+
Raises
|
1222 |
+
------
|
1223 |
+
LinAlgError
|
1224 |
+
If the eigenvalue computation does not converge.
|
1225 |
+
|
1226 |
+
See Also
|
1227 |
+
--------
|
1228 |
+
eigvals : eigenvalues of a non-symmetric array.
|
1229 |
+
eigh : eigenvalues and eigenvectors of a real symmetric or complex
|
1230 |
+
Hermitian (conjugate symmetric) array.
|
1231 |
+
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
|
1232 |
+
(conjugate symmetric) array.
|
1233 |
+
scipy.linalg.eig : Similar function in SciPy that also solves the
|
1234 |
+
generalized eigenvalue problem.
|
1235 |
+
scipy.linalg.schur : Best choice for unitary and other non-Hermitian
|
1236 |
+
normal matrices.
|
1237 |
+
|
1238 |
+
Notes
|
1239 |
+
-----
|
1240 |
+
|
1241 |
+
.. versionadded:: 1.8.0
|
1242 |
+
|
1243 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1244 |
+
details.
|
1245 |
+
|
1246 |
+
This is implemented using the ``_geev`` LAPACK routines which compute
|
1247 |
+
the eigenvalues and eigenvectors of general square arrays.
|
1248 |
+
|
1249 |
+
The number `w` is an eigenvalue of `a` if there exists a vector `v` such
|
1250 |
+
that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and
|
1251 |
+
`eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] =
|
1252 |
+
eigenvalues[i] * eigenvalues[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`.
|
1253 |
+
|
1254 |
+
The array `eigenvectors` may not be of maximum rank, that is, some of the
|
1255 |
+
columns may be linearly dependent, although round-off error may obscure
|
1256 |
+
that fact. If the eigenvalues are all different, then theoretically the
|
1257 |
+
eigenvectors are linearly independent and `a` can be diagonalized by a
|
1258 |
+
similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @
|
1259 |
+
a @ eigenvectors`` is diagonal.
|
1260 |
+
|
1261 |
+
For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur`
|
1262 |
+
is preferred because the matrix `eigenvectors` is guaranteed to be
|
1263 |
+
unitary, which is not the case when using `eig`. The Schur factorization
|
1264 |
+
produces an upper triangular matrix rather than a diagonal matrix, but for
|
1265 |
+
normal matrices only the diagonal of the upper triangular matrix is
|
1266 |
+
needed, the rest is roundoff error.
|
1267 |
+
|
1268 |
+
Finally, it is emphasized that `eigenvectors` consists of the *right* (as
|
1269 |
+
in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a
|
1270 |
+
= z * y.T`` for some number `z` is called a *left* eigenvector of `a`,
|
1271 |
+
and, in general, the left and right eigenvectors of a matrix are not
|
1272 |
+
necessarily the (perhaps conjugate) transposes of each other.
|
1273 |
+
|
1274 |
+
References
|
1275 |
+
----------
|
1276 |
+
G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
|
1277 |
+
Academic Press, Inc., 1980, Various pp.
|
1278 |
+
|
1279 |
+
Examples
|
1280 |
+
--------
|
1281 |
+
>>> from numpy import linalg as LA
|
1282 |
+
|
1283 |
+
(Almost) trivial example with real eigenvalues and eigenvectors.
|
1284 |
+
|
1285 |
+
>>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
|
1286 |
+
>>> eigenvalues
|
1287 |
+
array([1., 2., 3.])
|
1288 |
+
>>> eigenvectors
|
1289 |
+
array([[1., 0., 0.],
|
1290 |
+
[0., 1., 0.],
|
1291 |
+
[0., 0., 1.]])
|
1292 |
+
|
1293 |
+
Real matrix possessing complex eigenvalues and eigenvectors; note that the
|
1294 |
+
eigenvalues are complex conjugates of each other.
|
1295 |
+
|
1296 |
+
>>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
|
1297 |
+
>>> eigenvalues
|
1298 |
+
array([1.+1.j, 1.-1.j])
|
1299 |
+
>>> eigenvectors
|
1300 |
+
array([[0.70710678+0.j , 0.70710678-0.j ],
|
1301 |
+
[0. -0.70710678j, 0. +0.70710678j]])
|
1302 |
+
|
1303 |
+
Complex-valued matrix with real eigenvalues (but complex-valued eigenvectors);
|
1304 |
+
note that ``a.conj().T == a``, i.e., `a` is Hermitian.
|
1305 |
+
|
1306 |
+
>>> a = np.array([[1, 1j], [-1j, 1]])
|
1307 |
+
>>> eigenvalues, eigenvectors = LA.eig(a)
|
1308 |
+
>>> eigenvalues
|
1309 |
+
array([2.+0.j, 0.+0.j])
|
1310 |
+
>>> eigenvectors
|
1311 |
+
array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary
|
1312 |
+
[ 0.70710678+0.j , -0. +0.70710678j]])
|
1313 |
+
|
1314 |
+
Be careful about round-off error!
|
1315 |
+
|
1316 |
+
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
|
1317 |
+
>>> # Theor. eigenvalues are 1 +/- 1e-9
|
1318 |
+
>>> eigenvalues, eigenvectors = LA.eig(a)
|
1319 |
+
>>> eigenvalues
|
1320 |
+
array([1., 1.])
|
1321 |
+
>>> eigenvectors
|
1322 |
+
array([[1., 0.],
|
1323 |
+
[0., 1.]])
|
1324 |
+
|
1325 |
+
"""
|
1326 |
+
a, wrap = _makearray(a)
|
1327 |
+
_assert_stacked_2d(a)
|
1328 |
+
_assert_stacked_square(a)
|
1329 |
+
_assert_finite(a)
|
1330 |
+
t, result_t = _commonType(a)
|
1331 |
+
|
1332 |
+
extobj = get_linalg_error_extobj(
|
1333 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1334 |
+
signature = 'D->DD' if isComplexType(t) else 'd->DD'
|
1335 |
+
w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj)
|
1336 |
+
|
1337 |
+
if not isComplexType(t) and all(w.imag == 0.0):
|
1338 |
+
w = w.real
|
1339 |
+
vt = vt.real
|
1340 |
+
result_t = _realType(result_t)
|
1341 |
+
else:
|
1342 |
+
result_t = _complexType(result_t)
|
1343 |
+
|
1344 |
+
vt = vt.astype(result_t, copy=False)
|
1345 |
+
return EigResult(w.astype(result_t, copy=False), wrap(vt))
|
1346 |
+
|
1347 |
+
|
1348 |
+
@array_function_dispatch(_eigvalsh_dispatcher)
|
1349 |
+
def eigh(a, UPLO='L'):
|
1350 |
+
"""
|
1351 |
+
Return the eigenvalues and eigenvectors of a complex Hermitian
|
1352 |
+
(conjugate symmetric) or a real symmetric matrix.
|
1353 |
+
|
1354 |
+
Returns two objects, a 1-D array containing the eigenvalues of `a`, and
|
1355 |
+
a 2-D square array or matrix (depending on the input type) of the
|
1356 |
+
corresponding eigenvectors (in columns).
|
1357 |
+
|
1358 |
+
Parameters
|
1359 |
+
----------
|
1360 |
+
a : (..., M, M) array
|
1361 |
+
Hermitian or real symmetric matrices whose eigenvalues and
|
1362 |
+
eigenvectors are to be computed.
|
1363 |
+
UPLO : {'L', 'U'}, optional
|
1364 |
+
Specifies whether the calculation is done with the lower triangular
|
1365 |
+
part of `a` ('L', default) or the upper triangular part ('U').
|
1366 |
+
Irrespective of this value only the real parts of the diagonal will
|
1367 |
+
be considered in the computation to preserve the notion of a Hermitian
|
1368 |
+
matrix. It therefore follows that the imaginary part of the diagonal
|
1369 |
+
will always be treated as zero.
|
1370 |
+
|
1371 |
+
Returns
|
1372 |
+
-------
|
1373 |
+
A namedtuple with the following attributes:
|
1374 |
+
|
1375 |
+
eigenvalues : (..., M) ndarray
|
1376 |
+
The eigenvalues in ascending order, each repeated according to
|
1377 |
+
its multiplicity.
|
1378 |
+
eigenvectors : {(..., M, M) ndarray, (..., M, M) matrix}
|
1379 |
+
The column ``eigenvectors[:, i]`` is the normalized eigenvector
|
1380 |
+
corresponding to the eigenvalue ``eigenvalues[i]``. Will return a
|
1381 |
+
matrix object if `a` is a matrix object.
|
1382 |
+
|
1383 |
+
Raises
|
1384 |
+
------
|
1385 |
+
LinAlgError
|
1386 |
+
If the eigenvalue computation does not converge.
|
1387 |
+
|
1388 |
+
See Also
|
1389 |
+
--------
|
1390 |
+
eigvalsh : eigenvalues of real symmetric or complex Hermitian
|
1391 |
+
(conjugate symmetric) arrays.
|
1392 |
+
eig : eigenvalues and right eigenvectors for non-symmetric arrays.
|
1393 |
+
eigvals : eigenvalues of non-symmetric arrays.
|
1394 |
+
scipy.linalg.eigh : Similar function in SciPy (but also solves the
|
1395 |
+
generalized eigenvalue problem).
|
1396 |
+
|
1397 |
+
Notes
|
1398 |
+
-----
|
1399 |
+
|
1400 |
+
.. versionadded:: 1.8.0
|
1401 |
+
|
1402 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1403 |
+
details.
|
1404 |
+
|
1405 |
+
The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
|
1406 |
+
``_heevd``.
|
1407 |
+
|
1408 |
+
The eigenvalues of real symmetric or complex Hermitian matrices are always
|
1409 |
+
real. [1]_ The array `eigenvalues` of (column) eigenvectors is unitary and
|
1410 |
+
`a`, `eigenvalues`, and `eigenvectors` satisfy the equations ``dot(a,
|
1411 |
+
eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]``.
|
1412 |
+
|
1413 |
+
References
|
1414 |
+
----------
|
1415 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
1416 |
+
FL, Academic Press, Inc., 1980, pg. 222.
|
1417 |
+
|
1418 |
+
Examples
|
1419 |
+
--------
|
1420 |
+
>>> from numpy import linalg as LA
|
1421 |
+
>>> a = np.array([[1, -2j], [2j, 5]])
|
1422 |
+
>>> a
|
1423 |
+
array([[ 1.+0.j, -0.-2.j],
|
1424 |
+
[ 0.+2.j, 5.+0.j]])
|
1425 |
+
>>> eigenvalues, eigenvectors = LA.eigh(a)
|
1426 |
+
>>> eigenvalues
|
1427 |
+
array([0.17157288, 5.82842712])
|
1428 |
+
>>> eigenvectors
|
1429 |
+
array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
|
1430 |
+
[ 0. +0.38268343j, 0. -0.92387953j]])
|
1431 |
+
|
1432 |
+
>>> np.dot(a, eigenvectors[:, 0]) - eigenvalues[0] * eigenvectors[:, 0] # verify 1st eigenval/vec pair
|
1433 |
+
array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
|
1434 |
+
>>> np.dot(a, eigenvectors[:, 1]) - eigenvalues[1] * eigenvectors[:, 1] # verify 2nd eigenval/vec pair
|
1435 |
+
array([0.+0.j, 0.+0.j])
|
1436 |
+
|
1437 |
+
>>> A = np.matrix(a) # what happens if input is a matrix object
|
1438 |
+
>>> A
|
1439 |
+
matrix([[ 1.+0.j, -0.-2.j],
|
1440 |
+
[ 0.+2.j, 5.+0.j]])
|
1441 |
+
>>> eigenvalues, eigenvectors = LA.eigh(A)
|
1442 |
+
>>> eigenvalues
|
1443 |
+
array([0.17157288, 5.82842712])
|
1444 |
+
>>> eigenvectors
|
1445 |
+
matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
|
1446 |
+
[ 0. +0.38268343j, 0. -0.92387953j]])
|
1447 |
+
|
1448 |
+
>>> # demonstrate the treatment of the imaginary part of the diagonal
|
1449 |
+
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
|
1450 |
+
>>> a
|
1451 |
+
array([[5.+2.j, 9.-2.j],
|
1452 |
+
[0.+2.j, 2.-1.j]])
|
1453 |
+
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
|
1454 |
+
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
|
1455 |
+
>>> b
|
1456 |
+
array([[5.+0.j, 0.-2.j],
|
1457 |
+
[0.+2.j, 2.+0.j]])
|
1458 |
+
>>> wa, va = LA.eigh(a)
|
1459 |
+
>>> wb, vb = LA.eig(b)
|
1460 |
+
>>> wa; wb
|
1461 |
+
array([1., 6.])
|
1462 |
+
array([6.+0.j, 1.+0.j])
|
1463 |
+
>>> va; vb
|
1464 |
+
array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary
|
1465 |
+
[ 0. +0.89442719j, 0. -0.4472136j ]])
|
1466 |
+
array([[ 0.89442719+0.j , -0. +0.4472136j],
|
1467 |
+
[-0. +0.4472136j, 0.89442719+0.j ]])
|
1468 |
+
|
1469 |
+
"""
|
1470 |
+
UPLO = UPLO.upper()
|
1471 |
+
if UPLO not in ('L', 'U'):
|
1472 |
+
raise ValueError("UPLO argument must be 'L' or 'U'")
|
1473 |
+
|
1474 |
+
a, wrap = _makearray(a)
|
1475 |
+
_assert_stacked_2d(a)
|
1476 |
+
_assert_stacked_square(a)
|
1477 |
+
t, result_t = _commonType(a)
|
1478 |
+
|
1479 |
+
extobj = get_linalg_error_extobj(
|
1480 |
+
_raise_linalgerror_eigenvalues_nonconvergence)
|
1481 |
+
if UPLO == 'L':
|
1482 |
+
gufunc = _umath_linalg.eigh_lo
|
1483 |
+
else:
|
1484 |
+
gufunc = _umath_linalg.eigh_up
|
1485 |
+
|
1486 |
+
signature = 'D->dD' if isComplexType(t) else 'd->dd'
|
1487 |
+
w, vt = gufunc(a, signature=signature, extobj=extobj)
|
1488 |
+
w = w.astype(_realType(result_t), copy=False)
|
1489 |
+
vt = vt.astype(result_t, copy=False)
|
1490 |
+
return EighResult(w, wrap(vt))
|
1491 |
+
|
1492 |
+
|
1493 |
+
# Singular value decomposition
|
1494 |
+
|
1495 |
+
def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
|
1496 |
+
return (a,)
|
1497 |
+
|
1498 |
+
|
1499 |
+
@array_function_dispatch(_svd_dispatcher)
|
1500 |
+
def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
|
1501 |
+
"""
|
1502 |
+
Singular Value Decomposition.
|
1503 |
+
|
1504 |
+
When `a` is a 2D array, and ``full_matrices=False``, then it is
|
1505 |
+
factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where
|
1506 |
+
`u` and the Hermitian transpose of `vh` are 2D arrays with
|
1507 |
+
orthonormal columns and `s` is a 1D array of `a`'s singular
|
1508 |
+
values. When `a` is higher-dimensional, SVD is applied in
|
1509 |
+
stacked mode as explained below.
|
1510 |
+
|
1511 |
+
Parameters
|
1512 |
+
----------
|
1513 |
+
a : (..., M, N) array_like
|
1514 |
+
A real or complex array with ``a.ndim >= 2``.
|
1515 |
+
full_matrices : bool, optional
|
1516 |
+
If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
|
1517 |
+
``(..., N, N)``, respectively. Otherwise, the shapes are
|
1518 |
+
``(..., M, K)`` and ``(..., K, N)``, respectively, where
|
1519 |
+
``K = min(M, N)``.
|
1520 |
+
compute_uv : bool, optional
|
1521 |
+
Whether or not to compute `u` and `vh` in addition to `s`. True
|
1522 |
+
by default.
|
1523 |
+
hermitian : bool, optional
|
1524 |
+
If True, `a` is assumed to be Hermitian (symmetric if real-valued),
|
1525 |
+
enabling a more efficient method for finding singular values.
|
1526 |
+
Defaults to False.
|
1527 |
+
|
1528 |
+
.. versionadded:: 1.17.0
|
1529 |
+
|
1530 |
+
Returns
|
1531 |
+
-------
|
1532 |
+
When `compute_uv` is True, the result is a namedtuple with the following
|
1533 |
+
attribute names:
|
1534 |
+
|
1535 |
+
U : { (..., M, M), (..., M, K) } array
|
1536 |
+
Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
|
1537 |
+
size as those of the input `a`. The size of the last two dimensions
|
1538 |
+
depends on the value of `full_matrices`. Only returned when
|
1539 |
+
`compute_uv` is True.
|
1540 |
+
S : (..., K) array
|
1541 |
+
Vector(s) with the singular values, within each vector sorted in
|
1542 |
+
descending order. The first ``a.ndim - 2`` dimensions have the same
|
1543 |
+
size as those of the input `a`.
|
1544 |
+
Vh : { (..., N, N), (..., K, N) } array
|
1545 |
+
Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
|
1546 |
+
size as those of the input `a`. The size of the last two dimensions
|
1547 |
+
depends on the value of `full_matrices`. Only returned when
|
1548 |
+
`compute_uv` is True.
|
1549 |
+
|
1550 |
+
Raises
|
1551 |
+
------
|
1552 |
+
LinAlgError
|
1553 |
+
If SVD computation does not converge.
|
1554 |
+
|
1555 |
+
See Also
|
1556 |
+
--------
|
1557 |
+
scipy.linalg.svd : Similar function in SciPy.
|
1558 |
+
scipy.linalg.svdvals : Compute singular values of a matrix.
|
1559 |
+
|
1560 |
+
Notes
|
1561 |
+
-----
|
1562 |
+
|
1563 |
+
.. versionchanged:: 1.8.0
|
1564 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
1565 |
+
details.
|
1566 |
+
|
1567 |
+
The decomposition is performed using LAPACK routine ``_gesdd``.
|
1568 |
+
|
1569 |
+
SVD is usually described for the factorization of a 2D matrix :math:`A`.
|
1570 |
+
The higher-dimensional case will be discussed below. In the 2D case, SVD is
|
1571 |
+
written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
|
1572 |
+
:math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
|
1573 |
+
contains the singular values of `a` and `u` and `vh` are unitary. The rows
|
1574 |
+
of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
|
1575 |
+
the eigenvectors of :math:`A A^H`. In both cases the corresponding
|
1576 |
+
(possibly non-zero) eigenvalues are given by ``s**2``.
|
1577 |
+
|
1578 |
+
If `a` has more than two dimensions, then broadcasting rules apply, as
|
1579 |
+
explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
|
1580 |
+
working in "stacked" mode: it iterates over all indices of the first
|
1581 |
+
``a.ndim - 2`` dimensions and for each combination SVD is applied to the
|
1582 |
+
last two indices. The matrix `a` can be reconstructed from the
|
1583 |
+
decomposition with either ``(u * s[..., None, :]) @ vh`` or
|
1584 |
+
``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
|
1585 |
+
function ``np.matmul`` for python versions below 3.5.)
|
1586 |
+
|
1587 |
+
If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
|
1588 |
+
all the return values.
|
1589 |
+
|
1590 |
+
Examples
|
1591 |
+
--------
|
1592 |
+
>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
|
1593 |
+
>>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)
|
1594 |
+
|
1595 |
+
Reconstruction based on full SVD, 2D case:
|
1596 |
+
|
1597 |
+
>>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
|
1598 |
+
>>> U.shape, S.shape, Vh.shape
|
1599 |
+
((9, 9), (6,), (6, 6))
|
1600 |
+
>>> np.allclose(a, np.dot(U[:, :6] * S, Vh))
|
1601 |
+
True
|
1602 |
+
>>> smat = np.zeros((9, 6), dtype=complex)
|
1603 |
+
>>> smat[:6, :6] = np.diag(S)
|
1604 |
+
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
|
1605 |
+
True
|
1606 |
+
|
1607 |
+
Reconstruction based on reduced SVD, 2D case:
|
1608 |
+
|
1609 |
+
>>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
|
1610 |
+
>>> U.shape, S.shape, Vh.shape
|
1611 |
+
((9, 6), (6,), (6, 6))
|
1612 |
+
>>> np.allclose(a, np.dot(U * S, Vh))
|
1613 |
+
True
|
1614 |
+
>>> smat = np.diag(S)
|
1615 |
+
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
|
1616 |
+
True
|
1617 |
+
|
1618 |
+
Reconstruction based on full SVD, 4D case:
|
1619 |
+
|
1620 |
+
>>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
|
1621 |
+
>>> U.shape, S.shape, Vh.shape
|
1622 |
+
((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
|
1623 |
+
>>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh))
|
1624 |
+
True
|
1625 |
+
>>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh))
|
1626 |
+
True
|
1627 |
+
|
1628 |
+
Reconstruction based on reduced SVD, 4D case:
|
1629 |
+
|
1630 |
+
>>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
|
1631 |
+
>>> U.shape, S.shape, Vh.shape
|
1632 |
+
((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
|
1633 |
+
>>> np.allclose(b, np.matmul(U * S[..., None, :], Vh))
|
1634 |
+
True
|
1635 |
+
>>> np.allclose(b, np.matmul(U, S[..., None] * Vh))
|
1636 |
+
True
|
1637 |
+
|
1638 |
+
"""
|
1639 |
+
import numpy as _nx
|
1640 |
+
a, wrap = _makearray(a)
|
1641 |
+
|
1642 |
+
if hermitian:
|
1643 |
+
# note: lapack svd returns eigenvalues with s ** 2 sorted descending,
|
1644 |
+
# but eig returns s sorted ascending, so we re-order the eigenvalues
|
1645 |
+
# and related arrays to have the correct order
|
1646 |
+
if compute_uv:
|
1647 |
+
s, u = eigh(a)
|
1648 |
+
sgn = sign(s)
|
1649 |
+
s = abs(s)
|
1650 |
+
sidx = argsort(s)[..., ::-1]
|
1651 |
+
sgn = _nx.take_along_axis(sgn, sidx, axis=-1)
|
1652 |
+
s = _nx.take_along_axis(s, sidx, axis=-1)
|
1653 |
+
u = _nx.take_along_axis(u, sidx[..., None, :], axis=-1)
|
1654 |
+
# singular values are unsigned, move the sign into v
|
1655 |
+
vt = transpose(u * sgn[..., None, :]).conjugate()
|
1656 |
+
return SVDResult(wrap(u), s, wrap(vt))
|
1657 |
+
else:
|
1658 |
+
s = eigvalsh(a)
|
1659 |
+
s = abs(s)
|
1660 |
+
return sort(s)[..., ::-1]
|
1661 |
+
|
1662 |
+
_assert_stacked_2d(a)
|
1663 |
+
t, result_t = _commonType(a)
|
1664 |
+
|
1665 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence)
|
1666 |
+
|
1667 |
+
m, n = a.shape[-2:]
|
1668 |
+
if compute_uv:
|
1669 |
+
if full_matrices:
|
1670 |
+
if m < n:
|
1671 |
+
gufunc = _umath_linalg.svd_m_f
|
1672 |
+
else:
|
1673 |
+
gufunc = _umath_linalg.svd_n_f
|
1674 |
+
else:
|
1675 |
+
if m < n:
|
1676 |
+
gufunc = _umath_linalg.svd_m_s
|
1677 |
+
else:
|
1678 |
+
gufunc = _umath_linalg.svd_n_s
|
1679 |
+
|
1680 |
+
signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
|
1681 |
+
u, s, vh = gufunc(a, signature=signature, extobj=extobj)
|
1682 |
+
u = u.astype(result_t, copy=False)
|
1683 |
+
s = s.astype(_realType(result_t), copy=False)
|
1684 |
+
vh = vh.astype(result_t, copy=False)
|
1685 |
+
return SVDResult(wrap(u), s, wrap(vh))
|
1686 |
+
else:
|
1687 |
+
if m < n:
|
1688 |
+
gufunc = _umath_linalg.svd_m
|
1689 |
+
else:
|
1690 |
+
gufunc = _umath_linalg.svd_n
|
1691 |
+
|
1692 |
+
signature = 'D->d' if isComplexType(t) else 'd->d'
|
1693 |
+
s = gufunc(a, signature=signature, extobj=extobj)
|
1694 |
+
s = s.astype(_realType(result_t), copy=False)
|
1695 |
+
return s
|
1696 |
+
|
1697 |
+
|
1698 |
+
def _cond_dispatcher(x, p=None):
|
1699 |
+
return (x,)
|
1700 |
+
|
1701 |
+
|
1702 |
+
@array_function_dispatch(_cond_dispatcher)
|
1703 |
+
def cond(x, p=None):
|
1704 |
+
"""
|
1705 |
+
Compute the condition number of a matrix.
|
1706 |
+
|
1707 |
+
This function is capable of returning the condition number using
|
1708 |
+
one of seven different norms, depending on the value of `p` (see
|
1709 |
+
Parameters below).
|
1710 |
+
|
1711 |
+
Parameters
|
1712 |
+
----------
|
1713 |
+
x : (..., M, N) array_like
|
1714 |
+
The matrix whose condition number is sought.
|
1715 |
+
p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
|
1716 |
+
Order of the norm used in the condition number computation:
|
1717 |
+
|
1718 |
+
===== ============================
|
1719 |
+
p norm for matrices
|
1720 |
+
===== ============================
|
1721 |
+
None 2-norm, computed directly using the ``SVD``
|
1722 |
+
'fro' Frobenius norm
|
1723 |
+
inf max(sum(abs(x), axis=1))
|
1724 |
+
-inf min(sum(abs(x), axis=1))
|
1725 |
+
1 max(sum(abs(x), axis=0))
|
1726 |
+
-1 min(sum(abs(x), axis=0))
|
1727 |
+
2 2-norm (largest sing. value)
|
1728 |
+
-2 smallest singular value
|
1729 |
+
===== ============================
|
1730 |
+
|
1731 |
+
inf means the `numpy.inf` object, and the Frobenius norm is
|
1732 |
+
the root-of-sum-of-squares norm.
|
1733 |
+
|
1734 |
+
Returns
|
1735 |
+
-------
|
1736 |
+
c : {float, inf}
|
1737 |
+
The condition number of the matrix. May be infinite.
|
1738 |
+
|
1739 |
+
See Also
|
1740 |
+
--------
|
1741 |
+
numpy.linalg.norm
|
1742 |
+
|
1743 |
+
Notes
|
1744 |
+
-----
|
1745 |
+
The condition number of `x` is defined as the norm of `x` times the
|
1746 |
+
norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
|
1747 |
+
(root-of-sum-of-squares) or one of a number of other matrix norms.
|
1748 |
+
|
1749 |
+
References
|
1750 |
+
----------
|
1751 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
|
1752 |
+
Academic Press, Inc., 1980, pg. 285.
|
1753 |
+
|
1754 |
+
Examples
|
1755 |
+
--------
|
1756 |
+
>>> from numpy import linalg as LA
|
1757 |
+
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
|
1758 |
+
>>> a
|
1759 |
+
array([[ 1, 0, -1],
|
1760 |
+
[ 0, 1, 0],
|
1761 |
+
[ 1, 0, 1]])
|
1762 |
+
>>> LA.cond(a)
|
1763 |
+
1.4142135623730951
|
1764 |
+
>>> LA.cond(a, 'fro')
|
1765 |
+
3.1622776601683795
|
1766 |
+
>>> LA.cond(a, np.inf)
|
1767 |
+
2.0
|
1768 |
+
>>> LA.cond(a, -np.inf)
|
1769 |
+
1.0
|
1770 |
+
>>> LA.cond(a, 1)
|
1771 |
+
2.0
|
1772 |
+
>>> LA.cond(a, -1)
|
1773 |
+
1.0
|
1774 |
+
>>> LA.cond(a, 2)
|
1775 |
+
1.4142135623730951
|
1776 |
+
>>> LA.cond(a, -2)
|
1777 |
+
0.70710678118654746 # may vary
|
1778 |
+
>>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False))
|
1779 |
+
0.70710678118654746 # may vary
|
1780 |
+
|
1781 |
+
"""
|
1782 |
+
x = asarray(x) # in case we have a matrix
|
1783 |
+
if _is_empty_2d(x):
|
1784 |
+
raise LinAlgError("cond is not defined on empty arrays")
|
1785 |
+
if p is None or p == 2 or p == -2:
|
1786 |
+
s = svd(x, compute_uv=False)
|
1787 |
+
with errstate(all='ignore'):
|
1788 |
+
if p == -2:
|
1789 |
+
r = s[..., -1] / s[..., 0]
|
1790 |
+
else:
|
1791 |
+
r = s[..., 0] / s[..., -1]
|
1792 |
+
else:
|
1793 |
+
# Call inv(x) ignoring errors. The result array will
|
1794 |
+
# contain nans in the entries where inversion failed.
|
1795 |
+
_assert_stacked_2d(x)
|
1796 |
+
_assert_stacked_square(x)
|
1797 |
+
t, result_t = _commonType(x)
|
1798 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
1799 |
+
with errstate(all='ignore'):
|
1800 |
+
invx = _umath_linalg.inv(x, signature=signature)
|
1801 |
+
r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
|
1802 |
+
r = r.astype(result_t, copy=False)
|
1803 |
+
|
1804 |
+
# Convert nans to infs unless the original array had nan entries
|
1805 |
+
r = asarray(r)
|
1806 |
+
nan_mask = isnan(r)
|
1807 |
+
if nan_mask.any():
|
1808 |
+
nan_mask &= ~isnan(x).any(axis=(-2, -1))
|
1809 |
+
if r.ndim > 0:
|
1810 |
+
r[nan_mask] = Inf
|
1811 |
+
elif nan_mask:
|
1812 |
+
r[()] = Inf
|
1813 |
+
|
1814 |
+
# Convention is to return scalars instead of 0d arrays
|
1815 |
+
if r.ndim == 0:
|
1816 |
+
r = r[()]
|
1817 |
+
|
1818 |
+
return r
|
1819 |
+
|
1820 |
+
|
1821 |
+
def _matrix_rank_dispatcher(A, tol=None, hermitian=None):
|
1822 |
+
return (A,)
|
1823 |
+
|
1824 |
+
|
1825 |
+
@array_function_dispatch(_matrix_rank_dispatcher)
|
1826 |
+
def matrix_rank(A, tol=None, hermitian=False):
|
1827 |
+
"""
|
1828 |
+
Return matrix rank of array using SVD method
|
1829 |
+
|
1830 |
+
Rank of the array is the number of singular values of the array that are
|
1831 |
+
greater than `tol`.
|
1832 |
+
|
1833 |
+
.. versionchanged:: 1.14
|
1834 |
+
Can now operate on stacks of matrices
|
1835 |
+
|
1836 |
+
Parameters
|
1837 |
+
----------
|
1838 |
+
A : {(M,), (..., M, N)} array_like
|
1839 |
+
Input vector or stack of matrices.
|
1840 |
+
tol : (...) array_like, float, optional
|
1841 |
+
Threshold below which SVD values are considered zero. If `tol` is
|
1842 |
+
None, and ``S`` is an array with singular values for `M`, and
|
1843 |
+
``eps`` is the epsilon value for datatype of ``S``, then `tol` is
|
1844 |
+
set to ``S.max() * max(M, N) * eps``.
|
1845 |
+
|
1846 |
+
.. versionchanged:: 1.14
|
1847 |
+
Broadcasted against the stack of matrices
|
1848 |
+
hermitian : bool, optional
|
1849 |
+
If True, `A` is assumed to be Hermitian (symmetric if real-valued),
|
1850 |
+
enabling a more efficient method for finding singular values.
|
1851 |
+
Defaults to False.
|
1852 |
+
|
1853 |
+
.. versionadded:: 1.14
|
1854 |
+
|
1855 |
+
Returns
|
1856 |
+
-------
|
1857 |
+
rank : (...) array_like
|
1858 |
+
Rank of A.
|
1859 |
+
|
1860 |
+
Notes
|
1861 |
+
-----
|
1862 |
+
The default threshold to detect rank deficiency is a test on the magnitude
|
1863 |
+
of the singular values of `A`. By default, we identify singular values less
|
1864 |
+
than ``S.max() * max(M, N) * eps`` as indicating rank deficiency (with
|
1865 |
+
the symbols defined above). This is the algorithm MATLAB uses [1]. It also
|
1866 |
+
appears in *Numerical recipes* in the discussion of SVD solutions for linear
|
1867 |
+
least squares [2].
|
1868 |
+
|
1869 |
+
This default threshold is designed to detect rank deficiency accounting for
|
1870 |
+
the numerical errors of the SVD computation. Imagine that there is a column
|
1871 |
+
in `A` that is an exact (in floating point) linear combination of other
|
1872 |
+
columns in `A`. Computing the SVD on `A` will not produce a singular value
|
1873 |
+
exactly equal to 0 in general: any difference of the smallest SVD value from
|
1874 |
+
0 will be caused by numerical imprecision in the calculation of the SVD.
|
1875 |
+
Our threshold for small SVD values takes this numerical imprecision into
|
1876 |
+
account, and the default threshold will detect such numerical rank
|
1877 |
+
deficiency. The threshold may declare a matrix `A` rank deficient even if
|
1878 |
+
the linear combination of some columns of `A` is not exactly equal to
|
1879 |
+
another column of `A` but only numerically very close to another column of
|
1880 |
+
`A`.
|
1881 |
+
|
1882 |
+
We chose our default threshold because it is in wide use. Other thresholds
|
1883 |
+
are possible. For example, elsewhere in the 2007 edition of *Numerical
|
1884 |
+
recipes* there is an alternative threshold of ``S.max() *
|
1885 |
+
np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
|
1886 |
+
this threshold as being based on "expected roundoff error" (p 71).
|
1887 |
+
|
1888 |
+
The thresholds above deal with floating point roundoff error in the
|
1889 |
+
calculation of the SVD. However, you may have more information about the
|
1890 |
+
sources of error in `A` that would make you consider other tolerance values
|
1891 |
+
to detect *effective* rank deficiency. The most useful measure of the
|
1892 |
+
tolerance depends on the operations you intend to use on your matrix. For
|
1893 |
+
example, if your data come from uncertain measurements with uncertainties
|
1894 |
+
greater than floating point epsilon, choosing a tolerance near that
|
1895 |
+
uncertainty may be preferable. The tolerance may be absolute if the
|
1896 |
+
uncertainties are absolute rather than relative.
|
1897 |
+
|
1898 |
+
References
|
1899 |
+
----------
|
1900 |
+
.. [1] MATLAB reference documentation, "Rank"
|
1901 |
+
https://www.mathworks.com/help/techdoc/ref/rank.html
|
1902 |
+
.. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
|
1903 |
+
"Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
|
1904 |
+
page 795.
|
1905 |
+
|
1906 |
+
Examples
|
1907 |
+
--------
|
1908 |
+
>>> from numpy.linalg import matrix_rank
|
1909 |
+
>>> matrix_rank(np.eye(4)) # Full rank matrix
|
1910 |
+
4
|
1911 |
+
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
|
1912 |
+
>>> matrix_rank(I)
|
1913 |
+
3
|
1914 |
+
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
|
1915 |
+
1
|
1916 |
+
>>> matrix_rank(np.zeros((4,)))
|
1917 |
+
0
|
1918 |
+
"""
|
1919 |
+
A = asarray(A)
|
1920 |
+
if A.ndim < 2:
|
1921 |
+
return int(not all(A==0))
|
1922 |
+
S = svd(A, compute_uv=False, hermitian=hermitian)
|
1923 |
+
if tol is None:
|
1924 |
+
tol = S.max(axis=-1, keepdims=True) * max(A.shape[-2:]) * finfo(S.dtype).eps
|
1925 |
+
else:
|
1926 |
+
tol = asarray(tol)[..., newaxis]
|
1927 |
+
return count_nonzero(S > tol, axis=-1)
|
1928 |
+
|
1929 |
+
|
1930 |
+
# Generalized inverse
|
1931 |
+
|
1932 |
+
def _pinv_dispatcher(a, rcond=None, hermitian=None):
|
1933 |
+
return (a,)
|
1934 |
+
|
1935 |
+
|
1936 |
+
@array_function_dispatch(_pinv_dispatcher)
|
1937 |
+
def pinv(a, rcond=1e-15, hermitian=False):
|
1938 |
+
"""
|
1939 |
+
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
|
1940 |
+
|
1941 |
+
Calculate the generalized inverse of a matrix using its
|
1942 |
+
singular-value decomposition (SVD) and including all
|
1943 |
+
*large* singular values.
|
1944 |
+
|
1945 |
+
.. versionchanged:: 1.14
|
1946 |
+
Can now operate on stacks of matrices
|
1947 |
+
|
1948 |
+
Parameters
|
1949 |
+
----------
|
1950 |
+
a : (..., M, N) array_like
|
1951 |
+
Matrix or stack of matrices to be pseudo-inverted.
|
1952 |
+
rcond : (...) array_like of float
|
1953 |
+
Cutoff for small singular values.
|
1954 |
+
Singular values less than or equal to
|
1955 |
+
``rcond * largest_singular_value`` are set to zero.
|
1956 |
+
Broadcasts against the stack of matrices.
|
1957 |
+
hermitian : bool, optional
|
1958 |
+
If True, `a` is assumed to be Hermitian (symmetric if real-valued),
|
1959 |
+
enabling a more efficient method for finding singular values.
|
1960 |
+
Defaults to False.
|
1961 |
+
|
1962 |
+
.. versionadded:: 1.17.0
|
1963 |
+
|
1964 |
+
Returns
|
1965 |
+
-------
|
1966 |
+
B : (..., N, M) ndarray
|
1967 |
+
The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
|
1968 |
+
is `B`.
|
1969 |
+
|
1970 |
+
Raises
|
1971 |
+
------
|
1972 |
+
LinAlgError
|
1973 |
+
If the SVD computation does not converge.
|
1974 |
+
|
1975 |
+
See Also
|
1976 |
+
--------
|
1977 |
+
scipy.linalg.pinv : Similar function in SciPy.
|
1978 |
+
scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
|
1979 |
+
Hermitian matrix.
|
1980 |
+
|
1981 |
+
Notes
|
1982 |
+
-----
|
1983 |
+
The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
|
1984 |
+
defined as: "the matrix that 'solves' [the least-squares problem]
|
1985 |
+
:math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
|
1986 |
+
:math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.
|
1987 |
+
|
1988 |
+
It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
|
1989 |
+
value decomposition of A, then
|
1990 |
+
:math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
|
1991 |
+
orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
|
1992 |
+
of A's so-called singular values, (followed, typically, by
|
1993 |
+
zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
|
1994 |
+
consisting of the reciprocals of A's singular values
|
1995 |
+
(again, followed by zeros). [1]_
|
1996 |
+
|
1997 |
+
References
|
1998 |
+
----------
|
1999 |
+
.. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
|
2000 |
+
FL, Academic Press, Inc., 1980, pp. 139-142.
|
2001 |
+
|
2002 |
+
Examples
|
2003 |
+
--------
|
2004 |
+
The following example checks that ``a * a+ * a == a`` and
|
2005 |
+
``a+ * a * a+ == a+``:
|
2006 |
+
|
2007 |
+
>>> a = np.random.randn(9, 6)
|
2008 |
+
>>> B = np.linalg.pinv(a)
|
2009 |
+
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
|
2010 |
+
True
|
2011 |
+
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
|
2012 |
+
True
|
2013 |
+
|
2014 |
+
"""
|
2015 |
+
a, wrap = _makearray(a)
|
2016 |
+
rcond = asarray(rcond)
|
2017 |
+
if _is_empty_2d(a):
|
2018 |
+
m, n = a.shape[-2:]
|
2019 |
+
res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
|
2020 |
+
return wrap(res)
|
2021 |
+
a = a.conjugate()
|
2022 |
+
u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)
|
2023 |
+
|
2024 |
+
# discard small singular values
|
2025 |
+
cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
|
2026 |
+
large = s > cutoff
|
2027 |
+
s = divide(1, s, where=large, out=s)
|
2028 |
+
s[~large] = 0
|
2029 |
+
|
2030 |
+
res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
|
2031 |
+
return wrap(res)
|
2032 |
+
|
2033 |
+
|
2034 |
+
# Determinant
|
2035 |
+
|
2036 |
+
|
2037 |
+
@array_function_dispatch(_unary_dispatcher)
|
2038 |
+
def slogdet(a):
|
2039 |
+
"""
|
2040 |
+
Compute the sign and (natural) logarithm of the determinant of an array.
|
2041 |
+
|
2042 |
+
If an array has a very small or very large determinant, then a call to
|
2043 |
+
`det` may overflow or underflow. This routine is more robust against such
|
2044 |
+
issues, because it computes the logarithm of the determinant rather than
|
2045 |
+
the determinant itself.
|
2046 |
+
|
2047 |
+
Parameters
|
2048 |
+
----------
|
2049 |
+
a : (..., M, M) array_like
|
2050 |
+
Input array, has to be a square 2-D array.
|
2051 |
+
|
2052 |
+
Returns
|
2053 |
+
-------
|
2054 |
+
A namedtuple with the following attributes:
|
2055 |
+
|
2056 |
+
sign : (...) array_like
|
2057 |
+
A number representing the sign of the determinant. For a real matrix,
|
2058 |
+
this is 1, 0, or -1. For a complex matrix, this is a complex number
|
2059 |
+
with absolute value 1 (i.e., it is on the unit circle), or else 0.
|
2060 |
+
logabsdet : (...) array_like
|
2061 |
+
The natural log of the absolute value of the determinant.
|
2062 |
+
|
2063 |
+
If the determinant is zero, then `sign` will be 0 and `logabsdet` will be
|
2064 |
+
-Inf. In all cases, the determinant is equal to ``sign * np.exp(logabsdet)``.
|
2065 |
+
|
2066 |
+
See Also
|
2067 |
+
--------
|
2068 |
+
det
|
2069 |
+
|
2070 |
+
Notes
|
2071 |
+
-----
|
2072 |
+
|
2073 |
+
.. versionadded:: 1.8.0
|
2074 |
+
|
2075 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
2076 |
+
details.
|
2077 |
+
|
2078 |
+
.. versionadded:: 1.6.0
|
2079 |
+
|
2080 |
+
The determinant is computed via LU factorization using the LAPACK
|
2081 |
+
routine ``z/dgetrf``.
|
2082 |
+
|
2083 |
+
|
2084 |
+
Examples
|
2085 |
+
--------
|
2086 |
+
The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:
|
2087 |
+
|
2088 |
+
>>> a = np.array([[1, 2], [3, 4]])
|
2089 |
+
>>> (sign, logabsdet) = np.linalg.slogdet(a)
|
2090 |
+
>>> (sign, logabsdet)
|
2091 |
+
(-1, 0.69314718055994529) # may vary
|
2092 |
+
>>> sign * np.exp(logabsdet)
|
2093 |
+
-2.0
|
2094 |
+
|
2095 |
+
Computing log-determinants for a stack of matrices:
|
2096 |
+
|
2097 |
+
>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
|
2098 |
+
>>> a.shape
|
2099 |
+
(3, 2, 2)
|
2100 |
+
>>> sign, logabsdet = np.linalg.slogdet(a)
|
2101 |
+
>>> (sign, logabsdet)
|
2102 |
+
(array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154]))
|
2103 |
+
>>> sign * np.exp(logabsdet)
|
2104 |
+
array([-2., -3., -8.])
|
2105 |
+
|
2106 |
+
This routine succeeds where ordinary `det` does not:
|
2107 |
+
|
2108 |
+
>>> np.linalg.det(np.eye(500) * 0.1)
|
2109 |
+
0.0
|
2110 |
+
>>> np.linalg.slogdet(np.eye(500) * 0.1)
|
2111 |
+
(1, -1151.2925464970228)
|
2112 |
+
|
2113 |
+
"""
|
2114 |
+
a = asarray(a)
|
2115 |
+
_assert_stacked_2d(a)
|
2116 |
+
_assert_stacked_square(a)
|
2117 |
+
t, result_t = _commonType(a)
|
2118 |
+
real_t = _realType(result_t)
|
2119 |
+
signature = 'D->Dd' if isComplexType(t) else 'd->dd'
|
2120 |
+
sign, logdet = _umath_linalg.slogdet(a, signature=signature)
|
2121 |
+
sign = sign.astype(result_t, copy=False)
|
2122 |
+
logdet = logdet.astype(real_t, copy=False)
|
2123 |
+
return SlogdetResult(sign, logdet)
|
2124 |
+
|
2125 |
+
|
2126 |
+
@array_function_dispatch(_unary_dispatcher)
|
2127 |
+
def det(a):
|
2128 |
+
"""
|
2129 |
+
Compute the determinant of an array.
|
2130 |
+
|
2131 |
+
Parameters
|
2132 |
+
----------
|
2133 |
+
a : (..., M, M) array_like
|
2134 |
+
Input array to compute determinants for.
|
2135 |
+
|
2136 |
+
Returns
|
2137 |
+
-------
|
2138 |
+
det : (...) array_like
|
2139 |
+
Determinant of `a`.
|
2140 |
+
|
2141 |
+
See Also
|
2142 |
+
--------
|
2143 |
+
slogdet : Another way to represent the determinant, more suitable
|
2144 |
+
for large matrices where underflow/overflow may occur.
|
2145 |
+
scipy.linalg.det : Similar function in SciPy.
|
2146 |
+
|
2147 |
+
Notes
|
2148 |
+
-----
|
2149 |
+
|
2150 |
+
.. versionadded:: 1.8.0
|
2151 |
+
|
2152 |
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
|
2153 |
+
details.
|
2154 |
+
|
2155 |
+
The determinant is computed via LU factorization using the LAPACK
|
2156 |
+
routine ``z/dgetrf``.
|
2157 |
+
|
2158 |
+
Examples
|
2159 |
+
--------
|
2160 |
+
The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:
|
2161 |
+
|
2162 |
+
>>> a = np.array([[1, 2], [3, 4]])
|
2163 |
+
>>> np.linalg.det(a)
|
2164 |
+
-2.0 # may vary
|
2165 |
+
|
2166 |
+
Computing determinants for a stack of matrices:
|
2167 |
+
|
2168 |
+
>>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
|
2169 |
+
>>> a.shape
|
2170 |
+
(3, 2, 2)
|
2171 |
+
>>> np.linalg.det(a)
|
2172 |
+
array([-2., -3., -8.])
|
2173 |
+
|
2174 |
+
"""
|
2175 |
+
a = asarray(a)
|
2176 |
+
_assert_stacked_2d(a)
|
2177 |
+
_assert_stacked_square(a)
|
2178 |
+
t, result_t = _commonType(a)
|
2179 |
+
signature = 'D->D' if isComplexType(t) else 'd->d'
|
2180 |
+
r = _umath_linalg.det(a, signature=signature)
|
2181 |
+
r = r.astype(result_t, copy=False)
|
2182 |
+
return r
|
2183 |
+
|
2184 |
+
|
2185 |
+
# Linear Least Squares
|
2186 |
+
|
2187 |
+
def _lstsq_dispatcher(a, b, rcond=None):
|
2188 |
+
return (a, b)
|
2189 |
+
|
2190 |
+
|
2191 |
+
@array_function_dispatch(_lstsq_dispatcher)
|
2192 |
+
def lstsq(a, b, rcond="warn"):
|
2193 |
+
r"""
|
2194 |
+
Return the least-squares solution to a linear matrix equation.
|
2195 |
+
|
2196 |
+
Computes the vector `x` that approximately solves the equation
|
2197 |
+
``a @ x = b``. The equation may be under-, well-, or over-determined
|
2198 |
+
(i.e., the number of linearly independent rows of `a` can be less than,
|
2199 |
+
equal to, or greater than its number of linearly independent columns).
|
2200 |
+
If `a` is square and of full rank, then `x` (but for round-off error)
|
2201 |
+
is the "exact" solution of the equation. Else, `x` minimizes the
|
2202 |
+
Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing
|
2203 |
+
solutions, the one with the smallest 2-norm :math:`||x||` is returned.
|
2204 |
+
|
2205 |
+
Parameters
|
2206 |
+
----------
|
2207 |
+
a : (M, N) array_like
|
2208 |
+
"Coefficient" matrix.
|
2209 |
+
b : {(M,), (M, K)} array_like
|
2210 |
+
Ordinate or "dependent variable" values. If `b` is two-dimensional,
|
2211 |
+
the least-squares solution is calculated for each of the `K` columns
|
2212 |
+
of `b`.
|
2213 |
+
rcond : float, optional
|
2214 |
+
Cut-off ratio for small singular values of `a`.
|
2215 |
+
For the purposes of rank determination, singular values are treated
|
2216 |
+
as zero if they are smaller than `rcond` times the largest singular
|
2217 |
+
value of `a`.
|
2218 |
+
|
2219 |
+
.. versionchanged:: 1.14.0
|
2220 |
+
If not set, a FutureWarning is given. The previous default
|
2221 |
+
of ``-1`` will use the machine precision as `rcond` parameter,
|
2222 |
+
the new default will use the machine precision times `max(M, N)`.
|
2223 |
+
To silence the warning and use the new default, use ``rcond=None``,
|
2224 |
+
to keep using the old behavior, use ``rcond=-1``.
|
2225 |
+
|
2226 |
+
Returns
|
2227 |
+
-------
|
2228 |
+
x : {(N,), (N, K)} ndarray
|
2229 |
+
Least-squares solution. If `b` is two-dimensional,
|
2230 |
+
the solutions are in the `K` columns of `x`.
|
2231 |
+
residuals : {(1,), (K,), (0,)} ndarray
|
2232 |
+
Sums of squared residuals: Squared Euclidean 2-norm for each column in
|
2233 |
+
``b - a @ x``.
|
2234 |
+
If the rank of `a` is < N or M <= N, this is an empty array.
|
2235 |
+
If `b` is 1-dimensional, this is a (1,) shape array.
|
2236 |
+
Otherwise the shape is (K,).
|
2237 |
+
rank : int
|
2238 |
+
Rank of matrix `a`.
|
2239 |
+
s : (min(M, N),) ndarray
|
2240 |
+
Singular values of `a`.
|
2241 |
+
|
2242 |
+
Raises
|
2243 |
+
------
|
2244 |
+
LinAlgError
|
2245 |
+
If computation does not converge.
|
2246 |
+
|
2247 |
+
See Also
|
2248 |
+
--------
|
2249 |
+
scipy.linalg.lstsq : Similar function in SciPy.
|
2250 |
+
|
2251 |
+
Notes
|
2252 |
+
-----
|
2253 |
+
If `b` is a matrix, then all array results are returned as matrices.
|
2254 |
+
|
2255 |
+
Examples
|
2256 |
+
--------
|
2257 |
+
Fit a line, ``y = mx + c``, through some noisy data-points:
|
2258 |
+
|
2259 |
+
>>> x = np.array([0, 1, 2, 3])
|
2260 |
+
>>> y = np.array([-1, 0.2, 0.9, 2.1])
|
2261 |
+
|
2262 |
+
By examining the coefficients, we see that the line should have a
|
2263 |
+
gradient of roughly 1 and cut the y-axis at, more or less, -1.
|
2264 |
+
|
2265 |
+
We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
|
2266 |
+
and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
|
2267 |
+
|
2268 |
+
>>> A = np.vstack([x, np.ones(len(x))]).T
|
2269 |
+
>>> A
|
2270 |
+
array([[ 0., 1.],
|
2271 |
+
[ 1., 1.],
|
2272 |
+
[ 2., 1.],
|
2273 |
+
[ 3., 1.]])
|
2274 |
+
|
2275 |
+
>>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
|
2276 |
+
>>> m, c
|
2277 |
+
(1.0 -0.95) # may vary
|
2278 |
+
|
2279 |
+
Plot the data along with the fitted line:
|
2280 |
+
|
2281 |
+
>>> import matplotlib.pyplot as plt
|
2282 |
+
>>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
|
2283 |
+
>>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
|
2284 |
+
>>> _ = plt.legend()
|
2285 |
+
>>> plt.show()
|
2286 |
+
|
2287 |
+
"""
|
2288 |
+
a, _ = _makearray(a)
|
2289 |
+
b, wrap = _makearray(b)
|
2290 |
+
is_1d = b.ndim == 1
|
2291 |
+
if is_1d:
|
2292 |
+
b = b[:, newaxis]
|
2293 |
+
_assert_2d(a, b)
|
2294 |
+
m, n = a.shape[-2:]
|
2295 |
+
m2, n_rhs = b.shape[-2:]
|
2296 |
+
if m != m2:
|
2297 |
+
raise LinAlgError('Incompatible dimensions')
|
2298 |
+
|
2299 |
+
t, result_t = _commonType(a, b)
|
2300 |
+
result_real_t = _realType(result_t)
|
2301 |
+
|
2302 |
+
# Determine default rcond value
|
2303 |
+
if rcond == "warn":
|
2304 |
+
# 2017-08-19, 1.14.0
|
2305 |
+
warnings.warn("`rcond` parameter will change to the default of "
|
2306 |
+
"machine precision times ``max(M, N)`` where M and N "
|
2307 |
+
"are the input matrix dimensions.\n"
|
2308 |
+
"To use the future default and silence this warning "
|
2309 |
+
"we advise to pass `rcond=None`, to keep using the old, "
|
2310 |
+
"explicitly pass `rcond=-1`.",
|
2311 |
+
FutureWarning, stacklevel=2)
|
2312 |
+
rcond = -1
|
2313 |
+
if rcond is None:
|
2314 |
+
rcond = finfo(t).eps * max(n, m)
|
2315 |
+
|
2316 |
+
if m <= n:
|
2317 |
+
gufunc = _umath_linalg.lstsq_m
|
2318 |
+
else:
|
2319 |
+
gufunc = _umath_linalg.lstsq_n
|
2320 |
+
|
2321 |
+
signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
|
2322 |
+
extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq)
|
2323 |
+
if n_rhs == 0:
|
2324 |
+
# lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis
|
2325 |
+
b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
|
2326 |
+
x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
|
2327 |
+
if m == 0:
|
2328 |
+
x[...] = 0
|
2329 |
+
if n_rhs == 0:
|
2330 |
+
# remove the item we added
|
2331 |
+
x = x[..., :n_rhs]
|
2332 |
+
resids = resids[..., :n_rhs]
|
2333 |
+
|
2334 |
+
# remove the axis we added
|
2335 |
+
if is_1d:
|
2336 |
+
x = x.squeeze(axis=-1)
|
2337 |
+
# we probably should squeeze resids too, but we can't
|
2338 |
+
# without breaking compatibility.
|
2339 |
+
|
2340 |
+
# as documented
|
2341 |
+
if rank != n or m <= n:
|
2342 |
+
resids = array([], result_real_t)
|
2343 |
+
|
2344 |
+
# coerce output arrays
|
2345 |
+
s = s.astype(result_real_t, copy=False)
|
2346 |
+
resids = resids.astype(result_real_t, copy=False)
|
2347 |
+
x = x.astype(result_t, copy=True) # Copying lets the memory in r_parts be freed
|
2348 |
+
return wrap(x), wrap(resids), rank, s
|
2349 |
+
|
2350 |
+
|
2351 |
+
def _multi_svd_norm(x, row_axis, col_axis, op):
|
2352 |
+
"""Compute a function of the singular values of the 2-D matrices in `x`.
|
2353 |
+
|
2354 |
+
This is a private utility function used by `numpy.linalg.norm()`.
|
2355 |
+
|
2356 |
+
Parameters
|
2357 |
+
----------
|
2358 |
+
x : ndarray
|
2359 |
+
row_axis, col_axis : int
|
2360 |
+
The axes of `x` that hold the 2-D matrices.
|
2361 |
+
op : callable
|
2362 |
+
This should be either numpy.amin or `numpy.amax` or `numpy.sum`.
|
2363 |
+
|
2364 |
+
Returns
|
2365 |
+
-------
|
2366 |
+
result : float or ndarray
|
2367 |
+
If `x` is 2-D, the return values is a float.
|
2368 |
+
Otherwise, it is an array with ``x.ndim - 2`` dimensions.
|
2369 |
+
The return values are either the minimum or maximum or sum of the
|
2370 |
+
singular values of the matrices, depending on whether `op`
|
2371 |
+
is `numpy.amin` or `numpy.amax` or `numpy.sum`.
|
2372 |
+
|
2373 |
+
"""
|
2374 |
+
y = moveaxis(x, (row_axis, col_axis), (-2, -1))
|
2375 |
+
result = op(svd(y, compute_uv=False), axis=-1)
|
2376 |
+
return result
|
2377 |
+
|
2378 |
+
|
2379 |
+
def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
|
2380 |
+
return (x,)
|
2381 |
+
|
2382 |
+
|
2383 |
+
@array_function_dispatch(_norm_dispatcher)
|
2384 |
+
def norm(x, ord=None, axis=None, keepdims=False):
|
2385 |
+
"""
|
2386 |
+
Matrix or vector norm.
|
2387 |
+
|
2388 |
+
This function is able to return one of eight different matrix norms,
|
2389 |
+
or one of an infinite number of vector norms (described below), depending
|
2390 |
+
on the value of the ``ord`` parameter.
|
2391 |
+
|
2392 |
+
Parameters
|
2393 |
+
----------
|
2394 |
+
x : array_like
|
2395 |
+
Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
|
2396 |
+
is None. If both `axis` and `ord` are None, the 2-norm of
|
2397 |
+
``x.ravel`` will be returned.
|
2398 |
+
ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
|
2399 |
+
Order of the norm (see table under ``Notes``). inf means numpy's
|
2400 |
+
`inf` object. The default is None.
|
2401 |
+
axis : {None, int, 2-tuple of ints}, optional.
|
2402 |
+
If `axis` is an integer, it specifies the axis of `x` along which to
|
2403 |
+
compute the vector norms. If `axis` is a 2-tuple, it specifies the
|
2404 |
+
axes that hold 2-D matrices, and the matrix norms of these matrices
|
2405 |
+
are computed. If `axis` is None then either a vector norm (when `x`
|
2406 |
+
is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
|
2407 |
+
is None.
|
2408 |
+
|
2409 |
+
.. versionadded:: 1.8.0
|
2410 |
+
|
2411 |
+
keepdims : bool, optional
|
2412 |
+
If this is set to True, the axes which are normed over are left in the
|
2413 |
+
result as dimensions with size one. With this option the result will
|
2414 |
+
broadcast correctly against the original `x`.
|
2415 |
+
|
2416 |
+
.. versionadded:: 1.10.0
|
2417 |
+
|
2418 |
+
Returns
|
2419 |
+
-------
|
2420 |
+
n : float or ndarray
|
2421 |
+
Norm of the matrix or vector(s).
|
2422 |
+
|
2423 |
+
See Also
|
2424 |
+
--------
|
2425 |
+
scipy.linalg.norm : Similar function in SciPy.
|
2426 |
+
|
2427 |
+
Notes
|
2428 |
+
-----
|
2429 |
+
For values of ``ord < 1``, the result is, strictly speaking, not a
|
2430 |
+
mathematical 'norm', but it may still be useful for various numerical
|
2431 |
+
purposes.
|
2432 |
+
|
2433 |
+
The following norms can be calculated:
|
2434 |
+
|
2435 |
+
===== ============================ ==========================
|
2436 |
+
ord norm for matrices norm for vectors
|
2437 |
+
===== ============================ ==========================
|
2438 |
+
None Frobenius norm 2-norm
|
2439 |
+
'fro' Frobenius norm --
|
2440 |
+
'nuc' nuclear norm --
|
2441 |
+
inf max(sum(abs(x), axis=1)) max(abs(x))
|
2442 |
+
-inf min(sum(abs(x), axis=1)) min(abs(x))
|
2443 |
+
0 -- sum(x != 0)
|
2444 |
+
1 max(sum(abs(x), axis=0)) as below
|
2445 |
+
-1 min(sum(abs(x), axis=0)) as below
|
2446 |
+
2 2-norm (largest sing. value) as below
|
2447 |
+
-2 smallest singular value as below
|
2448 |
+
other -- sum(abs(x)**ord)**(1./ord)
|
2449 |
+
===== ============================ ==========================
|
2450 |
+
|
2451 |
+
The Frobenius norm is given by [1]_:
|
2452 |
+
|
2453 |
+
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
|
2454 |
+
|
2455 |
+
The nuclear norm is the sum of the singular values.
|
2456 |
+
|
2457 |
+
Both the Frobenius and nuclear norm orders are only defined for
|
2458 |
+
matrices and raise a ValueError when ``x.ndim != 2``.
|
2459 |
+
|
2460 |
+
References
|
2461 |
+
----------
|
2462 |
+
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
|
2463 |
+
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
|
2464 |
+
|
2465 |
+
Examples
|
2466 |
+
--------
|
2467 |
+
>>> from numpy import linalg as LA
|
2468 |
+
>>> a = np.arange(9) - 4
|
2469 |
+
>>> a
|
2470 |
+
array([-4, -3, -2, ..., 2, 3, 4])
|
2471 |
+
>>> b = a.reshape((3, 3))
|
2472 |
+
>>> b
|
2473 |
+
array([[-4, -3, -2],
|
2474 |
+
[-1, 0, 1],
|
2475 |
+
[ 2, 3, 4]])
|
2476 |
+
|
2477 |
+
>>> LA.norm(a)
|
2478 |
+
7.745966692414834
|
2479 |
+
>>> LA.norm(b)
|
2480 |
+
7.745966692414834
|
2481 |
+
>>> LA.norm(b, 'fro')
|
2482 |
+
7.745966692414834
|
2483 |
+
>>> LA.norm(a, np.inf)
|
2484 |
+
4.0
|
2485 |
+
>>> LA.norm(b, np.inf)
|
2486 |
+
9.0
|
2487 |
+
>>> LA.norm(a, -np.inf)
|
2488 |
+
0.0
|
2489 |
+
>>> LA.norm(b, -np.inf)
|
2490 |
+
2.0
|
2491 |
+
|
2492 |
+
>>> LA.norm(a, 1)
|
2493 |
+
20.0
|
2494 |
+
>>> LA.norm(b, 1)
|
2495 |
+
7.0
|
2496 |
+
>>> LA.norm(a, -1)
|
2497 |
+
-4.6566128774142013e-010
|
2498 |
+
>>> LA.norm(b, -1)
|
2499 |
+
6.0
|
2500 |
+
>>> LA.norm(a, 2)
|
2501 |
+
7.745966692414834
|
2502 |
+
>>> LA.norm(b, 2)
|
2503 |
+
7.3484692283495345
|
2504 |
+
|
2505 |
+
>>> LA.norm(a, -2)
|
2506 |
+
0.0
|
2507 |
+
>>> LA.norm(b, -2)
|
2508 |
+
1.8570331885190563e-016 # may vary
|
2509 |
+
>>> LA.norm(a, 3)
|
2510 |
+
5.8480354764257312 # may vary
|
2511 |
+
>>> LA.norm(a, -3)
|
2512 |
+
0.0
|
2513 |
+
|
2514 |
+
Using the `axis` argument to compute vector norms:
|
2515 |
+
|
2516 |
+
>>> c = np.array([[ 1, 2, 3],
|
2517 |
+
... [-1, 1, 4]])
|
2518 |
+
>>> LA.norm(c, axis=0)
|
2519 |
+
array([ 1.41421356, 2.23606798, 5. ])
|
2520 |
+
>>> LA.norm(c, axis=1)
|
2521 |
+
array([ 3.74165739, 4.24264069])
|
2522 |
+
>>> LA.norm(c, ord=1, axis=1)
|
2523 |
+
array([ 6., 6.])
|
2524 |
+
|
2525 |
+
Using the `axis` argument to compute matrix norms:
|
2526 |
+
|
2527 |
+
>>> m = np.arange(8).reshape(2,2,2)
|
2528 |
+
>>> LA.norm(m, axis=(1,2))
|
2529 |
+
array([ 3.74165739, 11.22497216])
|
2530 |
+
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
|
2531 |
+
(3.7416573867739413, 11.224972160321824)
|
2532 |
+
|
2533 |
+
"""
|
2534 |
+
x = asarray(x)
|
2535 |
+
|
2536 |
+
if not issubclass(x.dtype.type, (inexact, object_)):
|
2537 |
+
x = x.astype(float)
|
2538 |
+
|
2539 |
+
# Immediately handle some default, simple, fast, and common cases.
|
2540 |
+
if axis is None:
|
2541 |
+
ndim = x.ndim
|
2542 |
+
if ((ord is None) or
|
2543 |
+
(ord in ('f', 'fro') and ndim == 2) or
|
2544 |
+
(ord == 2 and ndim == 1)):
|
2545 |
+
|
2546 |
+
x = x.ravel(order='K')
|
2547 |
+
if isComplexType(x.dtype.type):
|
2548 |
+
x_real = x.real
|
2549 |
+
x_imag = x.imag
|
2550 |
+
sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag)
|
2551 |
+
else:
|
2552 |
+
sqnorm = x.dot(x)
|
2553 |
+
ret = sqrt(sqnorm)
|
2554 |
+
if keepdims:
|
2555 |
+
ret = ret.reshape(ndim*[1])
|
2556 |
+
return ret
|
2557 |
+
|
2558 |
+
# Normalize the `axis` argument to a tuple.
|
2559 |
+
nd = x.ndim
|
2560 |
+
if axis is None:
|
2561 |
+
axis = tuple(range(nd))
|
2562 |
+
elif not isinstance(axis, tuple):
|
2563 |
+
try:
|
2564 |
+
axis = int(axis)
|
2565 |
+
except Exception as e:
|
2566 |
+
raise TypeError("'axis' must be None, an integer or a tuple of integers") from e
|
2567 |
+
axis = (axis,)
|
2568 |
+
|
2569 |
+
if len(axis) == 1:
|
2570 |
+
if ord == Inf:
|
2571 |
+
return abs(x).max(axis=axis, keepdims=keepdims)
|
2572 |
+
elif ord == -Inf:
|
2573 |
+
return abs(x).min(axis=axis, keepdims=keepdims)
|
2574 |
+
elif ord == 0:
|
2575 |
+
# Zero norm
|
2576 |
+
return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
|
2577 |
+
elif ord == 1:
|
2578 |
+
# special case for speedup
|
2579 |
+
return add.reduce(abs(x), axis=axis, keepdims=keepdims)
|
2580 |
+
elif ord is None or ord == 2:
|
2581 |
+
# special case for speedup
|
2582 |
+
s = (x.conj() * x).real
|
2583 |
+
return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
|
2584 |
+
# None of the str-type keywords for ord ('fro', 'nuc')
|
2585 |
+
# are valid for vectors
|
2586 |
+
elif isinstance(ord, str):
|
2587 |
+
raise ValueError(f"Invalid norm order '{ord}' for vectors")
|
2588 |
+
else:
|
2589 |
+
absx = abs(x)
|
2590 |
+
absx **= ord
|
2591 |
+
ret = add.reduce(absx, axis=axis, keepdims=keepdims)
|
2592 |
+
ret **= reciprocal(ord, dtype=ret.dtype)
|
2593 |
+
return ret
|
2594 |
+
elif len(axis) == 2:
|
2595 |
+
row_axis, col_axis = axis
|
2596 |
+
row_axis = normalize_axis_index(row_axis, nd)
|
2597 |
+
col_axis = normalize_axis_index(col_axis, nd)
|
2598 |
+
if row_axis == col_axis:
|
2599 |
+
raise ValueError('Duplicate axes given.')
|
2600 |
+
if ord == 2:
|
2601 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, amax)
|
2602 |
+
elif ord == -2:
|
2603 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, amin)
|
2604 |
+
elif ord == 1:
|
2605 |
+
if col_axis > row_axis:
|
2606 |
+
col_axis -= 1
|
2607 |
+
ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
|
2608 |
+
elif ord == Inf:
|
2609 |
+
if row_axis > col_axis:
|
2610 |
+
row_axis -= 1
|
2611 |
+
ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
|
2612 |
+
elif ord == -1:
|
2613 |
+
if col_axis > row_axis:
|
2614 |
+
col_axis -= 1
|
2615 |
+
ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
|
2616 |
+
elif ord == -Inf:
|
2617 |
+
if row_axis > col_axis:
|
2618 |
+
row_axis -= 1
|
2619 |
+
ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
|
2620 |
+
elif ord in [None, 'fro', 'f']:
|
2621 |
+
ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
|
2622 |
+
elif ord == 'nuc':
|
2623 |
+
ret = _multi_svd_norm(x, row_axis, col_axis, sum)
|
2624 |
+
else:
|
2625 |
+
raise ValueError("Invalid norm order for matrices.")
|
2626 |
+
if keepdims:
|
2627 |
+
ret_shape = list(x.shape)
|
2628 |
+
ret_shape[axis[0]] = 1
|
2629 |
+
ret_shape[axis[1]] = 1
|
2630 |
+
ret = ret.reshape(ret_shape)
|
2631 |
+
return ret
|
2632 |
+
else:
|
2633 |
+
raise ValueError("Improper number of dimensions to norm.")
|
2634 |
+
|
2635 |
+
|
2636 |
+
# multi_dot
|
2637 |
+
|
2638 |
+
def _multidot_dispatcher(arrays, *, out=None):
|
2639 |
+
yield from arrays
|
2640 |
+
yield out
|
2641 |
+
|
2642 |
+
|
2643 |
+
@array_function_dispatch(_multidot_dispatcher)
|
2644 |
+
def multi_dot(arrays, *, out=None):
|
2645 |
+
"""
|
2646 |
+
Compute the dot product of two or more arrays in a single function call,
|
2647 |
+
while automatically selecting the fastest evaluation order.
|
2648 |
+
|
2649 |
+
`multi_dot` chains `numpy.dot` and uses optimal parenthesization
|
2650 |
+
of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
|
2651 |
+
this can speed up the multiplication a lot.
|
2652 |
+
|
2653 |
+
If the first argument is 1-D it is treated as a row vector.
|
2654 |
+
If the last argument is 1-D it is treated as a column vector.
|
2655 |
+
The other arguments must be 2-D.
|
2656 |
+
|
2657 |
+
Think of `multi_dot` as::
|
2658 |
+
|
2659 |
+
def multi_dot(arrays): return functools.reduce(np.dot, arrays)
|
2660 |
+
|
2661 |
+
|
2662 |
+
Parameters
|
2663 |
+
----------
|
2664 |
+
arrays : sequence of array_like
|
2665 |
+
If the first argument is 1-D it is treated as row vector.
|
2666 |
+
If the last argument is 1-D it is treated as column vector.
|
2667 |
+
The other arguments must be 2-D.
|
2668 |
+
out : ndarray, optional
|
2669 |
+
Output argument. This must have the exact kind that would be returned
|
2670 |
+
if it was not used. In particular, it must have the right type, must be
|
2671 |
+
C-contiguous, and its dtype must be the dtype that would be returned
|
2672 |
+
for `dot(a, b)`. This is a performance feature. Therefore, if these
|
2673 |
+
conditions are not met, an exception is raised, instead of attempting
|
2674 |
+
to be flexible.
|
2675 |
+
|
2676 |
+
.. versionadded:: 1.19.0
|
2677 |
+
|
2678 |
+
Returns
|
2679 |
+
-------
|
2680 |
+
output : ndarray
|
2681 |
+
Returns the dot product of the supplied arrays.
|
2682 |
+
|
2683 |
+
See Also
|
2684 |
+
--------
|
2685 |
+
numpy.dot : dot multiplication with two arguments.
|
2686 |
+
|
2687 |
+
References
|
2688 |
+
----------
|
2689 |
+
|
2690 |
+
.. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
|
2691 |
+
.. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
|
2692 |
+
|
2693 |
+
Examples
|
2694 |
+
--------
|
2695 |
+
`multi_dot` allows you to write::
|
2696 |
+
|
2697 |
+
>>> from numpy.linalg import multi_dot
|
2698 |
+
>>> # Prepare some data
|
2699 |
+
>>> A = np.random.random((10000, 100))
|
2700 |
+
>>> B = np.random.random((100, 1000))
|
2701 |
+
>>> C = np.random.random((1000, 5))
|
2702 |
+
>>> D = np.random.random((5, 333))
|
2703 |
+
>>> # the actual dot multiplication
|
2704 |
+
>>> _ = multi_dot([A, B, C, D])
|
2705 |
+
|
2706 |
+
instead of::
|
2707 |
+
|
2708 |
+
>>> _ = np.dot(np.dot(np.dot(A, B), C), D)
|
2709 |
+
>>> # or
|
2710 |
+
>>> _ = A.dot(B).dot(C).dot(D)
|
2711 |
+
|
2712 |
+
Notes
|
2713 |
+
-----
|
2714 |
+
The cost for a matrix multiplication can be calculated with the
|
2715 |
+
following function::
|
2716 |
+
|
2717 |
+
def cost(A, B):
|
2718 |
+
return A.shape[0] * A.shape[1] * B.shape[1]
|
2719 |
+
|
2720 |
+
Assume we have three matrices
|
2721 |
+
:math:`A_{10x100}, B_{100x5}, C_{5x50}`.
|
2722 |
+
|
2723 |
+
The costs for the two different parenthesizations are as follows::
|
2724 |
+
|
2725 |
+
cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
|
2726 |
+
cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000
|
2727 |
+
|
2728 |
+
"""
|
2729 |
+
n = len(arrays)
|
2730 |
+
# optimization only makes sense for len(arrays) > 2
|
2731 |
+
if n < 2:
|
2732 |
+
raise ValueError("Expecting at least two arrays.")
|
2733 |
+
elif n == 2:
|
2734 |
+
return dot(arrays[0], arrays[1], out=out)
|
2735 |
+
|
2736 |
+
arrays = [asanyarray(a) for a in arrays]
|
2737 |
+
|
2738 |
+
# save original ndim to reshape the result array into the proper form later
|
2739 |
+
ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
|
2740 |
+
# Explicitly convert vectors to 2D arrays to keep the logic of the internal
|
2741 |
+
# _multi_dot_* functions as simple as possible.
|
2742 |
+
if arrays[0].ndim == 1:
|
2743 |
+
arrays[0] = atleast_2d(arrays[0])
|
2744 |
+
if arrays[-1].ndim == 1:
|
2745 |
+
arrays[-1] = atleast_2d(arrays[-1]).T
|
2746 |
+
_assert_2d(*arrays)
|
2747 |
+
|
2748 |
+
# _multi_dot_three is much faster than _multi_dot_matrix_chain_order
|
2749 |
+
if n == 3:
|
2750 |
+
result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out)
|
2751 |
+
else:
|
2752 |
+
order = _multi_dot_matrix_chain_order(arrays)
|
2753 |
+
result = _multi_dot(arrays, order, 0, n - 1, out=out)
|
2754 |
+
|
2755 |
+
# return proper shape
|
2756 |
+
if ndim_first == 1 and ndim_last == 1:
|
2757 |
+
return result[0, 0] # scalar
|
2758 |
+
elif ndim_first == 1 or ndim_last == 1:
|
2759 |
+
return result.ravel() # 1-D
|
2760 |
+
else:
|
2761 |
+
return result
|
2762 |
+
|
2763 |
+
|
2764 |
+
def _multi_dot_three(A, B, C, out=None):
|
2765 |
+
"""
|
2766 |
+
Find the best order for three arrays and do the multiplication.
|
2767 |
+
|
2768 |
+
For three arguments `_multi_dot_three` is approximately 15 times faster
|
2769 |
+
than `_multi_dot_matrix_chain_order`
|
2770 |
+
|
2771 |
+
"""
|
2772 |
+
a0, a1b0 = A.shape
|
2773 |
+
b1c0, c1 = C.shape
|
2774 |
+
# cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
|
2775 |
+
cost1 = a0 * b1c0 * (a1b0 + c1)
|
2776 |
+
# cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
|
2777 |
+
cost2 = a1b0 * c1 * (a0 + b1c0)
|
2778 |
+
|
2779 |
+
if cost1 < cost2:
|
2780 |
+
return dot(dot(A, B), C, out=out)
|
2781 |
+
else:
|
2782 |
+
return dot(A, dot(B, C), out=out)
|
2783 |
+
|
2784 |
+
|
2785 |
+
def _multi_dot_matrix_chain_order(arrays, return_costs=False):
|
2786 |
+
"""
|
2787 |
+
Return a np.array that encodes the optimal order of mutiplications.
|
2788 |
+
|
2789 |
+
The optimal order array is then used by `_multi_dot()` to do the
|
2790 |
+
multiplication.
|
2791 |
+
|
2792 |
+
Also return the cost matrix if `return_costs` is `True`
|
2793 |
+
|
2794 |
+
The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
|
2795 |
+
Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices.
|
2796 |
+
|
2797 |
+
cost[i, j] = min([
|
2798 |
+
cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
|
2799 |
+
for k in range(i, j)])
|
2800 |
+
|
2801 |
+
"""
|
2802 |
+
n = len(arrays)
|
2803 |
+
# p stores the dimensions of the matrices
|
2804 |
+
# Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
|
2805 |
+
p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
|
2806 |
+
# m is a matrix of costs of the subproblems
|
2807 |
+
# m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
|
2808 |
+
m = zeros((n, n), dtype=double)
|
2809 |
+
# s is the actual ordering
|
2810 |
+
# s[i, j] is the value of k at which we split the product A_i..A_j
|
2811 |
+
s = empty((n, n), dtype=intp)
|
2812 |
+
|
2813 |
+
for l in range(1, n):
|
2814 |
+
for i in range(n - l):
|
2815 |
+
j = i + l
|
2816 |
+
m[i, j] = Inf
|
2817 |
+
for k in range(i, j):
|
2818 |
+
q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
|
2819 |
+
if q < m[i, j]:
|
2820 |
+
m[i, j] = q
|
2821 |
+
s[i, j] = k # Note that Cormen uses 1-based index
|
2822 |
+
|
2823 |
+
return (s, m) if return_costs else s
|
2824 |
+
|
2825 |
+
|
2826 |
+
def _multi_dot(arrays, order, i, j, out=None):
|
2827 |
+
"""Actually do the multiplication with the given order."""
|
2828 |
+
if i == j:
|
2829 |
+
# the initial call with non-None out should never get here
|
2830 |
+
assert out is None
|
2831 |
+
|
2832 |
+
return arrays[i]
|
2833 |
+
else:
|
2834 |
+
return dot(_multi_dot(arrays, order, i, order[i, j]),
|
2835 |
+
_multi_dot(arrays, order, order[i, j] + 1, j),
|
2836 |
+
out=out)
|
venv/lib/python3.10/site-packages/numpy/linalg/linalg.pyi
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Iterable
|
2 |
+
from typing import (
|
3 |
+
Literal as L,
|
4 |
+
overload,
|
5 |
+
TypeVar,
|
6 |
+
Any,
|
7 |
+
SupportsIndex,
|
8 |
+
SupportsInt,
|
9 |
+
NamedTuple,
|
10 |
+
Generic,
|
11 |
+
)
|
12 |
+
|
13 |
+
from numpy import (
|
14 |
+
generic,
|
15 |
+
floating,
|
16 |
+
complexfloating,
|
17 |
+
int32,
|
18 |
+
float64,
|
19 |
+
complex128,
|
20 |
+
)
|
21 |
+
|
22 |
+
from numpy.linalg import LinAlgError as LinAlgError
|
23 |
+
|
24 |
+
from numpy._typing import (
|
25 |
+
NDArray,
|
26 |
+
ArrayLike,
|
27 |
+
_ArrayLikeInt_co,
|
28 |
+
_ArrayLikeFloat_co,
|
29 |
+
_ArrayLikeComplex_co,
|
30 |
+
_ArrayLikeTD64_co,
|
31 |
+
_ArrayLikeObject_co,
|
32 |
+
)
|
33 |
+
|
34 |
+
_T = TypeVar("_T")
|
35 |
+
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
36 |
+
_SCT = TypeVar("_SCT", bound=generic, covariant=True)
|
37 |
+
_SCT2 = TypeVar("_SCT2", bound=generic, covariant=True)
|
38 |
+
|
39 |
+
_2Tuple = tuple[_T, _T]
|
40 |
+
_ModeKind = L["reduced", "complete", "r", "raw"]
|
41 |
+
|
42 |
+
__all__: list[str]
|
43 |
+
|
44 |
+
class EigResult(NamedTuple):
|
45 |
+
eigenvalues: NDArray[Any]
|
46 |
+
eigenvectors: NDArray[Any]
|
47 |
+
|
48 |
+
class EighResult(NamedTuple):
|
49 |
+
eigenvalues: NDArray[Any]
|
50 |
+
eigenvectors: NDArray[Any]
|
51 |
+
|
52 |
+
class QRResult(NamedTuple):
|
53 |
+
Q: NDArray[Any]
|
54 |
+
R: NDArray[Any]
|
55 |
+
|
56 |
+
class SlogdetResult(NamedTuple):
|
57 |
+
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
|
58 |
+
# a `(x.ndim - 2)`` dimensionl arrays otherwise
|
59 |
+
sign: Any
|
60 |
+
logabsdet: Any
|
61 |
+
|
62 |
+
class SVDResult(NamedTuple):
|
63 |
+
U: NDArray[Any]
|
64 |
+
S: NDArray[Any]
|
65 |
+
Vh: NDArray[Any]
|
66 |
+
|
67 |
+
@overload
|
68 |
+
def tensorsolve(
|
69 |
+
a: _ArrayLikeInt_co,
|
70 |
+
b: _ArrayLikeInt_co,
|
71 |
+
axes: None | Iterable[int] =...,
|
72 |
+
) -> NDArray[float64]: ...
|
73 |
+
@overload
|
74 |
+
def tensorsolve(
|
75 |
+
a: _ArrayLikeFloat_co,
|
76 |
+
b: _ArrayLikeFloat_co,
|
77 |
+
axes: None | Iterable[int] =...,
|
78 |
+
) -> NDArray[floating[Any]]: ...
|
79 |
+
@overload
|
80 |
+
def tensorsolve(
|
81 |
+
a: _ArrayLikeComplex_co,
|
82 |
+
b: _ArrayLikeComplex_co,
|
83 |
+
axes: None | Iterable[int] =...,
|
84 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
85 |
+
|
86 |
+
@overload
|
87 |
+
def solve(
|
88 |
+
a: _ArrayLikeInt_co,
|
89 |
+
b: _ArrayLikeInt_co,
|
90 |
+
) -> NDArray[float64]: ...
|
91 |
+
@overload
|
92 |
+
def solve(
|
93 |
+
a: _ArrayLikeFloat_co,
|
94 |
+
b: _ArrayLikeFloat_co,
|
95 |
+
) -> NDArray[floating[Any]]: ...
|
96 |
+
@overload
|
97 |
+
def solve(
|
98 |
+
a: _ArrayLikeComplex_co,
|
99 |
+
b: _ArrayLikeComplex_co,
|
100 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
101 |
+
|
102 |
+
@overload
|
103 |
+
def tensorinv(
|
104 |
+
a: _ArrayLikeInt_co,
|
105 |
+
ind: int = ...,
|
106 |
+
) -> NDArray[float64]: ...
|
107 |
+
@overload
|
108 |
+
def tensorinv(
|
109 |
+
a: _ArrayLikeFloat_co,
|
110 |
+
ind: int = ...,
|
111 |
+
) -> NDArray[floating[Any]]: ...
|
112 |
+
@overload
|
113 |
+
def tensorinv(
|
114 |
+
a: _ArrayLikeComplex_co,
|
115 |
+
ind: int = ...,
|
116 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
117 |
+
|
118 |
+
@overload
|
119 |
+
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
120 |
+
@overload
|
121 |
+
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
122 |
+
@overload
|
123 |
+
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
124 |
+
|
125 |
+
# TODO: The supported input and output dtypes are dependent on the value of `n`.
|
126 |
+
# For example: `n < 0` always casts integer types to float64
|
127 |
+
def matrix_power(
|
128 |
+
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
129 |
+
n: SupportsIndex,
|
130 |
+
) -> NDArray[Any]: ...
|
131 |
+
|
132 |
+
@overload
|
133 |
+
def cholesky(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
134 |
+
@overload
|
135 |
+
def cholesky(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
136 |
+
@overload
|
137 |
+
def cholesky(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
138 |
+
|
139 |
+
@overload
|
140 |
+
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
|
141 |
+
@overload
|
142 |
+
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
|
143 |
+
@overload
|
144 |
+
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
|
145 |
+
|
146 |
+
@overload
|
147 |
+
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
|
148 |
+
@overload
|
149 |
+
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating[Any]] | NDArray[complexfloating[Any, Any]]: ...
|
150 |
+
@overload
|
151 |
+
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
152 |
+
|
153 |
+
@overload
|
154 |
+
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
|
155 |
+
@overload
|
156 |
+
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating[Any]]: ...
|
157 |
+
|
158 |
+
@overload
|
159 |
+
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
|
160 |
+
@overload
|
161 |
+
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
|
162 |
+
@overload
|
163 |
+
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
|
164 |
+
|
165 |
+
@overload
|
166 |
+
def eigh(
|
167 |
+
a: _ArrayLikeInt_co,
|
168 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
169 |
+
) -> EighResult: ...
|
170 |
+
@overload
|
171 |
+
def eigh(
|
172 |
+
a: _ArrayLikeFloat_co,
|
173 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
174 |
+
) -> EighResult: ...
|
175 |
+
@overload
|
176 |
+
def eigh(
|
177 |
+
a: _ArrayLikeComplex_co,
|
178 |
+
UPLO: L["L", "U", "l", "u"] = ...,
|
179 |
+
) -> EighResult: ...
|
180 |
+
|
181 |
+
@overload
|
182 |
+
def svd(
|
183 |
+
a: _ArrayLikeInt_co,
|
184 |
+
full_matrices: bool = ...,
|
185 |
+
compute_uv: L[True] = ...,
|
186 |
+
hermitian: bool = ...,
|
187 |
+
) -> SVDResult: ...
|
188 |
+
@overload
|
189 |
+
def svd(
|
190 |
+
a: _ArrayLikeFloat_co,
|
191 |
+
full_matrices: bool = ...,
|
192 |
+
compute_uv: L[True] = ...,
|
193 |
+
hermitian: bool = ...,
|
194 |
+
) -> SVDResult: ...
|
195 |
+
@overload
|
196 |
+
def svd(
|
197 |
+
a: _ArrayLikeComplex_co,
|
198 |
+
full_matrices: bool = ...,
|
199 |
+
compute_uv: L[True] = ...,
|
200 |
+
hermitian: bool = ...,
|
201 |
+
) -> SVDResult: ...
|
202 |
+
@overload
|
203 |
+
def svd(
|
204 |
+
a: _ArrayLikeInt_co,
|
205 |
+
full_matrices: bool = ...,
|
206 |
+
compute_uv: L[False] = ...,
|
207 |
+
hermitian: bool = ...,
|
208 |
+
) -> NDArray[float64]: ...
|
209 |
+
@overload
|
210 |
+
def svd(
|
211 |
+
a: _ArrayLikeComplex_co,
|
212 |
+
full_matrices: bool = ...,
|
213 |
+
compute_uv: L[False] = ...,
|
214 |
+
hermitian: bool = ...,
|
215 |
+
) -> NDArray[floating[Any]]: ...
|
216 |
+
|
217 |
+
# TODO: Returns a scalar for 2D arrays and
|
218 |
+
# a `(x.ndim - 2)`` dimensionl array otherwise
|
219 |
+
def cond(x: _ArrayLikeComplex_co, p: None | float | L["fro", "nuc"] = ...) -> Any: ...
|
220 |
+
|
221 |
+
# TODO: Returns `int` for <2D arrays and `intp` otherwise
|
222 |
+
def matrix_rank(
|
223 |
+
A: _ArrayLikeComplex_co,
|
224 |
+
tol: None | _ArrayLikeFloat_co = ...,
|
225 |
+
hermitian: bool = ...,
|
226 |
+
) -> Any: ...
|
227 |
+
|
228 |
+
@overload
|
229 |
+
def pinv(
|
230 |
+
a: _ArrayLikeInt_co,
|
231 |
+
rcond: _ArrayLikeFloat_co = ...,
|
232 |
+
hermitian: bool = ...,
|
233 |
+
) -> NDArray[float64]: ...
|
234 |
+
@overload
|
235 |
+
def pinv(
|
236 |
+
a: _ArrayLikeFloat_co,
|
237 |
+
rcond: _ArrayLikeFloat_co = ...,
|
238 |
+
hermitian: bool = ...,
|
239 |
+
) -> NDArray[floating[Any]]: ...
|
240 |
+
@overload
|
241 |
+
def pinv(
|
242 |
+
a: _ArrayLikeComplex_co,
|
243 |
+
rcond: _ArrayLikeFloat_co = ...,
|
244 |
+
hermitian: bool = ...,
|
245 |
+
) -> NDArray[complexfloating[Any, Any]]: ...
|
246 |
+
|
247 |
+
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
248 |
+
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
249 |
+
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
|
250 |
+
|
251 |
+
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
252 |
+
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
253 |
+
def det(a: _ArrayLikeComplex_co) -> Any: ...
|
254 |
+
|
255 |
+
@overload
|
256 |
+
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: None | float = ...) -> tuple[
|
257 |
+
NDArray[float64],
|
258 |
+
NDArray[float64],
|
259 |
+
int32,
|
260 |
+
NDArray[float64],
|
261 |
+
]: ...
|
262 |
+
@overload
|
263 |
+
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: None | float = ...) -> tuple[
|
264 |
+
NDArray[floating[Any]],
|
265 |
+
NDArray[floating[Any]],
|
266 |
+
int32,
|
267 |
+
NDArray[floating[Any]],
|
268 |
+
]: ...
|
269 |
+
@overload
|
270 |
+
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: None | float = ...) -> tuple[
|
271 |
+
NDArray[complexfloating[Any, Any]],
|
272 |
+
NDArray[floating[Any]],
|
273 |
+
int32,
|
274 |
+
NDArray[floating[Any]],
|
275 |
+
]: ...
|
276 |
+
|
277 |
+
@overload
|
278 |
+
def norm(
|
279 |
+
x: ArrayLike,
|
280 |
+
ord: None | float | L["fro", "nuc"] = ...,
|
281 |
+
axis: None = ...,
|
282 |
+
keepdims: bool = ...,
|
283 |
+
) -> floating[Any]: ...
|
284 |
+
@overload
|
285 |
+
def norm(
|
286 |
+
x: ArrayLike,
|
287 |
+
ord: None | float | L["fro", "nuc"] = ...,
|
288 |
+
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
289 |
+
keepdims: bool = ...,
|
290 |
+
) -> Any: ...
|
291 |
+
|
292 |
+
# TODO: Returns a scalar or array
|
293 |
+
def multi_dot(
|
294 |
+
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
|
295 |
+
*,
|
296 |
+
out: None | NDArray[Any] = ...,
|
297 |
+
) -> Any: ...
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc
ADDED
Binary file (827 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc
ADDED
Binary file (65.5 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc
ADDED
Binary file (4.63 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/test_deprecations.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test deprecation and future warnings.
|
2 |
+
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
from numpy.testing import assert_warns
|
6 |
+
|
7 |
+
|
8 |
+
def test_qr_mode_full_future_warning():
|
9 |
+
"""Check mode='full' FutureWarning.
|
10 |
+
|
11 |
+
In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
|
12 |
+
deprecated. The release date will probably be sometime in the summer
|
13 |
+
of 2013.
|
14 |
+
|
15 |
+
"""
|
16 |
+
a = np.eye(2)
|
17 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
|
18 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
|
19 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
|
20 |
+
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py
ADDED
@@ -0,0 +1,2198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module
|
2 |
+
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import itertools
|
7 |
+
import traceback
|
8 |
+
import textwrap
|
9 |
+
import subprocess
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from numpy import array, single, double, csingle, cdouble, dot, identity, matmul
|
14 |
+
from numpy.core import swapaxes
|
15 |
+
from numpy import multiply, atleast_2d, inf, asarray
|
16 |
+
from numpy import linalg
|
17 |
+
from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
|
18 |
+
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
|
19 |
+
from numpy.testing import (
|
20 |
+
assert_, assert_equal, assert_raises, assert_array_equal,
|
21 |
+
assert_almost_equal, assert_allclose, suppress_warnings,
|
22 |
+
assert_raises_regex, HAS_LAPACK64, IS_WASM
|
23 |
+
)
|
24 |
+
try:
|
25 |
+
import numpy.linalg.lapack_lite
|
26 |
+
except ImportError:
|
27 |
+
# May be broken when numpy was built without BLAS/LAPACK present
|
28 |
+
# If so, ensure we don't break the whole test suite - the `lapack_lite`
|
29 |
+
# submodule should be removed, it's only used in two tests in this file.
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
def consistent_subclass(out, in_):
|
34 |
+
# For ndarray subclass input, our output should have the same subclass
|
35 |
+
# (non-ndarray input gets converted to ndarray).
|
36 |
+
return type(out) is (type(in_) if isinstance(in_, np.ndarray)
|
37 |
+
else np.ndarray)
|
38 |
+
|
39 |
+
|
40 |
+
old_assert_almost_equal = assert_almost_equal
|
41 |
+
|
42 |
+
|
43 |
+
def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
|
44 |
+
if asarray(a).dtype.type in (single, csingle):
|
45 |
+
decimal = single_decimal
|
46 |
+
else:
|
47 |
+
decimal = double_decimal
|
48 |
+
old_assert_almost_equal(a, b, decimal=decimal, **kw)
|
49 |
+
|
50 |
+
|
51 |
+
def get_real_dtype(dtype):
|
52 |
+
return {single: single, double: double,
|
53 |
+
csingle: single, cdouble: double}[dtype]
|
54 |
+
|
55 |
+
|
56 |
+
def get_complex_dtype(dtype):
|
57 |
+
return {single: csingle, double: cdouble,
|
58 |
+
csingle: csingle, cdouble: cdouble}[dtype]
|
59 |
+
|
60 |
+
|
61 |
+
def get_rtol(dtype):
|
62 |
+
# Choose a safe rtol
|
63 |
+
if dtype in (single, csingle):
|
64 |
+
return 1e-5
|
65 |
+
else:
|
66 |
+
return 1e-11
|
67 |
+
|
68 |
+
|
69 |
+
# used to categorize tests
|
70 |
+
all_tags = {
|
71 |
+
'square', 'nonsquare', 'hermitian', # mutually exclusive
|
72 |
+
'generalized', 'size-0', 'strided' # optional additions
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
class LinalgCase:
|
77 |
+
def __init__(self, name, a, b, tags=set()):
|
78 |
+
"""
|
79 |
+
A bundle of arguments to be passed to a test case, with an identifying
|
80 |
+
name, the operands a and b, and a set of tags to filter the tests
|
81 |
+
"""
|
82 |
+
assert_(isinstance(name, str))
|
83 |
+
self.name = name
|
84 |
+
self.a = a
|
85 |
+
self.b = b
|
86 |
+
self.tags = frozenset(tags) # prevent shared tags
|
87 |
+
|
88 |
+
def check(self, do):
|
89 |
+
"""
|
90 |
+
Run the function `do` on this test case, expanding arguments
|
91 |
+
"""
|
92 |
+
do(self.a, self.b, tags=self.tags)
|
93 |
+
|
94 |
+
def __repr__(self):
|
95 |
+
return f'<LinalgCase: {self.name}>'
|
96 |
+
|
97 |
+
|
98 |
+
def apply_tag(tag, cases):
|
99 |
+
"""
|
100 |
+
Add the given tag (a string) to each of the cases (a list of LinalgCase
|
101 |
+
objects)
|
102 |
+
"""
|
103 |
+
assert tag in all_tags, "Invalid tag"
|
104 |
+
for case in cases:
|
105 |
+
case.tags = case.tags | {tag}
|
106 |
+
return cases
|
107 |
+
|
108 |
+
|
109 |
+
#
|
110 |
+
# Base test cases
|
111 |
+
#
|
112 |
+
|
113 |
+
np.random.seed(1234)
|
114 |
+
|
115 |
+
CASES = []
|
116 |
+
|
117 |
+
# square test cases
|
118 |
+
CASES += apply_tag('square', [
|
119 |
+
LinalgCase("single",
|
120 |
+
array([[1., 2.], [3., 4.]], dtype=single),
|
121 |
+
array([2., 1.], dtype=single)),
|
122 |
+
LinalgCase("double",
|
123 |
+
array([[1., 2.], [3., 4.]], dtype=double),
|
124 |
+
array([2., 1.], dtype=double)),
|
125 |
+
LinalgCase("double_2",
|
126 |
+
array([[1., 2.], [3., 4.]], dtype=double),
|
127 |
+
array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
|
128 |
+
LinalgCase("csingle",
|
129 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
|
130 |
+
array([2. + 1j, 1. + 2j], dtype=csingle)),
|
131 |
+
LinalgCase("cdouble",
|
132 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
|
133 |
+
array([2. + 1j, 1. + 2j], dtype=cdouble)),
|
134 |
+
LinalgCase("cdouble_2",
|
135 |
+
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
|
136 |
+
array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
|
137 |
+
LinalgCase("0x0",
|
138 |
+
np.empty((0, 0), dtype=double),
|
139 |
+
np.empty((0,), dtype=double),
|
140 |
+
tags={'size-0'}),
|
141 |
+
LinalgCase("8x8",
|
142 |
+
np.random.rand(8, 8),
|
143 |
+
np.random.rand(8)),
|
144 |
+
LinalgCase("1x1",
|
145 |
+
np.random.rand(1, 1),
|
146 |
+
np.random.rand(1)),
|
147 |
+
LinalgCase("nonarray",
|
148 |
+
[[1, 2], [3, 4]],
|
149 |
+
[2, 1]),
|
150 |
+
])
|
151 |
+
|
152 |
+
# non-square test-cases
|
153 |
+
CASES += apply_tag('nonsquare', [
|
154 |
+
LinalgCase("single_nsq_1",
|
155 |
+
array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
|
156 |
+
array([2., 1.], dtype=single)),
|
157 |
+
LinalgCase("single_nsq_2",
|
158 |
+
array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
|
159 |
+
array([2., 1., 3.], dtype=single)),
|
160 |
+
LinalgCase("double_nsq_1",
|
161 |
+
array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
|
162 |
+
array([2., 1.], dtype=double)),
|
163 |
+
LinalgCase("double_nsq_2",
|
164 |
+
array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
|
165 |
+
array([2., 1., 3.], dtype=double)),
|
166 |
+
LinalgCase("csingle_nsq_1",
|
167 |
+
array(
|
168 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
|
169 |
+
array([2. + 1j, 1. + 2j], dtype=csingle)),
|
170 |
+
LinalgCase("csingle_nsq_2",
|
171 |
+
array(
|
172 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
|
173 |
+
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
|
174 |
+
LinalgCase("cdouble_nsq_1",
|
175 |
+
array(
|
176 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
|
177 |
+
array([2. + 1j, 1. + 2j], dtype=cdouble)),
|
178 |
+
LinalgCase("cdouble_nsq_2",
|
179 |
+
array(
|
180 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
|
181 |
+
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
|
182 |
+
LinalgCase("cdouble_nsq_1_2",
|
183 |
+
array(
|
184 |
+
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
|
185 |
+
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
|
186 |
+
LinalgCase("cdouble_nsq_2_2",
|
187 |
+
array(
|
188 |
+
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
|
189 |
+
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
|
190 |
+
LinalgCase("8x11",
|
191 |
+
np.random.rand(8, 11),
|
192 |
+
np.random.rand(8)),
|
193 |
+
LinalgCase("1x5",
|
194 |
+
np.random.rand(1, 5),
|
195 |
+
np.random.rand(1)),
|
196 |
+
LinalgCase("5x1",
|
197 |
+
np.random.rand(5, 1),
|
198 |
+
np.random.rand(5)),
|
199 |
+
LinalgCase("0x4",
|
200 |
+
np.random.rand(0, 4),
|
201 |
+
np.random.rand(0),
|
202 |
+
tags={'size-0'}),
|
203 |
+
LinalgCase("4x0",
|
204 |
+
np.random.rand(4, 0),
|
205 |
+
np.random.rand(4),
|
206 |
+
tags={'size-0'}),
|
207 |
+
])
|
208 |
+
|
209 |
+
# hermitian test-cases
|
210 |
+
CASES += apply_tag('hermitian', [
|
211 |
+
LinalgCase("hsingle",
|
212 |
+
array([[1., 2.], [2., 1.]], dtype=single),
|
213 |
+
None),
|
214 |
+
LinalgCase("hdouble",
|
215 |
+
array([[1., 2.], [2., 1.]], dtype=double),
|
216 |
+
None),
|
217 |
+
LinalgCase("hcsingle",
|
218 |
+
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
|
219 |
+
None),
|
220 |
+
LinalgCase("hcdouble",
|
221 |
+
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
|
222 |
+
None),
|
223 |
+
LinalgCase("hempty",
|
224 |
+
np.empty((0, 0), dtype=double),
|
225 |
+
None,
|
226 |
+
tags={'size-0'}),
|
227 |
+
LinalgCase("hnonarray",
|
228 |
+
[[1, 2], [2, 1]],
|
229 |
+
None),
|
230 |
+
LinalgCase("matrix_b_only",
|
231 |
+
array([[1., 2.], [2., 1.]]),
|
232 |
+
None),
|
233 |
+
LinalgCase("hmatrix_1x1",
|
234 |
+
np.random.rand(1, 1),
|
235 |
+
None),
|
236 |
+
])
|
237 |
+
|
238 |
+
|
239 |
+
#
|
240 |
+
# Gufunc test cases
|
241 |
+
#
|
242 |
+
def _make_generalized_cases():
|
243 |
+
new_cases = []
|
244 |
+
|
245 |
+
for case in CASES:
|
246 |
+
if not isinstance(case.a, np.ndarray):
|
247 |
+
continue
|
248 |
+
|
249 |
+
a = np.array([case.a, 2 * case.a, 3 * case.a])
|
250 |
+
if case.b is None:
|
251 |
+
b = None
|
252 |
+
else:
|
253 |
+
b = np.array([case.b, 7 * case.b, 6 * case.b])
|
254 |
+
new_case = LinalgCase(case.name + "_tile3", a, b,
|
255 |
+
tags=case.tags | {'generalized'})
|
256 |
+
new_cases.append(new_case)
|
257 |
+
|
258 |
+
a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
|
259 |
+
if case.b is None:
|
260 |
+
b = None
|
261 |
+
else:
|
262 |
+
b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
|
263 |
+
new_case = LinalgCase(case.name + "_tile213", a, b,
|
264 |
+
tags=case.tags | {'generalized'})
|
265 |
+
new_cases.append(new_case)
|
266 |
+
|
267 |
+
return new_cases
|
268 |
+
|
269 |
+
|
270 |
+
CASES += _make_generalized_cases()
|
271 |
+
|
272 |
+
|
273 |
+
#
|
274 |
+
# Generate stride combination variations of the above
|
275 |
+
#
|
276 |
+
def _stride_comb_iter(x):
|
277 |
+
"""
|
278 |
+
Generate cartesian product of strides for all axes
|
279 |
+
"""
|
280 |
+
|
281 |
+
if not isinstance(x, np.ndarray):
|
282 |
+
yield x, "nop"
|
283 |
+
return
|
284 |
+
|
285 |
+
stride_set = [(1,)] * x.ndim
|
286 |
+
stride_set[-1] = (1, 3, -4)
|
287 |
+
if x.ndim > 1:
|
288 |
+
stride_set[-2] = (1, 3, -4)
|
289 |
+
if x.ndim > 2:
|
290 |
+
stride_set[-3] = (1, -4)
|
291 |
+
|
292 |
+
for repeats in itertools.product(*tuple(stride_set)):
|
293 |
+
new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
|
294 |
+
slices = tuple([slice(None, None, repeat) for repeat in repeats])
|
295 |
+
|
296 |
+
# new array with different strides, but same data
|
297 |
+
xi = np.empty(new_shape, dtype=x.dtype)
|
298 |
+
xi.view(np.uint32).fill(0xdeadbeef)
|
299 |
+
xi = xi[slices]
|
300 |
+
xi[...] = x
|
301 |
+
xi = xi.view(x.__class__)
|
302 |
+
assert_(np.all(xi == x))
|
303 |
+
yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
|
304 |
+
|
305 |
+
# generate also zero strides if possible
|
306 |
+
if x.ndim >= 1 and x.shape[-1] == 1:
|
307 |
+
s = list(x.strides)
|
308 |
+
s[-1] = 0
|
309 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
310 |
+
yield xi, "stride_xxx_0"
|
311 |
+
if x.ndim >= 2 and x.shape[-2] == 1:
|
312 |
+
s = list(x.strides)
|
313 |
+
s[-2] = 0
|
314 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
315 |
+
yield xi, "stride_xxx_0_x"
|
316 |
+
if x.ndim >= 2 and x.shape[:-2] == (1, 1):
|
317 |
+
s = list(x.strides)
|
318 |
+
s[-1] = 0
|
319 |
+
s[-2] = 0
|
320 |
+
xi = np.lib.stride_tricks.as_strided(x, strides=s)
|
321 |
+
yield xi, "stride_xxx_0_0"
|
322 |
+
|
323 |
+
|
324 |
+
def _make_strided_cases():
|
325 |
+
new_cases = []
|
326 |
+
for case in CASES:
|
327 |
+
for a, a_label in _stride_comb_iter(case.a):
|
328 |
+
for b, b_label in _stride_comb_iter(case.b):
|
329 |
+
new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
|
330 |
+
tags=case.tags | {'strided'})
|
331 |
+
new_cases.append(new_case)
|
332 |
+
return new_cases
|
333 |
+
|
334 |
+
|
335 |
+
CASES += _make_strided_cases()
|
336 |
+
|
337 |
+
|
338 |
+
#
|
339 |
+
# Test different routines against the above cases
|
340 |
+
#
|
341 |
+
class LinalgTestCase:
|
342 |
+
TEST_CASES = CASES
|
343 |
+
|
344 |
+
def check_cases(self, require=set(), exclude=set()):
|
345 |
+
"""
|
346 |
+
Run func on each of the cases with all of the tags in require, and none
|
347 |
+
of the tags in exclude
|
348 |
+
"""
|
349 |
+
for case in self.TEST_CASES:
|
350 |
+
# filter by require and exclude
|
351 |
+
if case.tags & require != require:
|
352 |
+
continue
|
353 |
+
if case.tags & exclude:
|
354 |
+
continue
|
355 |
+
|
356 |
+
try:
|
357 |
+
case.check(self.do)
|
358 |
+
except Exception as e:
|
359 |
+
msg = f'In test case: {case!r}\n\n'
|
360 |
+
msg += traceback.format_exc()
|
361 |
+
raise AssertionError(msg) from e
|
362 |
+
|
363 |
+
|
364 |
+
class LinalgSquareTestCase(LinalgTestCase):
|
365 |
+
|
366 |
+
def test_sq_cases(self):
|
367 |
+
self.check_cases(require={'square'},
|
368 |
+
exclude={'generalized', 'size-0'})
|
369 |
+
|
370 |
+
def test_empty_sq_cases(self):
|
371 |
+
self.check_cases(require={'square', 'size-0'},
|
372 |
+
exclude={'generalized'})
|
373 |
+
|
374 |
+
|
375 |
+
class LinalgNonsquareTestCase(LinalgTestCase):
|
376 |
+
|
377 |
+
def test_nonsq_cases(self):
|
378 |
+
self.check_cases(require={'nonsquare'},
|
379 |
+
exclude={'generalized', 'size-0'})
|
380 |
+
|
381 |
+
def test_empty_nonsq_cases(self):
|
382 |
+
self.check_cases(require={'nonsquare', 'size-0'},
|
383 |
+
exclude={'generalized'})
|
384 |
+
|
385 |
+
|
386 |
+
class HermitianTestCase(LinalgTestCase):
|
387 |
+
|
388 |
+
def test_herm_cases(self):
|
389 |
+
self.check_cases(require={'hermitian'},
|
390 |
+
exclude={'generalized', 'size-0'})
|
391 |
+
|
392 |
+
def test_empty_herm_cases(self):
|
393 |
+
self.check_cases(require={'hermitian', 'size-0'},
|
394 |
+
exclude={'generalized'})
|
395 |
+
|
396 |
+
|
397 |
+
class LinalgGeneralizedSquareTestCase(LinalgTestCase):
|
398 |
+
|
399 |
+
@pytest.mark.slow
|
400 |
+
def test_generalized_sq_cases(self):
|
401 |
+
self.check_cases(require={'generalized', 'square'},
|
402 |
+
exclude={'size-0'})
|
403 |
+
|
404 |
+
@pytest.mark.slow
|
405 |
+
def test_generalized_empty_sq_cases(self):
|
406 |
+
self.check_cases(require={'generalized', 'square', 'size-0'})
|
407 |
+
|
408 |
+
|
409 |
+
class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
|
410 |
+
|
411 |
+
@pytest.mark.slow
|
412 |
+
def test_generalized_nonsq_cases(self):
|
413 |
+
self.check_cases(require={'generalized', 'nonsquare'},
|
414 |
+
exclude={'size-0'})
|
415 |
+
|
416 |
+
@pytest.mark.slow
|
417 |
+
def test_generalized_empty_nonsq_cases(self):
|
418 |
+
self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
|
419 |
+
|
420 |
+
|
421 |
+
class HermitianGeneralizedTestCase(LinalgTestCase):
|
422 |
+
|
423 |
+
@pytest.mark.slow
|
424 |
+
def test_generalized_herm_cases(self):
|
425 |
+
self.check_cases(require={'generalized', 'hermitian'},
|
426 |
+
exclude={'size-0'})
|
427 |
+
|
428 |
+
@pytest.mark.slow
|
429 |
+
def test_generalized_empty_herm_cases(self):
|
430 |
+
self.check_cases(require={'generalized', 'hermitian', 'size-0'},
|
431 |
+
exclude={'none'})
|
432 |
+
|
433 |
+
|
434 |
+
def dot_generalized(a, b):
|
435 |
+
a = asarray(a)
|
436 |
+
if a.ndim >= 3:
|
437 |
+
if a.ndim == b.ndim:
|
438 |
+
# matrix x matrix
|
439 |
+
new_shape = a.shape[:-1] + b.shape[-1:]
|
440 |
+
elif a.ndim == b.ndim + 1:
|
441 |
+
# matrix x vector
|
442 |
+
new_shape = a.shape[:-1]
|
443 |
+
else:
|
444 |
+
raise ValueError("Not implemented...")
|
445 |
+
r = np.empty(new_shape, dtype=np.common_type(a, b))
|
446 |
+
for c in itertools.product(*map(range, a.shape[:-2])):
|
447 |
+
r[c] = dot(a[c], b[c])
|
448 |
+
return r
|
449 |
+
else:
|
450 |
+
return dot(a, b)
|
451 |
+
|
452 |
+
|
453 |
+
def identity_like_generalized(a):
|
454 |
+
a = asarray(a)
|
455 |
+
if a.ndim >= 3:
|
456 |
+
r = np.empty(a.shape, dtype=a.dtype)
|
457 |
+
r[...] = identity(a.shape[-2])
|
458 |
+
return r
|
459 |
+
else:
|
460 |
+
return identity(a.shape[0])
|
461 |
+
|
462 |
+
|
463 |
+
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
464 |
+
# kept apart from TestSolve for use for testing with matrices.
|
465 |
+
def do(self, a, b, tags):
|
466 |
+
x = linalg.solve(a, b)
|
467 |
+
assert_almost_equal(b, dot_generalized(a, x))
|
468 |
+
assert_(consistent_subclass(x, b))
|
469 |
+
|
470 |
+
|
471 |
+
class TestSolve(SolveCases):
|
472 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
473 |
+
def test_types(self, dtype):
|
474 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
475 |
+
assert_equal(linalg.solve(x, x).dtype, dtype)
|
476 |
+
|
477 |
+
def test_0_size(self):
|
478 |
+
class ArraySubclass(np.ndarray):
|
479 |
+
pass
|
480 |
+
# Test system of 0x0 matrices
|
481 |
+
a = np.arange(8).reshape(2, 2, 2)
|
482 |
+
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
|
483 |
+
|
484 |
+
expected = linalg.solve(a, b)[:, 0:0, :]
|
485 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
|
486 |
+
assert_array_equal(result, expected)
|
487 |
+
assert_(isinstance(result, ArraySubclass))
|
488 |
+
|
489 |
+
# Test errors for non-square and only b's dimension being 0
|
490 |
+
assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
|
491 |
+
assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
|
492 |
+
|
493 |
+
# Test broadcasting error
|
494 |
+
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
|
495 |
+
assert_raises(ValueError, linalg.solve, a, b)
|
496 |
+
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
|
497 |
+
|
498 |
+
# Test zero "single equations" with 0x0 matrices.
|
499 |
+
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
|
500 |
+
expected = linalg.solve(a, b)[:, 0:0]
|
501 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
|
502 |
+
assert_array_equal(result, expected)
|
503 |
+
assert_(isinstance(result, ArraySubclass))
|
504 |
+
|
505 |
+
b = np.arange(3).reshape(1, 3)
|
506 |
+
assert_raises(ValueError, linalg.solve, a, b)
|
507 |
+
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
|
508 |
+
assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
|
509 |
+
|
510 |
+
def test_0_size_k(self):
|
511 |
+
# test zero multiple equation (K=0) case.
|
512 |
+
class ArraySubclass(np.ndarray):
|
513 |
+
pass
|
514 |
+
a = np.arange(4).reshape(1, 2, 2)
|
515 |
+
b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
|
516 |
+
|
517 |
+
expected = linalg.solve(a, b)[:, :, 0:0]
|
518 |
+
result = linalg.solve(a, b[:, :, 0:0])
|
519 |
+
assert_array_equal(result, expected)
|
520 |
+
assert_(isinstance(result, ArraySubclass))
|
521 |
+
|
522 |
+
# test both zero.
|
523 |
+
expected = linalg.solve(a, b)[:, 0:0, 0:0]
|
524 |
+
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
|
525 |
+
assert_array_equal(result, expected)
|
526 |
+
assert_(isinstance(result, ArraySubclass))
|
527 |
+
|
528 |
+
|
529 |
+
class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
530 |
+
|
531 |
+
def do(self, a, b, tags):
|
532 |
+
a_inv = linalg.inv(a)
|
533 |
+
assert_almost_equal(dot_generalized(a, a_inv),
|
534 |
+
identity_like_generalized(a))
|
535 |
+
assert_(consistent_subclass(a_inv, a))
|
536 |
+
|
537 |
+
|
538 |
+
class TestInv(InvCases):
|
539 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
540 |
+
def test_types(self, dtype):
|
541 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
542 |
+
assert_equal(linalg.inv(x).dtype, dtype)
|
543 |
+
|
544 |
+
def test_0_size(self):
|
545 |
+
# Check that all kinds of 0-sized arrays work
|
546 |
+
class ArraySubclass(np.ndarray):
|
547 |
+
pass
|
548 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
549 |
+
res = linalg.inv(a)
|
550 |
+
assert_(res.dtype.type is np.float64)
|
551 |
+
assert_equal(a.shape, res.shape)
|
552 |
+
assert_(isinstance(res, ArraySubclass))
|
553 |
+
|
554 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
555 |
+
res = linalg.inv(a)
|
556 |
+
assert_(res.dtype.type is np.complex64)
|
557 |
+
assert_equal(a.shape, res.shape)
|
558 |
+
assert_(isinstance(res, ArraySubclass))
|
559 |
+
|
560 |
+
|
561 |
+
class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
562 |
+
|
563 |
+
def do(self, a, b, tags):
|
564 |
+
ev = linalg.eigvals(a)
|
565 |
+
evalues, evectors = linalg.eig(a)
|
566 |
+
assert_almost_equal(ev, evalues)
|
567 |
+
|
568 |
+
|
569 |
+
class TestEigvals(EigvalsCases):
|
570 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
571 |
+
def test_types(self, dtype):
|
572 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
573 |
+
assert_equal(linalg.eigvals(x).dtype, dtype)
|
574 |
+
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
|
575 |
+
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
|
576 |
+
|
577 |
+
def test_0_size(self):
|
578 |
+
# Check that all kinds of 0-sized arrays work
|
579 |
+
class ArraySubclass(np.ndarray):
|
580 |
+
pass
|
581 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
582 |
+
res = linalg.eigvals(a)
|
583 |
+
assert_(res.dtype.type is np.float64)
|
584 |
+
assert_equal((0, 1), res.shape)
|
585 |
+
# This is just for documentation, it might make sense to change:
|
586 |
+
assert_(isinstance(res, np.ndarray))
|
587 |
+
|
588 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
589 |
+
res = linalg.eigvals(a)
|
590 |
+
assert_(res.dtype.type is np.complex64)
|
591 |
+
assert_equal((0,), res.shape)
|
592 |
+
# This is just for documentation, it might make sense to change:
|
593 |
+
assert_(isinstance(res, np.ndarray))
|
594 |
+
|
595 |
+
|
596 |
+
class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
597 |
+
|
598 |
+
def do(self, a, b, tags):
|
599 |
+
res = linalg.eig(a)
|
600 |
+
eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors
|
601 |
+
assert_allclose(dot_generalized(a, eigenvectors),
|
602 |
+
np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :],
|
603 |
+
rtol=get_rtol(eigenvalues.dtype))
|
604 |
+
assert_(consistent_subclass(eigenvectors, a))
|
605 |
+
|
606 |
+
|
607 |
+
class TestEig(EigCases):
|
608 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
609 |
+
def test_types(self, dtype):
|
610 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
611 |
+
w, v = np.linalg.eig(x)
|
612 |
+
assert_equal(w.dtype, dtype)
|
613 |
+
assert_equal(v.dtype, dtype)
|
614 |
+
|
615 |
+
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
|
616 |
+
w, v = np.linalg.eig(x)
|
617 |
+
assert_equal(w.dtype, get_complex_dtype(dtype))
|
618 |
+
assert_equal(v.dtype, get_complex_dtype(dtype))
|
619 |
+
|
620 |
+
def test_0_size(self):
|
621 |
+
# Check that all kinds of 0-sized arrays work
|
622 |
+
class ArraySubclass(np.ndarray):
|
623 |
+
pass
|
624 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
625 |
+
res, res_v = linalg.eig(a)
|
626 |
+
assert_(res_v.dtype.type is np.float64)
|
627 |
+
assert_(res.dtype.type is np.float64)
|
628 |
+
assert_equal(a.shape, res_v.shape)
|
629 |
+
assert_equal((0, 1), res.shape)
|
630 |
+
# This is just for documentation, it might make sense to change:
|
631 |
+
assert_(isinstance(a, np.ndarray))
|
632 |
+
|
633 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
634 |
+
res, res_v = linalg.eig(a)
|
635 |
+
assert_(res_v.dtype.type is np.complex64)
|
636 |
+
assert_(res.dtype.type is np.complex64)
|
637 |
+
assert_equal(a.shape, res_v.shape)
|
638 |
+
assert_equal((0,), res.shape)
|
639 |
+
# This is just for documentation, it might make sense to change:
|
640 |
+
assert_(isinstance(a, np.ndarray))
|
641 |
+
|
642 |
+
|
643 |
+
class SVDBaseTests:
|
644 |
+
hermitian = False
|
645 |
+
|
646 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
647 |
+
def test_types(self, dtype):
|
648 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
649 |
+
res = linalg.svd(x)
|
650 |
+
U, S, Vh = res.U, res.S, res.Vh
|
651 |
+
assert_equal(U.dtype, dtype)
|
652 |
+
assert_equal(S.dtype, get_real_dtype(dtype))
|
653 |
+
assert_equal(Vh.dtype, dtype)
|
654 |
+
s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
|
655 |
+
assert_equal(s.dtype, get_real_dtype(dtype))
|
656 |
+
|
657 |
+
|
658 |
+
class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
659 |
+
|
660 |
+
def do(self, a, b, tags):
|
661 |
+
u, s, vt = linalg.svd(a, False)
|
662 |
+
assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
|
663 |
+
np.asarray(vt)),
|
664 |
+
rtol=get_rtol(u.dtype))
|
665 |
+
assert_(consistent_subclass(u, a))
|
666 |
+
assert_(consistent_subclass(vt, a))
|
667 |
+
|
668 |
+
|
669 |
+
class TestSVD(SVDCases, SVDBaseTests):
|
670 |
+
def test_empty_identity(self):
|
671 |
+
""" Empty input should put an identity matrix in u or vh """
|
672 |
+
x = np.empty((4, 0))
|
673 |
+
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
|
674 |
+
assert_equal(u.shape, (4, 4))
|
675 |
+
assert_equal(vh.shape, (0, 0))
|
676 |
+
assert_equal(u, np.eye(4))
|
677 |
+
|
678 |
+
x = np.empty((0, 4))
|
679 |
+
u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
|
680 |
+
assert_equal(u.shape, (0, 0))
|
681 |
+
assert_equal(vh.shape, (4, 4))
|
682 |
+
assert_equal(vh, np.eye(4))
|
683 |
+
|
684 |
+
|
685 |
+
class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
686 |
+
|
687 |
+
def do(self, a, b, tags):
|
688 |
+
u, s, vt = linalg.svd(a, False, hermitian=True)
|
689 |
+
assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
|
690 |
+
np.asarray(vt)),
|
691 |
+
rtol=get_rtol(u.dtype))
|
692 |
+
def hermitian(mat):
|
693 |
+
axes = list(range(mat.ndim))
|
694 |
+
axes[-1], axes[-2] = axes[-2], axes[-1]
|
695 |
+
return np.conj(np.transpose(mat, axes=axes))
|
696 |
+
|
697 |
+
assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
|
698 |
+
assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
|
699 |
+
assert_equal(np.sort(s)[..., ::-1], s)
|
700 |
+
assert_(consistent_subclass(u, a))
|
701 |
+
assert_(consistent_subclass(vt, a))
|
702 |
+
|
703 |
+
|
704 |
+
class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
|
705 |
+
hermitian = True
|
706 |
+
|
707 |
+
|
708 |
+
class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
709 |
+
# cond(x, p) for p in (None, 2, -2)
|
710 |
+
|
711 |
+
def do(self, a, b, tags):
|
712 |
+
c = asarray(a) # a might be a matrix
|
713 |
+
if 'size-0' in tags:
|
714 |
+
assert_raises(LinAlgError, linalg.cond, c)
|
715 |
+
return
|
716 |
+
|
717 |
+
# +-2 norms
|
718 |
+
s = linalg.svd(c, compute_uv=False)
|
719 |
+
assert_almost_equal(
|
720 |
+
linalg.cond(a), s[..., 0] / s[..., -1],
|
721 |
+
single_decimal=5, double_decimal=11)
|
722 |
+
assert_almost_equal(
|
723 |
+
linalg.cond(a, 2), s[..., 0] / s[..., -1],
|
724 |
+
single_decimal=5, double_decimal=11)
|
725 |
+
assert_almost_equal(
|
726 |
+
linalg.cond(a, -2), s[..., -1] / s[..., 0],
|
727 |
+
single_decimal=5, double_decimal=11)
|
728 |
+
|
729 |
+
# Other norms
|
730 |
+
cinv = np.linalg.inv(c)
|
731 |
+
assert_almost_equal(
|
732 |
+
linalg.cond(a, 1),
|
733 |
+
abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
|
734 |
+
single_decimal=5, double_decimal=11)
|
735 |
+
assert_almost_equal(
|
736 |
+
linalg.cond(a, -1),
|
737 |
+
abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
|
738 |
+
single_decimal=5, double_decimal=11)
|
739 |
+
assert_almost_equal(
|
740 |
+
linalg.cond(a, np.inf),
|
741 |
+
abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
|
742 |
+
single_decimal=5, double_decimal=11)
|
743 |
+
assert_almost_equal(
|
744 |
+
linalg.cond(a, -np.inf),
|
745 |
+
abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
|
746 |
+
single_decimal=5, double_decimal=11)
|
747 |
+
assert_almost_equal(
|
748 |
+
linalg.cond(a, 'fro'),
|
749 |
+
np.sqrt((abs(c)**2).sum(-1).sum(-1)
|
750 |
+
* (abs(cinv)**2).sum(-1).sum(-1)),
|
751 |
+
single_decimal=5, double_decimal=11)
|
752 |
+
|
753 |
+
|
754 |
+
class TestCond(CondCases):
|
755 |
+
def test_basic_nonsvd(self):
|
756 |
+
# Smoketest the non-svd norms
|
757 |
+
A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
|
758 |
+
assert_almost_equal(linalg.cond(A, inf), 4)
|
759 |
+
assert_almost_equal(linalg.cond(A, -inf), 2/3)
|
760 |
+
assert_almost_equal(linalg.cond(A, 1), 4)
|
761 |
+
assert_almost_equal(linalg.cond(A, -1), 0.5)
|
762 |
+
assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))
|
763 |
+
|
764 |
+
def test_singular(self):
|
765 |
+
# Singular matrices have infinite condition number for
|
766 |
+
# positive norms, and negative norms shouldn't raise
|
767 |
+
# exceptions
|
768 |
+
As = [np.zeros((2, 2)), np.ones((2, 2))]
|
769 |
+
p_pos = [None, 1, 2, 'fro']
|
770 |
+
p_neg = [-1, -2]
|
771 |
+
for A, p in itertools.product(As, p_pos):
|
772 |
+
# Inversion may not hit exact infinity, so just check the
|
773 |
+
# number is large
|
774 |
+
assert_(linalg.cond(A, p) > 1e15)
|
775 |
+
for A, p in itertools.product(As, p_neg):
|
776 |
+
linalg.cond(A, p)
|
777 |
+
|
778 |
+
@pytest.mark.xfail(True, run=False,
|
779 |
+
reason="Platform/LAPACK-dependent failure, "
|
780 |
+
"see gh-18914")
|
781 |
+
def test_nan(self):
|
782 |
+
# nans should be passed through, not converted to infs
|
783 |
+
ps = [None, 1, -1, 2, -2, 'fro']
|
784 |
+
p_pos = [None, 1, 2, 'fro']
|
785 |
+
|
786 |
+
A = np.ones((2, 2))
|
787 |
+
A[0,1] = np.nan
|
788 |
+
for p in ps:
|
789 |
+
c = linalg.cond(A, p)
|
790 |
+
assert_(isinstance(c, np.float_))
|
791 |
+
assert_(np.isnan(c))
|
792 |
+
|
793 |
+
A = np.ones((3, 2, 2))
|
794 |
+
A[1,0,1] = np.nan
|
795 |
+
for p in ps:
|
796 |
+
c = linalg.cond(A, p)
|
797 |
+
assert_(np.isnan(c[1]))
|
798 |
+
if p in p_pos:
|
799 |
+
assert_(c[0] > 1e15)
|
800 |
+
assert_(c[2] > 1e15)
|
801 |
+
else:
|
802 |
+
assert_(not np.isnan(c[0]))
|
803 |
+
assert_(not np.isnan(c[2]))
|
804 |
+
|
805 |
+
def test_stacked_singular(self):
|
806 |
+
# Check behavior when only some of the stacked matrices are
|
807 |
+
# singular
|
808 |
+
np.random.seed(1234)
|
809 |
+
A = np.random.rand(2, 2, 2, 2)
|
810 |
+
A[0,0] = 0
|
811 |
+
A[1,1] = 0
|
812 |
+
|
813 |
+
for p in (None, 1, 2, 'fro', -1, -2):
|
814 |
+
c = linalg.cond(A, p)
|
815 |
+
assert_equal(c[0,0], np.inf)
|
816 |
+
assert_equal(c[1,1], np.inf)
|
817 |
+
assert_(np.isfinite(c[0,1]))
|
818 |
+
assert_(np.isfinite(c[1,0]))
|
819 |
+
|
820 |
+
|
821 |
+
class PinvCases(LinalgSquareTestCase,
|
822 |
+
LinalgNonsquareTestCase,
|
823 |
+
LinalgGeneralizedSquareTestCase,
|
824 |
+
LinalgGeneralizedNonsquareTestCase):
|
825 |
+
|
826 |
+
def do(self, a, b, tags):
|
827 |
+
a_ginv = linalg.pinv(a)
|
828 |
+
# `a @ a_ginv == I` does not hold if a is singular
|
829 |
+
dot = dot_generalized
|
830 |
+
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
|
831 |
+
assert_(consistent_subclass(a_ginv, a))
|
832 |
+
|
833 |
+
|
834 |
+
class TestPinv(PinvCases):
|
835 |
+
pass
|
836 |
+
|
837 |
+
|
838 |
+
class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
839 |
+
|
840 |
+
def do(self, a, b, tags):
|
841 |
+
a_ginv = linalg.pinv(a, hermitian=True)
|
842 |
+
# `a @ a_ginv == I` does not hold if a is singular
|
843 |
+
dot = dot_generalized
|
844 |
+
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
|
845 |
+
assert_(consistent_subclass(a_ginv, a))
|
846 |
+
|
847 |
+
|
848 |
+
class TestPinvHermitian(PinvHermitianCases):
|
849 |
+
pass
|
850 |
+
|
851 |
+
|
852 |
+
class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
|
853 |
+
|
854 |
+
def do(self, a, b, tags):
|
855 |
+
d = linalg.det(a)
|
856 |
+
res = linalg.slogdet(a)
|
857 |
+
s, ld = res.sign, res.logabsdet
|
858 |
+
if asarray(a).dtype.type in (single, double):
|
859 |
+
ad = asarray(a).astype(double)
|
860 |
+
else:
|
861 |
+
ad = asarray(a).astype(cdouble)
|
862 |
+
ev = linalg.eigvals(ad)
|
863 |
+
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
|
864 |
+
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
|
865 |
+
|
866 |
+
s = np.atleast_1d(s)
|
867 |
+
ld = np.atleast_1d(ld)
|
868 |
+
m = (s != 0)
|
869 |
+
assert_almost_equal(np.abs(s[m]), 1)
|
870 |
+
assert_equal(ld[~m], -inf)
|
871 |
+
|
872 |
+
|
873 |
+
class TestDet(DetCases):
|
874 |
+
def test_zero(self):
|
875 |
+
assert_equal(linalg.det([[0.0]]), 0.0)
|
876 |
+
assert_equal(type(linalg.det([[0.0]])), double)
|
877 |
+
assert_equal(linalg.det([[0.0j]]), 0.0)
|
878 |
+
assert_equal(type(linalg.det([[0.0j]])), cdouble)
|
879 |
+
|
880 |
+
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
|
881 |
+
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
|
882 |
+
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
|
883 |
+
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
|
884 |
+
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
|
885 |
+
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
|
886 |
+
|
887 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
888 |
+
def test_types(self, dtype):
|
889 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
890 |
+
assert_equal(np.linalg.det(x).dtype, dtype)
|
891 |
+
ph, s = np.linalg.slogdet(x)
|
892 |
+
assert_equal(s.dtype, get_real_dtype(dtype))
|
893 |
+
assert_equal(ph.dtype, dtype)
|
894 |
+
|
895 |
+
def test_0_size(self):
|
896 |
+
a = np.zeros((0, 0), dtype=np.complex64)
|
897 |
+
res = linalg.det(a)
|
898 |
+
assert_equal(res, 1.)
|
899 |
+
assert_(res.dtype.type is np.complex64)
|
900 |
+
res = linalg.slogdet(a)
|
901 |
+
assert_equal(res, (1, 0))
|
902 |
+
assert_(res[0].dtype.type is np.complex64)
|
903 |
+
assert_(res[1].dtype.type is np.float32)
|
904 |
+
|
905 |
+
a = np.zeros((0, 0), dtype=np.float64)
|
906 |
+
res = linalg.det(a)
|
907 |
+
assert_equal(res, 1.)
|
908 |
+
assert_(res.dtype.type is np.float64)
|
909 |
+
res = linalg.slogdet(a)
|
910 |
+
assert_equal(res, (1, 0))
|
911 |
+
assert_(res[0].dtype.type is np.float64)
|
912 |
+
assert_(res[1].dtype.type is np.float64)
|
913 |
+
|
914 |
+
|
915 |
+
class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
|
916 |
+
|
917 |
+
def do(self, a, b, tags):
|
918 |
+
arr = np.asarray(a)
|
919 |
+
m, n = arr.shape
|
920 |
+
u, s, vt = linalg.svd(a, False)
|
921 |
+
x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
|
922 |
+
if m == 0:
|
923 |
+
assert_((x == 0).all())
|
924 |
+
if m <= n:
|
925 |
+
assert_almost_equal(b, dot(a, x))
|
926 |
+
assert_equal(rank, m)
|
927 |
+
else:
|
928 |
+
assert_equal(rank, n)
|
929 |
+
assert_almost_equal(sv, sv.__array_wrap__(s))
|
930 |
+
if rank == n and m > n:
|
931 |
+
expect_resids = (
|
932 |
+
np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
|
933 |
+
expect_resids = np.asarray(expect_resids)
|
934 |
+
if np.asarray(b).ndim == 1:
|
935 |
+
expect_resids.shape = (1,)
|
936 |
+
assert_equal(residuals.shape, expect_resids.shape)
|
937 |
+
else:
|
938 |
+
expect_resids = np.array([]).view(type(x))
|
939 |
+
assert_almost_equal(residuals, expect_resids)
|
940 |
+
assert_(np.issubdtype(residuals.dtype, np.floating))
|
941 |
+
assert_(consistent_subclass(x, b))
|
942 |
+
assert_(consistent_subclass(residuals, b))
|
943 |
+
|
944 |
+
|
945 |
+
class TestLstsq(LstsqCases):
|
946 |
+
def test_future_rcond(self):
|
947 |
+
a = np.array([[0., 1., 0., 1., 2., 0.],
|
948 |
+
[0., 2., 0., 0., 1., 0.],
|
949 |
+
[1., 0., 1., 0., 0., 4.],
|
950 |
+
[0., 0., 0., 2., 3., 0.]]).T
|
951 |
+
|
952 |
+
b = np.array([1, 0, 0, 0, 0, 0])
|
953 |
+
with suppress_warnings() as sup:
|
954 |
+
w = sup.record(FutureWarning, "`rcond` parameter will change")
|
955 |
+
x, residuals, rank, s = linalg.lstsq(a, b)
|
956 |
+
assert_(rank == 4)
|
957 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
|
958 |
+
assert_(rank == 4)
|
959 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
|
960 |
+
assert_(rank == 3)
|
961 |
+
# Warning should be raised exactly once (first command)
|
962 |
+
assert_(len(w) == 1)
|
963 |
+
|
964 |
+
@pytest.mark.parametrize(["m", "n", "n_rhs"], [
|
965 |
+
(4, 2, 2),
|
966 |
+
(0, 4, 1),
|
967 |
+
(0, 4, 2),
|
968 |
+
(4, 0, 1),
|
969 |
+
(4, 0, 2),
|
970 |
+
(4, 2, 0),
|
971 |
+
(0, 0, 0)
|
972 |
+
])
|
973 |
+
def test_empty_a_b(self, m, n, n_rhs):
|
974 |
+
a = np.arange(m * n).reshape(m, n)
|
975 |
+
b = np.ones((m, n_rhs))
|
976 |
+
x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
|
977 |
+
if m == 0:
|
978 |
+
assert_((x == 0).all())
|
979 |
+
assert_equal(x.shape, (n, n_rhs))
|
980 |
+
assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
|
981 |
+
if m > n and n_rhs > 0:
|
982 |
+
# residuals are exactly the squared norms of b's columns
|
983 |
+
r = b - np.dot(a, x)
|
984 |
+
assert_almost_equal(residuals, (r * r).sum(axis=-2))
|
985 |
+
assert_equal(rank, min(m, n))
|
986 |
+
assert_equal(s.shape, (min(m, n),))
|
987 |
+
|
988 |
+
def test_incompatible_dims(self):
|
989 |
+
# use modified version of docstring example
|
990 |
+
x = np.array([0, 1, 2, 3])
|
991 |
+
y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
|
992 |
+
A = np.vstack([x, np.ones(len(x))]).T
|
993 |
+
with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
|
994 |
+
linalg.lstsq(A, y, rcond=None)
|
995 |
+
|
996 |
+
|
997 |
+
@pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
|
998 |
+
class TestMatrixPower:
|
999 |
+
|
1000 |
+
rshft_0 = np.eye(4)
|
1001 |
+
rshft_1 = rshft_0[[3, 0, 1, 2]]
|
1002 |
+
rshft_2 = rshft_0[[2, 3, 0, 1]]
|
1003 |
+
rshft_3 = rshft_0[[1, 2, 3, 0]]
|
1004 |
+
rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
|
1005 |
+
noninv = array([[1, 0], [0, 0]])
|
1006 |
+
stacked = np.block([[[rshft_0]]]*2)
|
1007 |
+
#FIXME the 'e' dtype might work in future
|
1008 |
+
dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]
|
1009 |
+
|
1010 |
+
def test_large_power(self, dt):
|
1011 |
+
rshft = self.rshft_1.astype(dt)
|
1012 |
+
assert_equal(
|
1013 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
|
1014 |
+
assert_equal(
|
1015 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
|
1016 |
+
assert_equal(
|
1017 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
|
1018 |
+
assert_equal(
|
1019 |
+
matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
|
1020 |
+
|
1021 |
+
def test_power_is_zero(self, dt):
|
1022 |
+
def tz(M):
|
1023 |
+
mz = matrix_power(M, 0)
|
1024 |
+
assert_equal(mz, identity_like_generalized(M))
|
1025 |
+
assert_equal(mz.dtype, M.dtype)
|
1026 |
+
|
1027 |
+
for mat in self.rshft_all:
|
1028 |
+
tz(mat.astype(dt))
|
1029 |
+
if dt != object:
|
1030 |
+
tz(self.stacked.astype(dt))
|
1031 |
+
|
1032 |
+
def test_power_is_one(self, dt):
|
1033 |
+
def tz(mat):
|
1034 |
+
mz = matrix_power(mat, 1)
|
1035 |
+
assert_equal(mz, mat)
|
1036 |
+
assert_equal(mz.dtype, mat.dtype)
|
1037 |
+
|
1038 |
+
for mat in self.rshft_all:
|
1039 |
+
tz(mat.astype(dt))
|
1040 |
+
if dt != object:
|
1041 |
+
tz(self.stacked.astype(dt))
|
1042 |
+
|
1043 |
+
def test_power_is_two(self, dt):
|
1044 |
+
def tz(mat):
|
1045 |
+
mz = matrix_power(mat, 2)
|
1046 |
+
mmul = matmul if mat.dtype != object else dot
|
1047 |
+
assert_equal(mz, mmul(mat, mat))
|
1048 |
+
assert_equal(mz.dtype, mat.dtype)
|
1049 |
+
|
1050 |
+
for mat in self.rshft_all:
|
1051 |
+
tz(mat.astype(dt))
|
1052 |
+
if dt != object:
|
1053 |
+
tz(self.stacked.astype(dt))
|
1054 |
+
|
1055 |
+
def test_power_is_minus_one(self, dt):
|
1056 |
+
def tz(mat):
|
1057 |
+
invmat = matrix_power(mat, -1)
|
1058 |
+
mmul = matmul if mat.dtype != object else dot
|
1059 |
+
assert_almost_equal(
|
1060 |
+
mmul(invmat, mat), identity_like_generalized(mat))
|
1061 |
+
|
1062 |
+
for mat in self.rshft_all:
|
1063 |
+
if dt not in self.dtnoinv:
|
1064 |
+
tz(mat.astype(dt))
|
1065 |
+
|
1066 |
+
def test_exceptions_bad_power(self, dt):
|
1067 |
+
mat = self.rshft_0.astype(dt)
|
1068 |
+
assert_raises(TypeError, matrix_power, mat, 1.5)
|
1069 |
+
assert_raises(TypeError, matrix_power, mat, [1])
|
1070 |
+
|
1071 |
+
def test_exceptions_non_square(self, dt):
|
1072 |
+
assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
|
1073 |
+
assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
|
1074 |
+
assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
|
1075 |
+
|
1076 |
+
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
|
1077 |
+
def test_exceptions_not_invertible(self, dt):
|
1078 |
+
if dt in self.dtnoinv:
|
1079 |
+
return
|
1080 |
+
mat = self.noninv.astype(dt)
|
1081 |
+
assert_raises(LinAlgError, matrix_power, mat, -1)
|
1082 |
+
|
1083 |
+
|
1084 |
+
class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
1085 |
+
|
1086 |
+
def do(self, a, b, tags):
|
1087 |
+
# note that eigenvalue arrays returned by eig must be sorted since
|
1088 |
+
# their order isn't guaranteed.
|
1089 |
+
ev = linalg.eigvalsh(a, 'L')
|
1090 |
+
evalues, evectors = linalg.eig(a)
|
1091 |
+
evalues.sort(axis=-1)
|
1092 |
+
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
|
1093 |
+
|
1094 |
+
ev2 = linalg.eigvalsh(a, 'U')
|
1095 |
+
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
|
1096 |
+
|
1097 |
+
|
1098 |
+
class TestEigvalsh:
|
1099 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
1100 |
+
def test_types(self, dtype):
|
1101 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
1102 |
+
w = np.linalg.eigvalsh(x)
|
1103 |
+
assert_equal(w.dtype, get_real_dtype(dtype))
|
1104 |
+
|
1105 |
+
def test_invalid(self):
|
1106 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
|
1107 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
|
1108 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
|
1109 |
+
assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
|
1110 |
+
|
1111 |
+
def test_UPLO(self):
|
1112 |
+
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
|
1113 |
+
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
|
1114 |
+
tgt = np.array([-1, 1], dtype=np.double)
|
1115 |
+
rtol = get_rtol(np.double)
|
1116 |
+
|
1117 |
+
# Check default is 'L'
|
1118 |
+
w = np.linalg.eigvalsh(Klo)
|
1119 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1120 |
+
# Check 'L'
|
1121 |
+
w = np.linalg.eigvalsh(Klo, UPLO='L')
|
1122 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1123 |
+
# Check 'l'
|
1124 |
+
w = np.linalg.eigvalsh(Klo, UPLO='l')
|
1125 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1126 |
+
# Check 'U'
|
1127 |
+
w = np.linalg.eigvalsh(Kup, UPLO='U')
|
1128 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1129 |
+
# Check 'u'
|
1130 |
+
w = np.linalg.eigvalsh(Kup, UPLO='u')
|
1131 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1132 |
+
|
1133 |
+
def test_0_size(self):
|
1134 |
+
# Check that all kinds of 0-sized arrays work
|
1135 |
+
class ArraySubclass(np.ndarray):
|
1136 |
+
pass
|
1137 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1138 |
+
res = linalg.eigvalsh(a)
|
1139 |
+
assert_(res.dtype.type is np.float64)
|
1140 |
+
assert_equal((0, 1), res.shape)
|
1141 |
+
# This is just for documentation, it might make sense to change:
|
1142 |
+
assert_(isinstance(res, np.ndarray))
|
1143 |
+
|
1144 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
1145 |
+
res = linalg.eigvalsh(a)
|
1146 |
+
assert_(res.dtype.type is np.float32)
|
1147 |
+
assert_equal((0,), res.shape)
|
1148 |
+
# This is just for documentation, it might make sense to change:
|
1149 |
+
assert_(isinstance(res, np.ndarray))
|
1150 |
+
|
1151 |
+
|
1152 |
+
class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
|
1153 |
+
|
1154 |
+
def do(self, a, b, tags):
|
1155 |
+
# note that eigenvalue arrays returned by eig must be sorted since
|
1156 |
+
# their order isn't guaranteed.
|
1157 |
+
res = linalg.eigh(a)
|
1158 |
+
ev, evc = res.eigenvalues, res.eigenvectors
|
1159 |
+
evalues, evectors = linalg.eig(a)
|
1160 |
+
evalues.sort(axis=-1)
|
1161 |
+
assert_almost_equal(ev, evalues)
|
1162 |
+
|
1163 |
+
assert_allclose(dot_generalized(a, evc),
|
1164 |
+
np.asarray(ev)[..., None, :] * np.asarray(evc),
|
1165 |
+
rtol=get_rtol(ev.dtype))
|
1166 |
+
|
1167 |
+
ev2, evc2 = linalg.eigh(a, 'U')
|
1168 |
+
assert_almost_equal(ev2, evalues)
|
1169 |
+
|
1170 |
+
assert_allclose(dot_generalized(a, evc2),
|
1171 |
+
np.asarray(ev2)[..., None, :] * np.asarray(evc2),
|
1172 |
+
rtol=get_rtol(ev.dtype), err_msg=repr(a))
|
1173 |
+
|
1174 |
+
|
1175 |
+
class TestEigh:
|
1176 |
+
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
|
1177 |
+
def test_types(self, dtype):
|
1178 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
|
1179 |
+
w, v = np.linalg.eigh(x)
|
1180 |
+
assert_equal(w.dtype, get_real_dtype(dtype))
|
1181 |
+
assert_equal(v.dtype, dtype)
|
1182 |
+
|
1183 |
+
def test_invalid(self):
|
1184 |
+
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
|
1185 |
+
assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
|
1186 |
+
assert_raises(ValueError, np.linalg.eigh, x, "lower")
|
1187 |
+
assert_raises(ValueError, np.linalg.eigh, x, "upper")
|
1188 |
+
|
1189 |
+
def test_UPLO(self):
|
1190 |
+
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
|
1191 |
+
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
|
1192 |
+
tgt = np.array([-1, 1], dtype=np.double)
|
1193 |
+
rtol = get_rtol(np.double)
|
1194 |
+
|
1195 |
+
# Check default is 'L'
|
1196 |
+
w, v = np.linalg.eigh(Klo)
|
1197 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1198 |
+
# Check 'L'
|
1199 |
+
w, v = np.linalg.eigh(Klo, UPLO='L')
|
1200 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1201 |
+
# Check 'l'
|
1202 |
+
w, v = np.linalg.eigh(Klo, UPLO='l')
|
1203 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1204 |
+
# Check 'U'
|
1205 |
+
w, v = np.linalg.eigh(Kup, UPLO='U')
|
1206 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1207 |
+
# Check 'u'
|
1208 |
+
w, v = np.linalg.eigh(Kup, UPLO='u')
|
1209 |
+
assert_allclose(w, tgt, rtol=rtol)
|
1210 |
+
|
1211 |
+
def test_0_size(self):
|
1212 |
+
# Check that all kinds of 0-sized arrays work
|
1213 |
+
class ArraySubclass(np.ndarray):
|
1214 |
+
pass
|
1215 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1216 |
+
res, res_v = linalg.eigh(a)
|
1217 |
+
assert_(res_v.dtype.type is np.float64)
|
1218 |
+
assert_(res.dtype.type is np.float64)
|
1219 |
+
assert_equal(a.shape, res_v.shape)
|
1220 |
+
assert_equal((0, 1), res.shape)
|
1221 |
+
# This is just for documentation, it might make sense to change:
|
1222 |
+
assert_(isinstance(a, np.ndarray))
|
1223 |
+
|
1224 |
+
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
|
1225 |
+
res, res_v = linalg.eigh(a)
|
1226 |
+
assert_(res_v.dtype.type is np.complex64)
|
1227 |
+
assert_(res.dtype.type is np.float32)
|
1228 |
+
assert_equal(a.shape, res_v.shape)
|
1229 |
+
assert_equal((0,), res.shape)
|
1230 |
+
# This is just for documentation, it might make sense to change:
|
1231 |
+
assert_(isinstance(a, np.ndarray))
|
1232 |
+
|
1233 |
+
|
1234 |
+
class _TestNormBase:
|
1235 |
+
dt = None
|
1236 |
+
dec = None
|
1237 |
+
|
1238 |
+
@staticmethod
|
1239 |
+
def check_dtype(x, res):
|
1240 |
+
if issubclass(x.dtype.type, np.inexact):
|
1241 |
+
assert_equal(res.dtype, x.real.dtype)
|
1242 |
+
else:
|
1243 |
+
# For integer input, don't have to test float precision of output.
|
1244 |
+
assert_(issubclass(res.dtype.type, np.floating))
|
1245 |
+
|
1246 |
+
|
1247 |
+
class _TestNormGeneral(_TestNormBase):
|
1248 |
+
|
1249 |
+
def test_empty(self):
|
1250 |
+
assert_equal(norm([]), 0.0)
|
1251 |
+
assert_equal(norm(array([], dtype=self.dt)), 0.0)
|
1252 |
+
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
|
1253 |
+
|
1254 |
+
def test_vector_return_type(self):
|
1255 |
+
a = np.array([1, 0, 1])
|
1256 |
+
|
1257 |
+
exact_types = np.typecodes['AllInteger']
|
1258 |
+
inexact_types = np.typecodes['AllFloat']
|
1259 |
+
|
1260 |
+
all_types = exact_types + inexact_types
|
1261 |
+
|
1262 |
+
for each_type in all_types:
|
1263 |
+
at = a.astype(each_type)
|
1264 |
+
|
1265 |
+
an = norm(at, -np.inf)
|
1266 |
+
self.check_dtype(at, an)
|
1267 |
+
assert_almost_equal(an, 0.0)
|
1268 |
+
|
1269 |
+
with suppress_warnings() as sup:
|
1270 |
+
sup.filter(RuntimeWarning, "divide by zero encountered")
|
1271 |
+
an = norm(at, -1)
|
1272 |
+
self.check_dtype(at, an)
|
1273 |
+
assert_almost_equal(an, 0.0)
|
1274 |
+
|
1275 |
+
an = norm(at, 0)
|
1276 |
+
self.check_dtype(at, an)
|
1277 |
+
assert_almost_equal(an, 2)
|
1278 |
+
|
1279 |
+
an = norm(at, 1)
|
1280 |
+
self.check_dtype(at, an)
|
1281 |
+
assert_almost_equal(an, 2.0)
|
1282 |
+
|
1283 |
+
an = norm(at, 2)
|
1284 |
+
self.check_dtype(at, an)
|
1285 |
+
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0))
|
1286 |
+
|
1287 |
+
an = norm(at, 4)
|
1288 |
+
self.check_dtype(at, an)
|
1289 |
+
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0))
|
1290 |
+
|
1291 |
+
an = norm(at, np.inf)
|
1292 |
+
self.check_dtype(at, an)
|
1293 |
+
assert_almost_equal(an, 1.0)
|
1294 |
+
|
1295 |
+
def test_vector(self):
|
1296 |
+
a = [1, 2, 3, 4]
|
1297 |
+
b = [-1, -2, -3, -4]
|
1298 |
+
c = [-1, 2, -3, 4]
|
1299 |
+
|
1300 |
+
def _test(v):
|
1301 |
+
np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
|
1302 |
+
decimal=self.dec)
|
1303 |
+
np.testing.assert_almost_equal(norm(v, inf), 4.0,
|
1304 |
+
decimal=self.dec)
|
1305 |
+
np.testing.assert_almost_equal(norm(v, -inf), 1.0,
|
1306 |
+
decimal=self.dec)
|
1307 |
+
np.testing.assert_almost_equal(norm(v, 1), 10.0,
|
1308 |
+
decimal=self.dec)
|
1309 |
+
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
|
1310 |
+
decimal=self.dec)
|
1311 |
+
np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
|
1312 |
+
decimal=self.dec)
|
1313 |
+
np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
|
1314 |
+
decimal=self.dec)
|
1315 |
+
np.testing.assert_almost_equal(norm(v, 0), 4,
|
1316 |
+
decimal=self.dec)
|
1317 |
+
|
1318 |
+
for v in (a, b, c,):
|
1319 |
+
_test(v)
|
1320 |
+
|
1321 |
+
for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
|
1322 |
+
array(c, dtype=self.dt)):
|
1323 |
+
_test(v)
|
1324 |
+
|
1325 |
+
def test_axis(self):
|
1326 |
+
# Vector norms.
|
1327 |
+
# Compare the use of `axis` with computing the norm of each row
|
1328 |
+
# or column separately.
|
1329 |
+
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
|
1330 |
+
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
|
1331 |
+
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
|
1332 |
+
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
|
1333 |
+
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
|
1334 |
+
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
|
1335 |
+
|
1336 |
+
# Matrix norms.
|
1337 |
+
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1338 |
+
nd = B.ndim
|
1339 |
+
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
|
1340 |
+
for axis in itertools.combinations(range(-nd, nd), 2):
|
1341 |
+
row_axis, col_axis = axis
|
1342 |
+
if row_axis < 0:
|
1343 |
+
row_axis += nd
|
1344 |
+
if col_axis < 0:
|
1345 |
+
col_axis += nd
|
1346 |
+
if row_axis == col_axis:
|
1347 |
+
assert_raises(ValueError, norm, B, ord=order, axis=axis)
|
1348 |
+
else:
|
1349 |
+
n = norm(B, ord=order, axis=axis)
|
1350 |
+
|
1351 |
+
# The logic using k_index only works for nd = 3.
|
1352 |
+
# This has to be changed if nd is increased.
|
1353 |
+
k_index = nd - (row_axis + col_axis)
|
1354 |
+
if row_axis < col_axis:
|
1355 |
+
expected = [norm(B[:].take(k, axis=k_index), ord=order)
|
1356 |
+
for k in range(B.shape[k_index])]
|
1357 |
+
else:
|
1358 |
+
expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
|
1359 |
+
for k in range(B.shape[k_index])]
|
1360 |
+
assert_almost_equal(n, expected)
|
1361 |
+
|
1362 |
+
def test_keepdims(self):
|
1363 |
+
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1364 |
+
|
1365 |
+
allclose_err = 'order {0}, axis = {1}'
|
1366 |
+
shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
|
1367 |
+
|
1368 |
+
# check the order=None, axis=None case
|
1369 |
+
expected = norm(A, ord=None, axis=None)
|
1370 |
+
found = norm(A, ord=None, axis=None, keepdims=True)
|
1371 |
+
assert_allclose(np.squeeze(found), expected,
|
1372 |
+
err_msg=allclose_err.format(None, None))
|
1373 |
+
expected_shape = (1, 1, 1)
|
1374 |
+
assert_(found.shape == expected_shape,
|
1375 |
+
shape_err.format(found.shape, expected_shape, None, None))
|
1376 |
+
|
1377 |
+
# Vector norms.
|
1378 |
+
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
|
1379 |
+
for k in range(A.ndim):
|
1380 |
+
expected = norm(A, ord=order, axis=k)
|
1381 |
+
found = norm(A, ord=order, axis=k, keepdims=True)
|
1382 |
+
assert_allclose(np.squeeze(found), expected,
|
1383 |
+
err_msg=allclose_err.format(order, k))
|
1384 |
+
expected_shape = list(A.shape)
|
1385 |
+
expected_shape[k] = 1
|
1386 |
+
expected_shape = tuple(expected_shape)
|
1387 |
+
assert_(found.shape == expected_shape,
|
1388 |
+
shape_err.format(found.shape, expected_shape, order, k))
|
1389 |
+
|
1390 |
+
# Matrix norms.
|
1391 |
+
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
|
1392 |
+
for k in itertools.permutations(range(A.ndim), 2):
|
1393 |
+
expected = norm(A, ord=order, axis=k)
|
1394 |
+
found = norm(A, ord=order, axis=k, keepdims=True)
|
1395 |
+
assert_allclose(np.squeeze(found), expected,
|
1396 |
+
err_msg=allclose_err.format(order, k))
|
1397 |
+
expected_shape = list(A.shape)
|
1398 |
+
expected_shape[k[0]] = 1
|
1399 |
+
expected_shape[k[1]] = 1
|
1400 |
+
expected_shape = tuple(expected_shape)
|
1401 |
+
assert_(found.shape == expected_shape,
|
1402 |
+
shape_err.format(found.shape, expected_shape, order, k))
|
1403 |
+
|
1404 |
+
|
1405 |
+
class _TestNorm2D(_TestNormBase):
|
1406 |
+
# Define the part for 2d arrays separately, so we can subclass this
|
1407 |
+
# and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
|
1408 |
+
array = np.array
|
1409 |
+
|
1410 |
+
def test_matrix_empty(self):
|
1411 |
+
assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)
|
1412 |
+
|
1413 |
+
def test_matrix_return_type(self):
|
1414 |
+
a = self.array([[1, 0, 1], [0, 1, 1]])
|
1415 |
+
|
1416 |
+
exact_types = np.typecodes['AllInteger']
|
1417 |
+
|
1418 |
+
# float32, complex64, float64, complex128 types are the only types
|
1419 |
+
# allowed by `linalg`, which performs the matrix operations used
|
1420 |
+
# within `norm`.
|
1421 |
+
inexact_types = 'fdFD'
|
1422 |
+
|
1423 |
+
all_types = exact_types + inexact_types
|
1424 |
+
|
1425 |
+
for each_type in all_types:
|
1426 |
+
at = a.astype(each_type)
|
1427 |
+
|
1428 |
+
an = norm(at, -np.inf)
|
1429 |
+
self.check_dtype(at, an)
|
1430 |
+
assert_almost_equal(an, 2.0)
|
1431 |
+
|
1432 |
+
with suppress_warnings() as sup:
|
1433 |
+
sup.filter(RuntimeWarning, "divide by zero encountered")
|
1434 |
+
an = norm(at, -1)
|
1435 |
+
self.check_dtype(at, an)
|
1436 |
+
assert_almost_equal(an, 1.0)
|
1437 |
+
|
1438 |
+
an = norm(at, 1)
|
1439 |
+
self.check_dtype(at, an)
|
1440 |
+
assert_almost_equal(an, 2.0)
|
1441 |
+
|
1442 |
+
an = norm(at, 2)
|
1443 |
+
self.check_dtype(at, an)
|
1444 |
+
assert_almost_equal(an, 3.0**(1.0/2.0))
|
1445 |
+
|
1446 |
+
an = norm(at, -2)
|
1447 |
+
self.check_dtype(at, an)
|
1448 |
+
assert_almost_equal(an, 1.0)
|
1449 |
+
|
1450 |
+
an = norm(at, np.inf)
|
1451 |
+
self.check_dtype(at, an)
|
1452 |
+
assert_almost_equal(an, 2.0)
|
1453 |
+
|
1454 |
+
an = norm(at, 'fro')
|
1455 |
+
self.check_dtype(at, an)
|
1456 |
+
assert_almost_equal(an, 2.0)
|
1457 |
+
|
1458 |
+
an = norm(at, 'nuc')
|
1459 |
+
self.check_dtype(at, an)
|
1460 |
+
# Lower bar needed to support low precision floats.
|
1461 |
+
# They end up being off by 1 in the 7th place.
|
1462 |
+
np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
|
1463 |
+
|
1464 |
+
def test_matrix_2x2(self):
|
1465 |
+
A = self.array([[1, 3], [5, 7]], dtype=self.dt)
|
1466 |
+
assert_almost_equal(norm(A), 84 ** 0.5)
|
1467 |
+
assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
|
1468 |
+
assert_almost_equal(norm(A, 'nuc'), 10.0)
|
1469 |
+
assert_almost_equal(norm(A, inf), 12.0)
|
1470 |
+
assert_almost_equal(norm(A, -inf), 4.0)
|
1471 |
+
assert_almost_equal(norm(A, 1), 10.0)
|
1472 |
+
assert_almost_equal(norm(A, -1), 6.0)
|
1473 |
+
assert_almost_equal(norm(A, 2), 9.1231056256176615)
|
1474 |
+
assert_almost_equal(norm(A, -2), 0.87689437438234041)
|
1475 |
+
|
1476 |
+
assert_raises(ValueError, norm, A, 'nofro')
|
1477 |
+
assert_raises(ValueError, norm, A, -3)
|
1478 |
+
assert_raises(ValueError, norm, A, 0)
|
1479 |
+
|
1480 |
+
def test_matrix_3x3(self):
|
1481 |
+
# This test has been added because the 2x2 example
|
1482 |
+
# happened to have equal nuclear norm and induced 1-norm.
|
1483 |
+
# The 1/10 scaling factor accommodates the absolute tolerance
|
1484 |
+
# used in assert_almost_equal.
|
1485 |
+
A = (1 / 10) * \
|
1486 |
+
self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
|
1487 |
+
assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
|
1488 |
+
assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
|
1489 |
+
assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
|
1490 |
+
assert_almost_equal(norm(A, inf), 1.1)
|
1491 |
+
assert_almost_equal(norm(A, -inf), 0.6)
|
1492 |
+
assert_almost_equal(norm(A, 1), 1.0)
|
1493 |
+
assert_almost_equal(norm(A, -1), 0.4)
|
1494 |
+
assert_almost_equal(norm(A, 2), 0.88722940323461277)
|
1495 |
+
assert_almost_equal(norm(A, -2), 0.19456584790481812)
|
1496 |
+
|
1497 |
+
def test_bad_args(self):
|
1498 |
+
# Check that bad arguments raise the appropriate exceptions.
|
1499 |
+
|
1500 |
+
A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
|
1501 |
+
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
|
1502 |
+
|
1503 |
+
# Using `axis=<integer>` or passing in a 1-D array implies vector
|
1504 |
+
# norms are being computed, so also using `ord='fro'`
|
1505 |
+
# or `ord='nuc'` or any other string raises a ValueError.
|
1506 |
+
assert_raises(ValueError, norm, A, 'fro', 0)
|
1507 |
+
assert_raises(ValueError, norm, A, 'nuc', 0)
|
1508 |
+
assert_raises(ValueError, norm, [3, 4], 'fro', None)
|
1509 |
+
assert_raises(ValueError, norm, [3, 4], 'nuc', None)
|
1510 |
+
assert_raises(ValueError, norm, [3, 4], 'test', None)
|
1511 |
+
|
1512 |
+
# Similarly, norm should raise an exception when ord is any finite
|
1513 |
+
# number other than 1, 2, -1 or -2 when computing matrix norms.
|
1514 |
+
for order in [0, 3]:
|
1515 |
+
assert_raises(ValueError, norm, A, order, None)
|
1516 |
+
assert_raises(ValueError, norm, A, order, (0, 1))
|
1517 |
+
assert_raises(ValueError, norm, B, order, (1, 2))
|
1518 |
+
|
1519 |
+
# Invalid axis
|
1520 |
+
assert_raises(np.AxisError, norm, B, None, 3)
|
1521 |
+
assert_raises(np.AxisError, norm, B, None, (2, 3))
|
1522 |
+
assert_raises(ValueError, norm, B, None, (0, 1, 2))
|
1523 |
+
|
1524 |
+
|
1525 |
+
class _TestNorm(_TestNorm2D, _TestNormGeneral):
|
1526 |
+
pass
|
1527 |
+
|
1528 |
+
|
1529 |
+
class TestNorm_NonSystematic:
|
1530 |
+
|
1531 |
+
def test_longdouble_norm(self):
|
1532 |
+
# Non-regression test: p-norm of longdouble would previously raise
|
1533 |
+
# UnboundLocalError.
|
1534 |
+
x = np.arange(10, dtype=np.longdouble)
|
1535 |
+
old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
|
1536 |
+
|
1537 |
+
def test_intmin(self):
|
1538 |
+
# Non-regression test: p-norm of signed integer would previously do
|
1539 |
+
# float cast and abs in the wrong order.
|
1540 |
+
x = np.array([-2 ** 31], dtype=np.int32)
|
1541 |
+
old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
|
1542 |
+
|
1543 |
+
def test_complex_high_ord(self):
|
1544 |
+
# gh-4156
|
1545 |
+
d = np.empty((2,), dtype=np.clongdouble)
|
1546 |
+
d[0] = 6 + 7j
|
1547 |
+
d[1] = -6 + 7j
|
1548 |
+
res = 11.615898132184
|
1549 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
|
1550 |
+
d = d.astype(np.complex128)
|
1551 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
|
1552 |
+
d = d.astype(np.complex64)
|
1553 |
+
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
|
1554 |
+
|
1555 |
+
|
1556 |
+
# Separate definitions so we can use them for matrix tests.
|
1557 |
+
class _TestNormDoubleBase(_TestNormBase):
|
1558 |
+
dt = np.double
|
1559 |
+
dec = 12
|
1560 |
+
|
1561 |
+
|
1562 |
+
class _TestNormSingleBase(_TestNormBase):
|
1563 |
+
dt = np.float32
|
1564 |
+
dec = 6
|
1565 |
+
|
1566 |
+
|
1567 |
+
class _TestNormInt64Base(_TestNormBase):
|
1568 |
+
dt = np.int64
|
1569 |
+
dec = 12
|
1570 |
+
|
1571 |
+
|
1572 |
+
class TestNormDouble(_TestNorm, _TestNormDoubleBase):
|
1573 |
+
pass
|
1574 |
+
|
1575 |
+
|
1576 |
+
class TestNormSingle(_TestNorm, _TestNormSingleBase):
|
1577 |
+
pass
|
1578 |
+
|
1579 |
+
|
1580 |
+
class TestNormInt64(_TestNorm, _TestNormInt64Base):
|
1581 |
+
pass
|
1582 |
+
|
1583 |
+
|
1584 |
+
class TestMatrixRank:
|
1585 |
+
|
1586 |
+
def test_matrix_rank(self):
|
1587 |
+
# Full rank matrix
|
1588 |
+
assert_equal(4, matrix_rank(np.eye(4)))
|
1589 |
+
# rank deficient matrix
|
1590 |
+
I = np.eye(4)
|
1591 |
+
I[-1, -1] = 0.
|
1592 |
+
assert_equal(matrix_rank(I), 3)
|
1593 |
+
# All zeros - zero rank
|
1594 |
+
assert_equal(matrix_rank(np.zeros((4, 4))), 0)
|
1595 |
+
# 1 dimension - rank 1 unless all 0
|
1596 |
+
assert_equal(matrix_rank([1, 0, 0, 0]), 1)
|
1597 |
+
assert_equal(matrix_rank(np.zeros((4,))), 0)
|
1598 |
+
# accepts array-like
|
1599 |
+
assert_equal(matrix_rank([1]), 1)
|
1600 |
+
# greater than 2 dimensions treated as stacked matrices
|
1601 |
+
ms = np.array([I, np.eye(4), np.zeros((4,4))])
|
1602 |
+
assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
|
1603 |
+
# works on scalar
|
1604 |
+
assert_equal(matrix_rank(1), 1)
|
1605 |
+
|
1606 |
+
def test_symmetric_rank(self):
|
1607 |
+
assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
|
1608 |
+
assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
|
1609 |
+
assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
|
1610 |
+
# rank deficient matrix
|
1611 |
+
I = np.eye(4)
|
1612 |
+
I[-1, -1] = 0.
|
1613 |
+
assert_equal(3, matrix_rank(I, hermitian=True))
|
1614 |
+
# manually supplied tolerance
|
1615 |
+
I[-1, -1] = 1e-8
|
1616 |
+
assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
|
1617 |
+
assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
|
1618 |
+
|
1619 |
+
|
1620 |
+
def test_reduced_rank():
|
1621 |
+
# Test matrices with reduced rank
|
1622 |
+
rng = np.random.RandomState(20120714)
|
1623 |
+
for i in range(100):
|
1624 |
+
# Make a rank deficient matrix
|
1625 |
+
X = rng.normal(size=(40, 10))
|
1626 |
+
X[:, 0] = X[:, 1] + X[:, 2]
|
1627 |
+
# Assert that matrix_rank detected deficiency
|
1628 |
+
assert_equal(matrix_rank(X), 9)
|
1629 |
+
X[:, 3] = X[:, 4] + X[:, 5]
|
1630 |
+
assert_equal(matrix_rank(X), 8)
|
1631 |
+
|
1632 |
+
|
1633 |
+
class TestQR:
|
1634 |
+
# Define the array class here, so run this on matrices elsewhere.
|
1635 |
+
array = np.array
|
1636 |
+
|
1637 |
+
def check_qr(self, a):
|
1638 |
+
# This test expects the argument `a` to be an ndarray or
|
1639 |
+
# a subclass of an ndarray of inexact type.
|
1640 |
+
a_type = type(a)
|
1641 |
+
a_dtype = a.dtype
|
1642 |
+
m, n = a.shape
|
1643 |
+
k = min(m, n)
|
1644 |
+
|
1645 |
+
# mode == 'complete'
|
1646 |
+
res = linalg.qr(a, mode='complete')
|
1647 |
+
Q, R = res.Q, res.R
|
1648 |
+
assert_(Q.dtype == a_dtype)
|
1649 |
+
assert_(R.dtype == a_dtype)
|
1650 |
+
assert_(isinstance(Q, a_type))
|
1651 |
+
assert_(isinstance(R, a_type))
|
1652 |
+
assert_(Q.shape == (m, m))
|
1653 |
+
assert_(R.shape == (m, n))
|
1654 |
+
assert_almost_equal(dot(Q, R), a)
|
1655 |
+
assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m))
|
1656 |
+
assert_almost_equal(np.triu(R), R)
|
1657 |
+
|
1658 |
+
# mode == 'reduced'
|
1659 |
+
q1, r1 = linalg.qr(a, mode='reduced')
|
1660 |
+
assert_(q1.dtype == a_dtype)
|
1661 |
+
assert_(r1.dtype == a_dtype)
|
1662 |
+
assert_(isinstance(q1, a_type))
|
1663 |
+
assert_(isinstance(r1, a_type))
|
1664 |
+
assert_(q1.shape == (m, k))
|
1665 |
+
assert_(r1.shape == (k, n))
|
1666 |
+
assert_almost_equal(dot(q1, r1), a)
|
1667 |
+
assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
|
1668 |
+
assert_almost_equal(np.triu(r1), r1)
|
1669 |
+
|
1670 |
+
# mode == 'r'
|
1671 |
+
r2 = linalg.qr(a, mode='r')
|
1672 |
+
assert_(r2.dtype == a_dtype)
|
1673 |
+
assert_(isinstance(r2, a_type))
|
1674 |
+
assert_almost_equal(r2, r1)
|
1675 |
+
|
1676 |
+
|
1677 |
+
@pytest.mark.parametrize(["m", "n"], [
|
1678 |
+
(3, 0),
|
1679 |
+
(0, 3),
|
1680 |
+
(0, 0)
|
1681 |
+
])
|
1682 |
+
def test_qr_empty(self, m, n):
|
1683 |
+
k = min(m, n)
|
1684 |
+
a = np.empty((m, n))
|
1685 |
+
|
1686 |
+
self.check_qr(a)
|
1687 |
+
|
1688 |
+
h, tau = np.linalg.qr(a, mode='raw')
|
1689 |
+
assert_equal(h.dtype, np.double)
|
1690 |
+
assert_equal(tau.dtype, np.double)
|
1691 |
+
assert_equal(h.shape, (n, m))
|
1692 |
+
assert_equal(tau.shape, (k,))
|
1693 |
+
|
1694 |
+
def test_mode_raw(self):
|
1695 |
+
# The factorization is not unique and varies between libraries,
|
1696 |
+
# so it is not possible to check against known values. Functional
|
1697 |
+
# testing is a possibility, but awaits the exposure of more
|
1698 |
+
# of the functions in lapack_lite. Consequently, this test is
|
1699 |
+
# very limited in scope. Note that the results are in FORTRAN
|
1700 |
+
# order, hence the h arrays are transposed.
|
1701 |
+
a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
|
1702 |
+
|
1703 |
+
# Test double
|
1704 |
+
h, tau = linalg.qr(a, mode='raw')
|
1705 |
+
assert_(h.dtype == np.double)
|
1706 |
+
assert_(tau.dtype == np.double)
|
1707 |
+
assert_(h.shape == (2, 3))
|
1708 |
+
assert_(tau.shape == (2,))
|
1709 |
+
|
1710 |
+
h, tau = linalg.qr(a.T, mode='raw')
|
1711 |
+
assert_(h.dtype == np.double)
|
1712 |
+
assert_(tau.dtype == np.double)
|
1713 |
+
assert_(h.shape == (3, 2))
|
1714 |
+
assert_(tau.shape == (2,))
|
1715 |
+
|
1716 |
+
def test_mode_all_but_economic(self):
|
1717 |
+
a = self.array([[1, 2], [3, 4]])
|
1718 |
+
b = self.array([[1, 2], [3, 4], [5, 6]])
|
1719 |
+
for dt in "fd":
|
1720 |
+
m1 = a.astype(dt)
|
1721 |
+
m2 = b.astype(dt)
|
1722 |
+
self.check_qr(m1)
|
1723 |
+
self.check_qr(m2)
|
1724 |
+
self.check_qr(m2.T)
|
1725 |
+
|
1726 |
+
for dt in "fd":
|
1727 |
+
m1 = 1 + 1j * a.astype(dt)
|
1728 |
+
m2 = 1 + 1j * b.astype(dt)
|
1729 |
+
self.check_qr(m1)
|
1730 |
+
self.check_qr(m2)
|
1731 |
+
self.check_qr(m2.T)
|
1732 |
+
|
1733 |
+
def check_qr_stacked(self, a):
|
1734 |
+
# This test expects the argument `a` to be an ndarray or
|
1735 |
+
# a subclass of an ndarray of inexact type.
|
1736 |
+
a_type = type(a)
|
1737 |
+
a_dtype = a.dtype
|
1738 |
+
m, n = a.shape[-2:]
|
1739 |
+
k = min(m, n)
|
1740 |
+
|
1741 |
+
# mode == 'complete'
|
1742 |
+
q, r = linalg.qr(a, mode='complete')
|
1743 |
+
assert_(q.dtype == a_dtype)
|
1744 |
+
assert_(r.dtype == a_dtype)
|
1745 |
+
assert_(isinstance(q, a_type))
|
1746 |
+
assert_(isinstance(r, a_type))
|
1747 |
+
assert_(q.shape[-2:] == (m, m))
|
1748 |
+
assert_(r.shape[-2:] == (m, n))
|
1749 |
+
assert_almost_equal(matmul(q, r), a)
|
1750 |
+
I_mat = np.identity(q.shape[-1])
|
1751 |
+
stack_I_mat = np.broadcast_to(I_mat,
|
1752 |
+
q.shape[:-2] + (q.shape[-1],)*2)
|
1753 |
+
assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
|
1754 |
+
assert_almost_equal(np.triu(r[..., :, :]), r)
|
1755 |
+
|
1756 |
+
# mode == 'reduced'
|
1757 |
+
q1, r1 = linalg.qr(a, mode='reduced')
|
1758 |
+
assert_(q1.dtype == a_dtype)
|
1759 |
+
assert_(r1.dtype == a_dtype)
|
1760 |
+
assert_(isinstance(q1, a_type))
|
1761 |
+
assert_(isinstance(r1, a_type))
|
1762 |
+
assert_(q1.shape[-2:] == (m, k))
|
1763 |
+
assert_(r1.shape[-2:] == (k, n))
|
1764 |
+
assert_almost_equal(matmul(q1, r1), a)
|
1765 |
+
I_mat = np.identity(q1.shape[-1])
|
1766 |
+
stack_I_mat = np.broadcast_to(I_mat,
|
1767 |
+
q1.shape[:-2] + (q1.shape[-1],)*2)
|
1768 |
+
assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1),
|
1769 |
+
stack_I_mat)
|
1770 |
+
assert_almost_equal(np.triu(r1[..., :, :]), r1)
|
1771 |
+
|
1772 |
+
# mode == 'r'
|
1773 |
+
r2 = linalg.qr(a, mode='r')
|
1774 |
+
assert_(r2.dtype == a_dtype)
|
1775 |
+
assert_(isinstance(r2, a_type))
|
1776 |
+
assert_almost_equal(r2, r1)
|
1777 |
+
|
1778 |
+
@pytest.mark.parametrize("size", [
|
1779 |
+
(3, 4), (4, 3), (4, 4),
|
1780 |
+
(3, 0), (0, 3)])
|
1781 |
+
@pytest.mark.parametrize("outer_size", [
|
1782 |
+
(2, 2), (2,), (2, 3, 4)])
|
1783 |
+
@pytest.mark.parametrize("dt", [
|
1784 |
+
np.single, np.double,
|
1785 |
+
np.csingle, np.cdouble])
|
1786 |
+
def test_stacked_inputs(self, outer_size, size, dt):
|
1787 |
+
|
1788 |
+
A = np.random.normal(size=outer_size + size).astype(dt)
|
1789 |
+
B = np.random.normal(size=outer_size + size).astype(dt)
|
1790 |
+
self.check_qr_stacked(A)
|
1791 |
+
self.check_qr_stacked(A + 1.j*B)
|
1792 |
+
|
1793 |
+
|
1794 |
+
class TestCholesky:
|
1795 |
+
# TODO: are there no other tests for cholesky?
|
1796 |
+
|
1797 |
+
@pytest.mark.parametrize(
|
1798 |
+
'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
|
1799 |
+
)
|
1800 |
+
@pytest.mark.parametrize(
|
1801 |
+
'dtype', (np.float32, np.float64, np.complex64, np.complex128)
|
1802 |
+
)
|
1803 |
+
def test_basic_property(self, shape, dtype):
|
1804 |
+
# Check A = L L^H
|
1805 |
+
np.random.seed(1)
|
1806 |
+
a = np.random.randn(*shape)
|
1807 |
+
if np.issubdtype(dtype, np.complexfloating):
|
1808 |
+
a = a + 1j*np.random.randn(*shape)
|
1809 |
+
|
1810 |
+
t = list(range(len(shape)))
|
1811 |
+
t[-2:] = -1, -2
|
1812 |
+
|
1813 |
+
a = np.matmul(a.transpose(t).conj(), a)
|
1814 |
+
a = np.asarray(a, dtype=dtype)
|
1815 |
+
|
1816 |
+
c = np.linalg.cholesky(a)
|
1817 |
+
|
1818 |
+
b = np.matmul(c, c.transpose(t).conj())
|
1819 |
+
with np._no_nep50_warning():
|
1820 |
+
atol = 500 * a.shape[0] * np.finfo(dtype).eps
|
1821 |
+
assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')
|
1822 |
+
|
1823 |
+
def test_0_size(self):
|
1824 |
+
class ArraySubclass(np.ndarray):
|
1825 |
+
pass
|
1826 |
+
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
|
1827 |
+
res = linalg.cholesky(a)
|
1828 |
+
assert_equal(a.shape, res.shape)
|
1829 |
+
assert_(res.dtype.type is np.float64)
|
1830 |
+
# for documentation purpose:
|
1831 |
+
assert_(isinstance(res, np.ndarray))
|
1832 |
+
|
1833 |
+
a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
|
1834 |
+
res = linalg.cholesky(a)
|
1835 |
+
assert_equal(a.shape, res.shape)
|
1836 |
+
assert_(res.dtype.type is np.complex64)
|
1837 |
+
assert_(isinstance(res, np.ndarray))
|
1838 |
+
|
1839 |
+
|
1840 |
+
def test_byteorder_check():
|
1841 |
+
# Byte order check should pass for native order
|
1842 |
+
if sys.byteorder == 'little':
|
1843 |
+
native = '<'
|
1844 |
+
else:
|
1845 |
+
native = '>'
|
1846 |
+
|
1847 |
+
for dtt in (np.float32, np.float64):
|
1848 |
+
arr = np.eye(4, dtype=dtt)
|
1849 |
+
n_arr = arr.newbyteorder(native)
|
1850 |
+
sw_arr = arr.newbyteorder('S').byteswap()
|
1851 |
+
assert_equal(arr.dtype.byteorder, '=')
|
1852 |
+
for routine in (linalg.inv, linalg.det, linalg.pinv):
|
1853 |
+
# Normal call
|
1854 |
+
res = routine(arr)
|
1855 |
+
# Native but not '='
|
1856 |
+
assert_array_equal(res, routine(n_arr))
|
1857 |
+
# Swapped
|
1858 |
+
assert_array_equal(res, routine(sw_arr))
|
1859 |
+
|
1860 |
+
|
1861 |
+
@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
|
1862 |
+
def test_generalized_raise_multiloop():
|
1863 |
+
# It should raise an error even if the error doesn't occur in the
|
1864 |
+
# last iteration of the ufunc inner loop
|
1865 |
+
|
1866 |
+
invertible = np.array([[1, 2], [3, 4]])
|
1867 |
+
non_invertible = np.array([[1, 1], [1, 1]])
|
1868 |
+
|
1869 |
+
x = np.zeros([4, 4, 2, 2])[1::2]
|
1870 |
+
x[...] = invertible
|
1871 |
+
x[0, 0] = non_invertible
|
1872 |
+
|
1873 |
+
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
|
1874 |
+
|
1875 |
+
|
1876 |
+
def test_xerbla_override():
|
1877 |
+
# Check that our xerbla has been successfully linked in. If it is not,
|
1878 |
+
# the default xerbla routine is called, which prints a message to stdout
|
1879 |
+
# and may, or may not, abort the process depending on the LAPACK package.
|
1880 |
+
|
1881 |
+
XERBLA_OK = 255
|
1882 |
+
|
1883 |
+
try:
|
1884 |
+
pid = os.fork()
|
1885 |
+
except (OSError, AttributeError):
|
1886 |
+
# fork failed, or not running on POSIX
|
1887 |
+
pytest.skip("Not POSIX or fork failed.")
|
1888 |
+
|
1889 |
+
if pid == 0:
|
1890 |
+
# child; close i/o file handles
|
1891 |
+
os.close(1)
|
1892 |
+
os.close(0)
|
1893 |
+
# Avoid producing core files.
|
1894 |
+
import resource
|
1895 |
+
resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
|
1896 |
+
# These calls may abort.
|
1897 |
+
try:
|
1898 |
+
np.linalg.lapack_lite.xerbla()
|
1899 |
+
except ValueError:
|
1900 |
+
pass
|
1901 |
+
except Exception:
|
1902 |
+
os._exit(os.EX_CONFIG)
|
1903 |
+
|
1904 |
+
try:
|
1905 |
+
a = np.array([[1.]])
|
1906 |
+
np.linalg.lapack_lite.dorgqr(
|
1907 |
+
1, 1, 1, a,
|
1908 |
+
0, # <- invalid value
|
1909 |
+
a, a, 0, 0)
|
1910 |
+
except ValueError as e:
|
1911 |
+
if "DORGQR parameter number 5" in str(e):
|
1912 |
+
# success, reuse error code to mark success as
|
1913 |
+
# FORTRAN STOP returns as success.
|
1914 |
+
os._exit(XERBLA_OK)
|
1915 |
+
|
1916 |
+
# Did not abort, but our xerbla was not linked in.
|
1917 |
+
os._exit(os.EX_CONFIG)
|
1918 |
+
else:
|
1919 |
+
# parent
|
1920 |
+
pid, status = os.wait()
|
1921 |
+
if os.WEXITSTATUS(status) != XERBLA_OK:
|
1922 |
+
pytest.skip('Numpy xerbla not linked in.')
|
1923 |
+
|
1924 |
+
|
1925 |
+
@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
|
1926 |
+
@pytest.mark.slow
|
1927 |
+
def test_sdot_bug_8577():
|
1928 |
+
# Regression test that loading certain other libraries does not
|
1929 |
+
# result to wrong results in float32 linear algebra.
|
1930 |
+
#
|
1931 |
+
# There's a bug gh-8577 on OSX that can trigger this, and perhaps
|
1932 |
+
# there are also other situations in which it occurs.
|
1933 |
+
#
|
1934 |
+
# Do the check in a separate process.
|
1935 |
+
|
1936 |
+
bad_libs = ['PyQt5.QtWidgets', 'IPython']
|
1937 |
+
|
1938 |
+
template = textwrap.dedent("""
|
1939 |
+
import sys
|
1940 |
+
{before}
|
1941 |
+
try:
|
1942 |
+
import {bad_lib}
|
1943 |
+
except ImportError:
|
1944 |
+
sys.exit(0)
|
1945 |
+
{after}
|
1946 |
+
x = np.ones(2, dtype=np.float32)
|
1947 |
+
sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
|
1948 |
+
""")
|
1949 |
+
|
1950 |
+
for bad_lib in bad_libs:
|
1951 |
+
code = template.format(before="import numpy as np", after="",
|
1952 |
+
bad_lib=bad_lib)
|
1953 |
+
subprocess.check_call([sys.executable, "-c", code])
|
1954 |
+
|
1955 |
+
# Swapped import order
|
1956 |
+
code = template.format(after="import numpy as np", before="",
|
1957 |
+
bad_lib=bad_lib)
|
1958 |
+
subprocess.check_call([sys.executable, "-c", code])
|
1959 |
+
|
1960 |
+
|
1961 |
+
class TestMultiDot:
|
1962 |
+
|
1963 |
+
def test_basic_function_with_three_arguments(self):
|
1964 |
+
# multi_dot with three arguments uses a fast hand coded algorithm to
|
1965 |
+
# determine the optimal order. Therefore test it separately.
|
1966 |
+
A = np.random.random((6, 2))
|
1967 |
+
B = np.random.random((2, 6))
|
1968 |
+
C = np.random.random((6, 2))
|
1969 |
+
|
1970 |
+
assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
|
1971 |
+
assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
|
1972 |
+
|
1973 |
+
def test_basic_function_with_two_arguments(self):
|
1974 |
+
# separate code path with two arguments
|
1975 |
+
A = np.random.random((6, 2))
|
1976 |
+
B = np.random.random((2, 6))
|
1977 |
+
|
1978 |
+
assert_almost_equal(multi_dot([A, B]), A.dot(B))
|
1979 |
+
assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
|
1980 |
+
|
1981 |
+
def test_basic_function_with_dynamic_programming_optimization(self):
|
1982 |
+
# multi_dot with four or more arguments uses the dynamic programming
|
1983 |
+
# optimization and therefore deserve a separate
|
1984 |
+
A = np.random.random((6, 2))
|
1985 |
+
B = np.random.random((2, 6))
|
1986 |
+
C = np.random.random((6, 2))
|
1987 |
+
D = np.random.random((2, 1))
|
1988 |
+
assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
|
1989 |
+
|
1990 |
+
def test_vector_as_first_argument(self):
|
1991 |
+
# The first argument can be 1-D
|
1992 |
+
A1d = np.random.random(2) # 1-D
|
1993 |
+
B = np.random.random((2, 6))
|
1994 |
+
C = np.random.random((6, 2))
|
1995 |
+
D = np.random.random((2, 2))
|
1996 |
+
|
1997 |
+
# the result should be 1-D
|
1998 |
+
assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
|
1999 |
+
|
2000 |
+
def test_vector_as_last_argument(self):
|
2001 |
+
# The last argument can be 1-D
|
2002 |
+
A = np.random.random((6, 2))
|
2003 |
+
B = np.random.random((2, 6))
|
2004 |
+
C = np.random.random((6, 2))
|
2005 |
+
D1d = np.random.random(2) # 1-D
|
2006 |
+
|
2007 |
+
# the result should be 1-D
|
2008 |
+
assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
|
2009 |
+
|
2010 |
+
def test_vector_as_first_and_last_argument(self):
|
2011 |
+
# The first and last arguments can be 1-D
|
2012 |
+
A1d = np.random.random(2) # 1-D
|
2013 |
+
B = np.random.random((2, 6))
|
2014 |
+
C = np.random.random((6, 2))
|
2015 |
+
D1d = np.random.random(2) # 1-D
|
2016 |
+
|
2017 |
+
# the result should be a scalar
|
2018 |
+
assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
|
2019 |
+
|
2020 |
+
def test_three_arguments_and_out(self):
|
2021 |
+
# multi_dot with three arguments uses a fast hand coded algorithm to
|
2022 |
+
# determine the optimal order. Therefore test it separately.
|
2023 |
+
A = np.random.random((6, 2))
|
2024 |
+
B = np.random.random((2, 6))
|
2025 |
+
C = np.random.random((6, 2))
|
2026 |
+
|
2027 |
+
out = np.zeros((6, 2))
|
2028 |
+
ret = multi_dot([A, B, C], out=out)
|
2029 |
+
assert out is ret
|
2030 |
+
assert_almost_equal(out, A.dot(B).dot(C))
|
2031 |
+
assert_almost_equal(out, np.dot(A, np.dot(B, C)))
|
2032 |
+
|
2033 |
+
def test_two_arguments_and_out(self):
|
2034 |
+
# separate code path with two arguments
|
2035 |
+
A = np.random.random((6, 2))
|
2036 |
+
B = np.random.random((2, 6))
|
2037 |
+
out = np.zeros((6, 6))
|
2038 |
+
ret = multi_dot([A, B], out=out)
|
2039 |
+
assert out is ret
|
2040 |
+
assert_almost_equal(out, A.dot(B))
|
2041 |
+
assert_almost_equal(out, np.dot(A, B))
|
2042 |
+
|
2043 |
+
def test_dynamic_programming_optimization_and_out(self):
|
2044 |
+
# multi_dot with four or more arguments uses the dynamic programming
|
2045 |
+
# optimization and therefore deserve a separate test
|
2046 |
+
A = np.random.random((6, 2))
|
2047 |
+
B = np.random.random((2, 6))
|
2048 |
+
C = np.random.random((6, 2))
|
2049 |
+
D = np.random.random((2, 1))
|
2050 |
+
out = np.zeros((6, 1))
|
2051 |
+
ret = multi_dot([A, B, C, D], out=out)
|
2052 |
+
assert out is ret
|
2053 |
+
assert_almost_equal(out, A.dot(B).dot(C).dot(D))
|
2054 |
+
|
2055 |
+
def test_dynamic_programming_logic(self):
|
2056 |
+
# Test for the dynamic programming part
|
2057 |
+
# This test is directly taken from Cormen page 376.
|
2058 |
+
arrays = [np.random.random((30, 35)),
|
2059 |
+
np.random.random((35, 15)),
|
2060 |
+
np.random.random((15, 5)),
|
2061 |
+
np.random.random((5, 10)),
|
2062 |
+
np.random.random((10, 20)),
|
2063 |
+
np.random.random((20, 25))]
|
2064 |
+
m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
|
2065 |
+
[0., 0., 2625., 4375., 7125., 10500.],
|
2066 |
+
[0., 0., 0., 750., 2500., 5375.],
|
2067 |
+
[0., 0., 0., 0., 1000., 3500.],
|
2068 |
+
[0., 0., 0., 0., 0., 5000.],
|
2069 |
+
[0., 0., 0., 0., 0., 0.]])
|
2070 |
+
s_expected = np.array([[0, 1, 1, 3, 3, 3],
|
2071 |
+
[0, 0, 2, 3, 3, 3],
|
2072 |
+
[0, 0, 0, 3, 3, 3],
|
2073 |
+
[0, 0, 0, 0, 4, 5],
|
2074 |
+
[0, 0, 0, 0, 0, 5],
|
2075 |
+
[0, 0, 0, 0, 0, 0]], dtype=int)
|
2076 |
+
s_expected -= 1 # Cormen uses 1-based index, python does not.
|
2077 |
+
|
2078 |
+
s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
|
2079 |
+
|
2080 |
+
# Only the upper triangular part (without the diagonal) is interesting.
|
2081 |
+
assert_almost_equal(np.triu(s[:-1, 1:]),
|
2082 |
+
np.triu(s_expected[:-1, 1:]))
|
2083 |
+
assert_almost_equal(np.triu(m), np.triu(m_expected))
|
2084 |
+
|
2085 |
+
def test_too_few_input_arrays(self):
|
2086 |
+
assert_raises(ValueError, multi_dot, [])
|
2087 |
+
assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
|
2088 |
+
|
2089 |
+
|
2090 |
+
class TestTensorinv:
|
2091 |
+
|
2092 |
+
@pytest.mark.parametrize("arr, ind", [
|
2093 |
+
(np.ones((4, 6, 8, 2)), 2),
|
2094 |
+
(np.ones((3, 3, 2)), 1),
|
2095 |
+
])
|
2096 |
+
def test_non_square_handling(self, arr, ind):
|
2097 |
+
with assert_raises(LinAlgError):
|
2098 |
+
linalg.tensorinv(arr, ind=ind)
|
2099 |
+
|
2100 |
+
@pytest.mark.parametrize("shape, ind", [
|
2101 |
+
# examples from docstring
|
2102 |
+
((4, 6, 8, 3), 2),
|
2103 |
+
((24, 8, 3), 1),
|
2104 |
+
])
|
2105 |
+
def test_tensorinv_shape(self, shape, ind):
|
2106 |
+
a = np.eye(24)
|
2107 |
+
a.shape = shape
|
2108 |
+
ainv = linalg.tensorinv(a=a, ind=ind)
|
2109 |
+
expected = a.shape[ind:] + a.shape[:ind]
|
2110 |
+
actual = ainv.shape
|
2111 |
+
assert_equal(actual, expected)
|
2112 |
+
|
2113 |
+
@pytest.mark.parametrize("ind", [
|
2114 |
+
0, -2,
|
2115 |
+
])
|
2116 |
+
def test_tensorinv_ind_limit(self, ind):
|
2117 |
+
a = np.eye(24)
|
2118 |
+
a.shape = (4, 6, 8, 3)
|
2119 |
+
with assert_raises(ValueError):
|
2120 |
+
linalg.tensorinv(a=a, ind=ind)
|
2121 |
+
|
2122 |
+
def test_tensorinv_result(self):
|
2123 |
+
# mimic a docstring example
|
2124 |
+
a = np.eye(24)
|
2125 |
+
a.shape = (24, 8, 3)
|
2126 |
+
ainv = linalg.tensorinv(a, ind=1)
|
2127 |
+
b = np.ones(24)
|
2128 |
+
assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
|
2129 |
+
|
2130 |
+
|
2131 |
+
class TestTensorsolve:
|
2132 |
+
|
2133 |
+
@pytest.mark.parametrize("a, axes", [
|
2134 |
+
(np.ones((4, 6, 8, 2)), None),
|
2135 |
+
(np.ones((3, 3, 2)), (0, 2)),
|
2136 |
+
])
|
2137 |
+
def test_non_square_handling(self, a, axes):
|
2138 |
+
with assert_raises(LinAlgError):
|
2139 |
+
b = np.ones(a.shape[:2])
|
2140 |
+
linalg.tensorsolve(a, b, axes=axes)
|
2141 |
+
|
2142 |
+
@pytest.mark.parametrize("shape",
|
2143 |
+
[(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
|
2144 |
+
)
|
2145 |
+
def test_tensorsolve_result(self, shape):
|
2146 |
+
a = np.random.randn(*shape)
|
2147 |
+
b = np.ones(a.shape[:2])
|
2148 |
+
x = np.linalg.tensorsolve(a, b)
|
2149 |
+
assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
|
2150 |
+
|
2151 |
+
|
2152 |
+
def test_unsupported_commontype():
|
2153 |
+
# linalg gracefully handles unsupported type
|
2154 |
+
arr = np.array([[1, -2], [2, 5]], dtype='float16')
|
2155 |
+
with assert_raises_regex(TypeError, "unsupported in linalg"):
|
2156 |
+
linalg.cholesky(arr)
|
2157 |
+
|
2158 |
+
|
2159 |
+
#@pytest.mark.slow
|
2160 |
+
#@pytest.mark.xfail(not HAS_LAPACK64, run=False,
|
2161 |
+
# reason="Numpy not compiled with 64-bit BLAS/LAPACK")
|
2162 |
+
#@requires_memory(free_bytes=16e9)
|
2163 |
+
@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
|
2164 |
+
def test_blas64_dot():
|
2165 |
+
n = 2**32
|
2166 |
+
a = np.zeros([1, n], dtype=np.float32)
|
2167 |
+
b = np.ones([1, 1], dtype=np.float32)
|
2168 |
+
a[0,-1] = 1
|
2169 |
+
c = np.dot(b, a)
|
2170 |
+
assert_equal(c[0,-1], 1)
|
2171 |
+
|
2172 |
+
|
2173 |
+
@pytest.mark.xfail(not HAS_LAPACK64,
|
2174 |
+
reason="Numpy not compiled with 64-bit BLAS/LAPACK")
|
2175 |
+
def test_blas64_geqrf_lwork_smoketest():
|
2176 |
+
# Smoke test LAPACK geqrf lwork call with 64-bit integers
|
2177 |
+
dtype = np.float64
|
2178 |
+
lapack_routine = np.linalg.lapack_lite.dgeqrf
|
2179 |
+
|
2180 |
+
m = 2**32 + 1
|
2181 |
+
n = 2**32 + 1
|
2182 |
+
lda = m
|
2183 |
+
|
2184 |
+
# Dummy arrays, not referenced by the lapack routine, so don't
|
2185 |
+
# need to be of the right size
|
2186 |
+
a = np.zeros([1, 1], dtype=dtype)
|
2187 |
+
work = np.zeros([1], dtype=dtype)
|
2188 |
+
tau = np.zeros([1], dtype=dtype)
|
2189 |
+
|
2190 |
+
# Size query
|
2191 |
+
results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
|
2192 |
+
assert_equal(results['info'], 0)
|
2193 |
+
assert_equal(results['m'], m)
|
2194 |
+
assert_equal(results['n'], m)
|
2195 |
+
|
2196 |
+
# Should result to an integer of a reasonable size
|
2197 |
+
lwork = int(work.item())
|
2198 |
+
assert_(2**32 < lwork < 2**42)
|
venv/lib/python3.10/site-packages/numpy/linalg/tests/test_regression.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Test functions for linalg module
|
2 |
+
"""
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy import linalg, arange, float64, array, dot, transpose
|
7 |
+
from numpy.testing import (
|
8 |
+
assert_, assert_raises, assert_equal, assert_array_equal,
|
9 |
+
assert_array_almost_equal, assert_array_less
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class TestRegression:
|
14 |
+
|
15 |
+
def test_eig_build(self):
|
16 |
+
# Ticket #652
|
17 |
+
rva = array([1.03221168e+02 + 0.j,
|
18 |
+
-1.91843603e+01 + 0.j,
|
19 |
+
-6.04004526e-01 + 15.84422474j,
|
20 |
+
-6.04004526e-01 - 15.84422474j,
|
21 |
+
-1.13692929e+01 + 0.j,
|
22 |
+
-6.57612485e-01 + 10.41755503j,
|
23 |
+
-6.57612485e-01 - 10.41755503j,
|
24 |
+
1.82126812e+01 + 0.j,
|
25 |
+
1.06011014e+01 + 0.j,
|
26 |
+
7.80732773e+00 + 0.j,
|
27 |
+
-7.65390898e-01 + 0.j,
|
28 |
+
1.51971555e-15 + 0.j,
|
29 |
+
-1.51308713e-15 + 0.j])
|
30 |
+
a = arange(13 * 13, dtype=float64)
|
31 |
+
a.shape = (13, 13)
|
32 |
+
a = a % 17
|
33 |
+
va, ve = linalg.eig(a)
|
34 |
+
va.sort()
|
35 |
+
rva.sort()
|
36 |
+
assert_array_almost_equal(va, rva)
|
37 |
+
|
38 |
+
def test_eigh_build(self):
|
39 |
+
# Ticket 662.
|
40 |
+
rvals = [68.60568999, 89.57756725, 106.67185574]
|
41 |
+
|
42 |
+
cov = array([[77.70273908, 3.51489954, 15.64602427],
|
43 |
+
[3.51489954, 88.97013878, -1.07431931],
|
44 |
+
[15.64602427, -1.07431931, 98.18223512]])
|
45 |
+
|
46 |
+
vals, vecs = linalg.eigh(cov)
|
47 |
+
assert_array_almost_equal(vals, rvals)
|
48 |
+
|
49 |
+
def test_svd_build(self):
|
50 |
+
# Ticket 627.
|
51 |
+
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
|
52 |
+
m, n = a.shape
|
53 |
+
u, s, vh = linalg.svd(a)
|
54 |
+
|
55 |
+
b = dot(transpose(u[:, n:]), a)
|
56 |
+
|
57 |
+
assert_array_almost_equal(b, np.zeros((2, 2)))
|
58 |
+
|
59 |
+
def test_norm_vector_badarg(self):
|
60 |
+
# Regression for #786: Frobenius norm for vectors raises
|
61 |
+
# ValueError.
|
62 |
+
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
|
63 |
+
|
64 |
+
def test_lapack_endian(self):
|
65 |
+
# For bug #1482
|
66 |
+
a = array([[5.7998084, -2.1825367],
|
67 |
+
[-2.1825367, 9.85910595]], dtype='>f8')
|
68 |
+
b = array(a, dtype='<f8')
|
69 |
+
|
70 |
+
ap = linalg.cholesky(a)
|
71 |
+
bp = linalg.cholesky(b)
|
72 |
+
assert_array_equal(ap, bp)
|
73 |
+
|
74 |
+
def test_large_svd_32bit(self):
|
75 |
+
# See gh-4442, 64bit would require very large/slow matrices.
|
76 |
+
x = np.eye(1000, 66)
|
77 |
+
np.linalg.svd(x)
|
78 |
+
|
79 |
+
def test_svd_no_uv(self):
|
80 |
+
# gh-4733
|
81 |
+
for shape in (3, 4), (4, 4), (4, 3):
|
82 |
+
for t in float, complex:
|
83 |
+
a = np.ones(shape, dtype=t)
|
84 |
+
w = linalg.svd(a, compute_uv=False)
|
85 |
+
c = np.count_nonzero(np.absolute(w) > 0.5)
|
86 |
+
assert_equal(c, 1)
|
87 |
+
assert_equal(np.linalg.matrix_rank(a), 1)
|
88 |
+
assert_array_less(1, np.linalg.norm(a, ord=2))
|
89 |
+
|
90 |
+
def test_norm_object_array(self):
|
91 |
+
# gh-7575
|
92 |
+
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
|
93 |
+
|
94 |
+
norm = linalg.norm(testvector)
|
95 |
+
assert_array_equal(norm, [0, 1])
|
96 |
+
assert_(norm.dtype == np.dtype('float64'))
|
97 |
+
|
98 |
+
norm = linalg.norm(testvector, ord=1)
|
99 |
+
assert_array_equal(norm, [0, 1])
|
100 |
+
assert_(norm.dtype != np.dtype('float64'))
|
101 |
+
|
102 |
+
norm = linalg.norm(testvector, ord=2)
|
103 |
+
assert_array_equal(norm, [0, 1])
|
104 |
+
assert_(norm.dtype == np.dtype('float64'))
|
105 |
+
|
106 |
+
assert_raises(ValueError, linalg.norm, testvector, ord='fro')
|
107 |
+
assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
|
108 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
|
109 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
|
110 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=0)
|
111 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-1)
|
112 |
+
assert_raises(ValueError, linalg.norm, testvector, ord=-2)
|
113 |
+
|
114 |
+
testmatrix = np.array([[np.array([0, 1]), 0, 0],
|
115 |
+
[0, 0, 0]], dtype=object)
|
116 |
+
|
117 |
+
norm = linalg.norm(testmatrix)
|
118 |
+
assert_array_equal(norm, [0, 1])
|
119 |
+
assert_(norm.dtype == np.dtype('float64'))
|
120 |
+
|
121 |
+
norm = linalg.norm(testmatrix, ord='fro')
|
122 |
+
assert_array_equal(norm, [0, 1])
|
123 |
+
assert_(norm.dtype == np.dtype('float64'))
|
124 |
+
|
125 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
|
126 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
|
127 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
|
128 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
|
129 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
|
130 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
|
131 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
|
132 |
+
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
|
133 |
+
assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
|
134 |
+
|
135 |
+
def test_lstsq_complex_larger_rhs(self):
|
136 |
+
# gh-9891
|
137 |
+
size = 20
|
138 |
+
n_rhs = 70
|
139 |
+
G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
|
140 |
+
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
|
141 |
+
b = G.dot(u)
|
142 |
+
# This should work without segmentation fault.
|
143 |
+
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
|
144 |
+
# check results just in case
|
145 |
+
assert_array_almost_equal(u_lstsq, u)
|
venv/lib/python3.10/site-packages/numpy/ma/LICENSE
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* Copyright (c) 2006, University of Georgia and Pierre G.F. Gerard-Marchant
|
2 |
+
* All rights reserved.
|
3 |
+
* Redistribution and use in source and binary forms, with or without
|
4 |
+
* modification, are permitted provided that the following conditions are met:
|
5 |
+
*
|
6 |
+
* * Redistributions of source code must retain the above copyright
|
7 |
+
* notice, this list of conditions and the following disclaimer.
|
8 |
+
* * Redistributions in binary form must reproduce the above copyright
|
9 |
+
* notice, this list of conditions and the following disclaimer in the
|
10 |
+
* documentation and/or other materials provided with the distribution.
|
11 |
+
* * Neither the name of the University of Georgia nor the
|
12 |
+
* names of its contributors may be used to endorse or promote products
|
13 |
+
* derived from this software without specific prior written permission.
|
14 |
+
*
|
15 |
+
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
|
16 |
+
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
17 |
+
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
18 |
+
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
|
19 |
+
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
20 |
+
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
21 |
+
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
22 |
+
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
23 |
+
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
24 |
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
venv/lib/python3.10/site-packages/numpy/ma/README.rst
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
==================================
|
2 |
+
A Guide to Masked Arrays in NumPy
|
3 |
+
==================================
|
4 |
+
|
5 |
+
.. Contents::
|
6 |
+
|
7 |
+
See http://www.scipy.org/scipy/numpy/wiki/MaskedArray (dead link)
|
8 |
+
for updates of this document.
|
9 |
+
|
10 |
+
|
11 |
+
History
|
12 |
+
-------
|
13 |
+
|
14 |
+
As a regular user of MaskedArray, I (Pierre G.F. Gerard-Marchant) became
|
15 |
+
increasingly frustrated with the subclassing of masked arrays (even if
|
16 |
+
I can only blame my inexperience). I needed to develop a class of arrays
|
17 |
+
that could store some additional information along with numerical values,
|
18 |
+
while keeping the possibility for missing data (picture storing a series
|
19 |
+
of dates along with measurements, what would later become the `TimeSeries
|
20 |
+
Scikit <http://projects.scipy.org/scipy/scikits/wiki/TimeSeries>`__
|
21 |
+
(dead link).
|
22 |
+
|
23 |
+
I started to implement such a class, but then quickly realized that
|
24 |
+
any additional information disappeared when processing these subarrays
|
25 |
+
(for example, adding a constant value to a subarray would erase its
|
26 |
+
dates). I ended up writing the equivalent of *numpy.core.ma* for my
|
27 |
+
particular class, ufuncs included. Everything went fine until I needed to
|
28 |
+
subclass my new class, when more problems showed up: some attributes of
|
29 |
+
the new subclass were lost during processing. I identified the culprit as
|
30 |
+
MaskedArray, which returns masked ndarrays when I expected masked
|
31 |
+
arrays of my class. I was preparing myself to rewrite *numpy.core.ma*
|
32 |
+
when I forced myself to learn how to subclass ndarrays. As I became more
|
33 |
+
familiar with the *__new__* and *__array_finalize__* methods,
|
34 |
+
I started to wonder why masked arrays were objects, and not ndarrays,
|
35 |
+
and whether it wouldn't be more convenient for subclassing if they did
|
36 |
+
behave like regular ndarrays.
|
37 |
+
|
38 |
+
The new *maskedarray* is what I eventually come up with. The
|
39 |
+
main differences with the initial *numpy.core.ma* package are
|
40 |
+
that MaskedArray is now a subclass of *ndarray* and that the
|
41 |
+
*_data* section can now be any subclass of *ndarray*. Apart from a
|
42 |
+
couple of issues listed below, the behavior of the new MaskedArray
|
43 |
+
class reproduces the old one. Initially the *maskedarray*
|
44 |
+
implementation was marginally slower than *numpy.ma* in some areas,
|
45 |
+
but work is underway to speed it up; the expectation is that it can be
|
46 |
+
made substantially faster than the present *numpy.ma*.
|
47 |
+
|
48 |
+
|
49 |
+
Note that if the subclass has some special methods and
|
50 |
+
attributes, they are not propagated to the masked version:
|
51 |
+
this would require a modification of the *__getattribute__*
|
52 |
+
method (first trying *ndarray.__getattribute__*, then trying
|
53 |
+
*self._data.__getattribute__* if an exception is raised in the first
|
54 |
+
place), which really slows things down.
|
55 |
+
|
56 |
+
Main differences
|
57 |
+
----------------
|
58 |
+
|
59 |
+
* The *_data* part of the masked array can be any subclass of ndarray (but not recarray, cf below).
|
60 |
+
* *fill_value* is now a property, not a function.
|
61 |
+
* in the majority of cases, the mask is forced to *nomask* when no value is actually masked. A notable exception is when a masked array (with no masked values) has just been unpickled.
|
62 |
+
* I got rid of the *share_mask* flag, I never understood its purpose.
|
63 |
+
* *put*, *putmask* and *take* now mimic the ndarray methods, to avoid unpleasant surprises. Moreover, *put* and *putmask* both update the mask when needed. * if *a* is a masked array, *bool(a)* raises a *ValueError*, as it does with ndarrays.
|
64 |
+
* in the same way, the comparison of two masked arrays is a masked array, not a boolean
|
65 |
+
* *filled(a)* returns an array of the same subclass as *a._data*, and no test is performed on whether it is contiguous or not.
|
66 |
+
* the mask is always printed, even if it's *nomask*, which makes things easy (for me at least) to remember that a masked array is used.
|
67 |
+
* *cumsum* works as if the *_data* array was filled with 0. The mask is preserved, but not updated.
|
68 |
+
* *cumprod* works as if the *_data* array was filled with 1. The mask is preserved, but not updated.
|
69 |
+
|
70 |
+
New features
|
71 |
+
------------
|
72 |
+
|
73 |
+
This list is non-exhaustive...
|
74 |
+
|
75 |
+
* the *mr_* function mimics *r_* for masked arrays.
|
76 |
+
* the *anom* method returns the anomalies (deviations from the average)
|
77 |
+
|
78 |
+
Using the new package with numpy.core.ma
|
79 |
+
----------------------------------------
|
80 |
+
|
81 |
+
I tried to make sure that the new package can understand old masked
|
82 |
+
arrays. Unfortunately, there's no upward compatibility.
|
83 |
+
|
84 |
+
For example:
|
85 |
+
|
86 |
+
>>> import numpy.core.ma as old_ma
|
87 |
+
>>> import maskedarray as new_ma
|
88 |
+
>>> x = old_ma.array([1,2,3,4,5], mask=[0,0,1,0,0])
|
89 |
+
>>> x
|
90 |
+
array(data =
|
91 |
+
[ 1 2 999999 4 5],
|
92 |
+
mask =
|
93 |
+
[False False True False False],
|
94 |
+
fill_value=999999)
|
95 |
+
>>> y = new_ma.array([1,2,3,4,5], mask=[0,0,1,0,0])
|
96 |
+
>>> y
|
97 |
+
array(data = [1 2 -- 4 5],
|
98 |
+
mask = [False False True False False],
|
99 |
+
fill_value=999999)
|
100 |
+
>>> x==y
|
101 |
+
array(data =
|
102 |
+
[True True True True True],
|
103 |
+
mask =
|
104 |
+
[False False True False False],
|
105 |
+
fill_value=?)
|
106 |
+
>>> old_ma.getmask(x) == new_ma.getmask(x)
|
107 |
+
array([True, True, True, True, True])
|
108 |
+
>>> old_ma.getmask(y) == new_ma.getmask(y)
|
109 |
+
array([True, True, False, True, True])
|
110 |
+
>>> old_ma.getmask(y)
|
111 |
+
False
|
112 |
+
|
113 |
+
|
114 |
+
Using maskedarray with matplotlib
|
115 |
+
---------------------------------
|
116 |
+
|
117 |
+
Starting with matplotlib 0.91.2, the masked array importing will work with
|
118 |
+
the maskedarray branch) as well as with earlier versions.
|
119 |
+
|
120 |
+
By default matplotlib still uses numpy.ma, but there is an rcParams setting
|
121 |
+
that you can use to select maskedarray instead. In the matplotlibrc file
|
122 |
+
you will find::
|
123 |
+
|
124 |
+
#maskedarray : False # True to use external maskedarray module
|
125 |
+
# instead of numpy.ma; this is a temporary #
|
126 |
+
setting for testing maskedarray.
|
127 |
+
|
128 |
+
|
129 |
+
Uncomment and set to True to select maskedarray everywhere.
|
130 |
+
Alternatively, you can test a script with maskedarray by using a
|
131 |
+
command-line option, e.g.::
|
132 |
+
|
133 |
+
python simple_plot.py --maskedarray
|
134 |
+
|
135 |
+
|
136 |
+
Masked records
|
137 |
+
--------------
|
138 |
+
|
139 |
+
Like *numpy.core.ma*, the *ndarray*-based implementation
|
140 |
+
of MaskedArray is limited when working with records: you can
|
141 |
+
mask any record of the array, but not a field in a record. If you
|
142 |
+
need this feature, you may want to give the *mrecords* package
|
143 |
+
a try (available in the *maskedarray* directory in the scipy
|
144 |
+
sandbox). This module defines a new class, *MaskedRecord*. An
|
145 |
+
instance of this class accepts a *recarray* as data, and uses two
|
146 |
+
masks: the *fieldmask* has as many entries as records in the array,
|
147 |
+
each entry with the same fields as a record, but of boolean types:
|
148 |
+
they indicate whether the field is masked or not; a record entry
|
149 |
+
is flagged as masked in the *mask* array if all the fields are
|
150 |
+
masked. A few examples in the file should give you an idea of what
|
151 |
+
can be done. Note that *mrecords* is still experimental...
|
152 |
+
|
153 |
+
Optimizing maskedarray
|
154 |
+
----------------------
|
155 |
+
|
156 |
+
Should masked arrays be filled before processing or not?
|
157 |
+
--------------------------------------------------------
|
158 |
+
|
159 |
+
In the current implementation, most operations on masked arrays involve
|
160 |
+
the following steps:
|
161 |
+
|
162 |
+
* the input arrays are filled
|
163 |
+
* the operation is performed on the filled arrays
|
164 |
+
* the mask is set for the results, from the combination of the input masks and the mask corresponding to the domain of the operation.
|
165 |
+
|
166 |
+
For example, consider the division of two masked arrays::
|
167 |
+
|
168 |
+
import numpy
|
169 |
+
import maskedarray as ma
|
170 |
+
x = ma.array([1,2,3,4],mask=[1,0,0,0], dtype=numpy.float_)
|
171 |
+
y = ma.array([-1,0,1,2], mask=[0,0,0,1], dtype=numpy.float_)
|
172 |
+
|
173 |
+
The division of x by y is then computed as::
|
174 |
+
|
175 |
+
d1 = x.filled(0) # d1 = array([0., 2., 3., 4.])
|
176 |
+
d2 = y.filled(1) # array([-1., 0., 1., 1.])
|
177 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
178 |
+
array([True,False,False,True])
|
179 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
180 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-0. inf, 3., 4.])
|
181 |
+
result._mask = logical_or(m, dm)
|
182 |
+
|
183 |
+
Note that a division by zero takes place. To avoid it, we can consider
|
184 |
+
to fill the input arrays, taking the domain mask into account, so that::
|
185 |
+
|
186 |
+
d1 = x._data.copy() # d1 = array([1., 2., 3., 4.])
|
187 |
+
d2 = y._data.copy() # array([-1., 0., 1., 2.])
|
188 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
189 |
+
numpy.putmask(d2, dm, 1) # d2 = array([-1., 1., 1., 2.])
|
190 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
191 |
+
array([True,False,False,True])
|
192 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-1. 0., 3., 2.])
|
193 |
+
result._mask = logical_or(m, dm)
|
194 |
+
|
195 |
+
Note that the *.copy()* is required to avoid updating the inputs with
|
196 |
+
*putmask*. The *.filled()* method also involves a *.copy()*.
|
197 |
+
|
198 |
+
A third possibility consists in avoid filling the arrays::
|
199 |
+
|
200 |
+
d1 = x._data # d1 = array([1., 2., 3., 4.])
|
201 |
+
d2 = y._data # array([-1., 0., 1., 2.])
|
202 |
+
dm = ma.divide.domain(d1,d2) # array([False, True, False, False])
|
203 |
+
m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m =
|
204 |
+
array([True,False,False,True])
|
205 |
+
result = (d1/d2).view(MaskedArray) # masked_array([-1. inf, 3., 2.])
|
206 |
+
result._mask = logical_or(m, dm)
|
207 |
+
|
208 |
+
Note that here again the division by zero takes place.
|
209 |
+
|
210 |
+
A quick benchmark gives the following results:
|
211 |
+
|
212 |
+
* *numpy.ma.divide* : 2.69 ms per loop
|
213 |
+
* classical division : 2.21 ms per loop
|
214 |
+
* division w/ prefilling : 2.34 ms per loop
|
215 |
+
* division w/o filling : 1.55 ms per loop
|
216 |
+
|
217 |
+
So, is it worth filling the arrays beforehand ? Yes, if we are interested
|
218 |
+
in avoiding floating-point exceptions that may fill the result with infs
|
219 |
+
and nans. No, if we are only interested into speed...
|
220 |
+
|
221 |
+
|
222 |
+
Thanks
|
223 |
+
------
|
224 |
+
|
225 |
+
I'd like to thank Paul Dubois, Travis Oliphant and Sasha for the
|
226 |
+
original masked array package: without you, I would never have started
|
227 |
+
that (it might be argued that I shouldn't have anyway, but that's
|
228 |
+
another story...). I also wish to extend these thanks to Reggie Dugard
|
229 |
+
and Eric Firing for their suggestions and numerous improvements.
|
230 |
+
|
231 |
+
|
232 |
+
Revision notes
|
233 |
+
--------------
|
234 |
+
|
235 |
+
* 08/25/2007 : Creation of this page
|
236 |
+
* 01/23/2007 : The package has been moved to the SciPy sandbox, and is regularly updated: please check out your SVN version!
|
venv/lib/python3.10/site-packages/numpy/ma/__init__.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=============
|
3 |
+
Masked Arrays
|
4 |
+
=============
|
5 |
+
|
6 |
+
Arrays sometimes contain invalid or missing data. When doing operations
|
7 |
+
on such arrays, we wish to suppress invalid values, which is the purpose masked
|
8 |
+
arrays fulfill (an example of typical use is given below).
|
9 |
+
|
10 |
+
For example, examine the following array:
|
11 |
+
|
12 |
+
>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])
|
13 |
+
|
14 |
+
When we try to calculate the mean of the data, the result is undetermined:
|
15 |
+
|
16 |
+
>>> np.mean(x)
|
17 |
+
nan
|
18 |
+
|
19 |
+
The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
|
20 |
+
any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter
|
21 |
+
masked arrays:
|
22 |
+
|
23 |
+
>>> m = np.ma.masked_array(x, np.isnan(x))
|
24 |
+
>>> m
|
25 |
+
masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
|
26 |
+
mask = [False False False True False False False True],
|
27 |
+
fill_value=1e+20)
|
28 |
+
|
29 |
+
Here, we construct a masked array that suppress all ``NaN`` values. We
|
30 |
+
may now proceed to calculate the mean of the other values:
|
31 |
+
|
32 |
+
>>> np.mean(m)
|
33 |
+
2.6666666666666665
|
34 |
+
|
35 |
+
.. [1] Not-a-Number, a floating point value that is the result of an
|
36 |
+
invalid operation.
|
37 |
+
|
38 |
+
.. moduleauthor:: Pierre Gerard-Marchant
|
39 |
+
.. moduleauthor:: Jarrod Millman
|
40 |
+
|
41 |
+
"""
|
42 |
+
from . import core
|
43 |
+
from .core import *
|
44 |
+
|
45 |
+
from . import extras
|
46 |
+
from .extras import *
|
47 |
+
|
48 |
+
__all__ = ['core', 'extras']
|
49 |
+
__all__ += core.__all__
|
50 |
+
__all__ += extras.__all__
|
51 |
+
|
52 |
+
from numpy._pytesttester import PytestTester
|
53 |
+
test = PytestTester(__name__)
|
54 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/ma/__init__.pyi
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from numpy.ma import extras as extras
|
4 |
+
|
5 |
+
from numpy.ma.core import (
|
6 |
+
MAError as MAError,
|
7 |
+
MaskError as MaskError,
|
8 |
+
MaskType as MaskType,
|
9 |
+
MaskedArray as MaskedArray,
|
10 |
+
abs as abs,
|
11 |
+
absolute as absolute,
|
12 |
+
add as add,
|
13 |
+
all as all,
|
14 |
+
allclose as allclose,
|
15 |
+
allequal as allequal,
|
16 |
+
alltrue as alltrue,
|
17 |
+
amax as amax,
|
18 |
+
amin as amin,
|
19 |
+
angle as angle,
|
20 |
+
anom as anom,
|
21 |
+
anomalies as anomalies,
|
22 |
+
any as any,
|
23 |
+
append as append,
|
24 |
+
arange as arange,
|
25 |
+
arccos as arccos,
|
26 |
+
arccosh as arccosh,
|
27 |
+
arcsin as arcsin,
|
28 |
+
arcsinh as arcsinh,
|
29 |
+
arctan as arctan,
|
30 |
+
arctan2 as arctan2,
|
31 |
+
arctanh as arctanh,
|
32 |
+
argmax as argmax,
|
33 |
+
argmin as argmin,
|
34 |
+
argsort as argsort,
|
35 |
+
around as around,
|
36 |
+
array as array,
|
37 |
+
asanyarray as asanyarray,
|
38 |
+
asarray as asarray,
|
39 |
+
bitwise_and as bitwise_and,
|
40 |
+
bitwise_or as bitwise_or,
|
41 |
+
bitwise_xor as bitwise_xor,
|
42 |
+
bool_ as bool_,
|
43 |
+
ceil as ceil,
|
44 |
+
choose as choose,
|
45 |
+
clip as clip,
|
46 |
+
common_fill_value as common_fill_value,
|
47 |
+
compress as compress,
|
48 |
+
compressed as compressed,
|
49 |
+
concatenate as concatenate,
|
50 |
+
conjugate as conjugate,
|
51 |
+
convolve as convolve,
|
52 |
+
copy as copy,
|
53 |
+
correlate as correlate,
|
54 |
+
cos as cos,
|
55 |
+
cosh as cosh,
|
56 |
+
count as count,
|
57 |
+
cumprod as cumprod,
|
58 |
+
cumsum as cumsum,
|
59 |
+
default_fill_value as default_fill_value,
|
60 |
+
diag as diag,
|
61 |
+
diagonal as diagonal,
|
62 |
+
diff as diff,
|
63 |
+
divide as divide,
|
64 |
+
empty as empty,
|
65 |
+
empty_like as empty_like,
|
66 |
+
equal as equal,
|
67 |
+
exp as exp,
|
68 |
+
expand_dims as expand_dims,
|
69 |
+
fabs as fabs,
|
70 |
+
filled as filled,
|
71 |
+
fix_invalid as fix_invalid,
|
72 |
+
flatten_mask as flatten_mask,
|
73 |
+
flatten_structured_array as flatten_structured_array,
|
74 |
+
floor as floor,
|
75 |
+
floor_divide as floor_divide,
|
76 |
+
fmod as fmod,
|
77 |
+
frombuffer as frombuffer,
|
78 |
+
fromflex as fromflex,
|
79 |
+
fromfunction as fromfunction,
|
80 |
+
getdata as getdata,
|
81 |
+
getmask as getmask,
|
82 |
+
getmaskarray as getmaskarray,
|
83 |
+
greater as greater,
|
84 |
+
greater_equal as greater_equal,
|
85 |
+
harden_mask as harden_mask,
|
86 |
+
hypot as hypot,
|
87 |
+
identity as identity,
|
88 |
+
ids as ids,
|
89 |
+
indices as indices,
|
90 |
+
inner as inner,
|
91 |
+
innerproduct as innerproduct,
|
92 |
+
isMA as isMA,
|
93 |
+
isMaskedArray as isMaskedArray,
|
94 |
+
is_mask as is_mask,
|
95 |
+
is_masked as is_masked,
|
96 |
+
isarray as isarray,
|
97 |
+
left_shift as left_shift,
|
98 |
+
less as less,
|
99 |
+
less_equal as less_equal,
|
100 |
+
log as log,
|
101 |
+
log10 as log10,
|
102 |
+
log2 as log2,
|
103 |
+
logical_and as logical_and,
|
104 |
+
logical_not as logical_not,
|
105 |
+
logical_or as logical_or,
|
106 |
+
logical_xor as logical_xor,
|
107 |
+
make_mask as make_mask,
|
108 |
+
make_mask_descr as make_mask_descr,
|
109 |
+
make_mask_none as make_mask_none,
|
110 |
+
mask_or as mask_or,
|
111 |
+
masked as masked,
|
112 |
+
masked_array as masked_array,
|
113 |
+
masked_equal as masked_equal,
|
114 |
+
masked_greater as masked_greater,
|
115 |
+
masked_greater_equal as masked_greater_equal,
|
116 |
+
masked_inside as masked_inside,
|
117 |
+
masked_invalid as masked_invalid,
|
118 |
+
masked_less as masked_less,
|
119 |
+
masked_less_equal as masked_less_equal,
|
120 |
+
masked_not_equal as masked_not_equal,
|
121 |
+
masked_object as masked_object,
|
122 |
+
masked_outside as masked_outside,
|
123 |
+
masked_print_option as masked_print_option,
|
124 |
+
masked_singleton as masked_singleton,
|
125 |
+
masked_values as masked_values,
|
126 |
+
masked_where as masked_where,
|
127 |
+
max as max,
|
128 |
+
maximum as maximum,
|
129 |
+
maximum_fill_value as maximum_fill_value,
|
130 |
+
mean as mean,
|
131 |
+
min as min,
|
132 |
+
minimum as minimum,
|
133 |
+
minimum_fill_value as minimum_fill_value,
|
134 |
+
mod as mod,
|
135 |
+
multiply as multiply,
|
136 |
+
mvoid as mvoid,
|
137 |
+
ndim as ndim,
|
138 |
+
negative as negative,
|
139 |
+
nomask as nomask,
|
140 |
+
nonzero as nonzero,
|
141 |
+
not_equal as not_equal,
|
142 |
+
ones as ones,
|
143 |
+
outer as outer,
|
144 |
+
outerproduct as outerproduct,
|
145 |
+
power as power,
|
146 |
+
prod as prod,
|
147 |
+
product as product,
|
148 |
+
ptp as ptp,
|
149 |
+
put as put,
|
150 |
+
putmask as putmask,
|
151 |
+
ravel as ravel,
|
152 |
+
remainder as remainder,
|
153 |
+
repeat as repeat,
|
154 |
+
reshape as reshape,
|
155 |
+
resize as resize,
|
156 |
+
right_shift as right_shift,
|
157 |
+
round as round,
|
158 |
+
set_fill_value as set_fill_value,
|
159 |
+
shape as shape,
|
160 |
+
sin as sin,
|
161 |
+
sinh as sinh,
|
162 |
+
size as size,
|
163 |
+
soften_mask as soften_mask,
|
164 |
+
sometrue as sometrue,
|
165 |
+
sort as sort,
|
166 |
+
sqrt as sqrt,
|
167 |
+
squeeze as squeeze,
|
168 |
+
std as std,
|
169 |
+
subtract as subtract,
|
170 |
+
sum as sum,
|
171 |
+
swapaxes as swapaxes,
|
172 |
+
take as take,
|
173 |
+
tan as tan,
|
174 |
+
tanh as tanh,
|
175 |
+
trace as trace,
|
176 |
+
transpose as transpose,
|
177 |
+
true_divide as true_divide,
|
178 |
+
var as var,
|
179 |
+
where as where,
|
180 |
+
zeros as zeros,
|
181 |
+
)
|
182 |
+
|
183 |
+
from numpy.ma.extras import (
|
184 |
+
apply_along_axis as apply_along_axis,
|
185 |
+
apply_over_axes as apply_over_axes,
|
186 |
+
atleast_1d as atleast_1d,
|
187 |
+
atleast_2d as atleast_2d,
|
188 |
+
atleast_3d as atleast_3d,
|
189 |
+
average as average,
|
190 |
+
clump_masked as clump_masked,
|
191 |
+
clump_unmasked as clump_unmasked,
|
192 |
+
column_stack as column_stack,
|
193 |
+
compress_cols as compress_cols,
|
194 |
+
compress_nd as compress_nd,
|
195 |
+
compress_rowcols as compress_rowcols,
|
196 |
+
compress_rows as compress_rows,
|
197 |
+
count_masked as count_masked,
|
198 |
+
corrcoef as corrcoef,
|
199 |
+
cov as cov,
|
200 |
+
diagflat as diagflat,
|
201 |
+
dot as dot,
|
202 |
+
dstack as dstack,
|
203 |
+
ediff1d as ediff1d,
|
204 |
+
flatnotmasked_contiguous as flatnotmasked_contiguous,
|
205 |
+
flatnotmasked_edges as flatnotmasked_edges,
|
206 |
+
hsplit as hsplit,
|
207 |
+
hstack as hstack,
|
208 |
+
isin as isin,
|
209 |
+
in1d as in1d,
|
210 |
+
intersect1d as intersect1d,
|
211 |
+
mask_cols as mask_cols,
|
212 |
+
mask_rowcols as mask_rowcols,
|
213 |
+
mask_rows as mask_rows,
|
214 |
+
masked_all as masked_all,
|
215 |
+
masked_all_like as masked_all_like,
|
216 |
+
median as median,
|
217 |
+
mr_ as mr_,
|
218 |
+
ndenumerate as ndenumerate,
|
219 |
+
notmasked_contiguous as notmasked_contiguous,
|
220 |
+
notmasked_edges as notmasked_edges,
|
221 |
+
polyfit as polyfit,
|
222 |
+
row_stack as row_stack,
|
223 |
+
setdiff1d as setdiff1d,
|
224 |
+
setxor1d as setxor1d,
|
225 |
+
stack as stack,
|
226 |
+
unique as unique,
|
227 |
+
union1d as union1d,
|
228 |
+
vander as vander,
|
229 |
+
vstack as vstack,
|
230 |
+
)
|
231 |
+
|
232 |
+
__all__: list[str]
|
233 |
+
__path__: list[str]
|
234 |
+
test: PytestTester
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/core.cpython-310.pyc
ADDED
Binary file (224 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/extras.cpython-310.pyc
ADDED
Binary file (57.2 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/mrecords.cpython-310.pyc
ADDED
Binary file (21.9 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/setup.cpython-310.pyc
ADDED
Binary file (625 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/testutils.cpython-310.pyc
ADDED
Binary file (7.8 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/__pycache__/timer_comparison.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/core.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/numpy/ma/core.pyi
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable
|
2 |
+
from typing import Any, TypeVar
|
3 |
+
from numpy import ndarray, dtype, float64
|
4 |
+
|
5 |
+
from numpy import (
|
6 |
+
amax as amax,
|
7 |
+
amin as amin,
|
8 |
+
bool_ as bool_,
|
9 |
+
expand_dims as expand_dims,
|
10 |
+
clip as clip,
|
11 |
+
indices as indices,
|
12 |
+
ones_like as ones_like,
|
13 |
+
squeeze as squeeze,
|
14 |
+
zeros_like as zeros_like,
|
15 |
+
)
|
16 |
+
|
17 |
+
from numpy.lib.function_base import (
|
18 |
+
angle as angle,
|
19 |
+
)
|
20 |
+
|
21 |
+
# TODO: Set the `bound` to something more suitable once we
|
22 |
+
# have proper shape support
|
23 |
+
_ShapeType = TypeVar("_ShapeType", bound=Any)
|
24 |
+
_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True)
|
25 |
+
|
26 |
+
__all__: list[str]
|
27 |
+
|
28 |
+
MaskType = bool_
|
29 |
+
nomask: bool_
|
30 |
+
|
31 |
+
class MaskedArrayFutureWarning(FutureWarning): ...
|
32 |
+
class MAError(Exception): ...
|
33 |
+
class MaskError(MAError): ...
|
34 |
+
|
35 |
+
def default_fill_value(obj): ...
|
36 |
+
def minimum_fill_value(obj): ...
|
37 |
+
def maximum_fill_value(obj): ...
|
38 |
+
def set_fill_value(a, fill_value): ...
|
39 |
+
def common_fill_value(a, b): ...
|
40 |
+
def filled(a, fill_value=...): ...
|
41 |
+
def getdata(a, subok=...): ...
|
42 |
+
get_data = getdata
|
43 |
+
|
44 |
+
def fix_invalid(a, mask=..., copy=..., fill_value=...): ...
|
45 |
+
|
46 |
+
class _MaskedUFunc:
|
47 |
+
f: Any
|
48 |
+
__doc__: Any
|
49 |
+
__name__: Any
|
50 |
+
def __init__(self, ufunc): ...
|
51 |
+
|
52 |
+
class _MaskedUnaryOperation(_MaskedUFunc):
|
53 |
+
fill: Any
|
54 |
+
domain: Any
|
55 |
+
def __init__(self, mufunc, fill=..., domain=...): ...
|
56 |
+
def __call__(self, a, *args, **kwargs): ...
|
57 |
+
|
58 |
+
class _MaskedBinaryOperation(_MaskedUFunc):
|
59 |
+
fillx: Any
|
60 |
+
filly: Any
|
61 |
+
def __init__(self, mbfunc, fillx=..., filly=...): ...
|
62 |
+
def __call__(self, a, b, *args, **kwargs): ...
|
63 |
+
def reduce(self, target, axis=..., dtype=...): ...
|
64 |
+
def outer(self, a, b): ...
|
65 |
+
def accumulate(self, target, axis=...): ...
|
66 |
+
|
67 |
+
class _DomainedBinaryOperation(_MaskedUFunc):
|
68 |
+
domain: Any
|
69 |
+
fillx: Any
|
70 |
+
filly: Any
|
71 |
+
def __init__(self, dbfunc, domain, fillx=..., filly=...): ...
|
72 |
+
def __call__(self, a, b, *args, **kwargs): ...
|
73 |
+
|
74 |
+
exp: _MaskedUnaryOperation
|
75 |
+
conjugate: _MaskedUnaryOperation
|
76 |
+
sin: _MaskedUnaryOperation
|
77 |
+
cos: _MaskedUnaryOperation
|
78 |
+
arctan: _MaskedUnaryOperation
|
79 |
+
arcsinh: _MaskedUnaryOperation
|
80 |
+
sinh: _MaskedUnaryOperation
|
81 |
+
cosh: _MaskedUnaryOperation
|
82 |
+
tanh: _MaskedUnaryOperation
|
83 |
+
abs: _MaskedUnaryOperation
|
84 |
+
absolute: _MaskedUnaryOperation
|
85 |
+
fabs: _MaskedUnaryOperation
|
86 |
+
negative: _MaskedUnaryOperation
|
87 |
+
floor: _MaskedUnaryOperation
|
88 |
+
ceil: _MaskedUnaryOperation
|
89 |
+
around: _MaskedUnaryOperation
|
90 |
+
logical_not: _MaskedUnaryOperation
|
91 |
+
sqrt: _MaskedUnaryOperation
|
92 |
+
log: _MaskedUnaryOperation
|
93 |
+
log2: _MaskedUnaryOperation
|
94 |
+
log10: _MaskedUnaryOperation
|
95 |
+
tan: _MaskedUnaryOperation
|
96 |
+
arcsin: _MaskedUnaryOperation
|
97 |
+
arccos: _MaskedUnaryOperation
|
98 |
+
arccosh: _MaskedUnaryOperation
|
99 |
+
arctanh: _MaskedUnaryOperation
|
100 |
+
|
101 |
+
add: _MaskedBinaryOperation
|
102 |
+
subtract: _MaskedBinaryOperation
|
103 |
+
multiply: _MaskedBinaryOperation
|
104 |
+
arctan2: _MaskedBinaryOperation
|
105 |
+
equal: _MaskedBinaryOperation
|
106 |
+
not_equal: _MaskedBinaryOperation
|
107 |
+
less_equal: _MaskedBinaryOperation
|
108 |
+
greater_equal: _MaskedBinaryOperation
|
109 |
+
less: _MaskedBinaryOperation
|
110 |
+
greater: _MaskedBinaryOperation
|
111 |
+
logical_and: _MaskedBinaryOperation
|
112 |
+
alltrue: _MaskedBinaryOperation
|
113 |
+
logical_or: _MaskedBinaryOperation
|
114 |
+
sometrue: Callable[..., Any]
|
115 |
+
logical_xor: _MaskedBinaryOperation
|
116 |
+
bitwise_and: _MaskedBinaryOperation
|
117 |
+
bitwise_or: _MaskedBinaryOperation
|
118 |
+
bitwise_xor: _MaskedBinaryOperation
|
119 |
+
hypot: _MaskedBinaryOperation
|
120 |
+
divide: _MaskedBinaryOperation
|
121 |
+
true_divide: _MaskedBinaryOperation
|
122 |
+
floor_divide: _MaskedBinaryOperation
|
123 |
+
remainder: _MaskedBinaryOperation
|
124 |
+
fmod: _MaskedBinaryOperation
|
125 |
+
mod: _MaskedBinaryOperation
|
126 |
+
|
127 |
+
def make_mask_descr(ndtype): ...
|
128 |
+
def getmask(a): ...
|
129 |
+
get_mask = getmask
|
130 |
+
|
131 |
+
def getmaskarray(arr): ...
|
132 |
+
def is_mask(m): ...
|
133 |
+
def make_mask(m, copy=..., shrink=..., dtype=...): ...
|
134 |
+
def make_mask_none(newshape, dtype=...): ...
|
135 |
+
def mask_or(m1, m2, copy=..., shrink=...): ...
|
136 |
+
def flatten_mask(mask): ...
|
137 |
+
def masked_where(condition, a, copy=...): ...
|
138 |
+
def masked_greater(x, value, copy=...): ...
|
139 |
+
def masked_greater_equal(x, value, copy=...): ...
|
140 |
+
def masked_less(x, value, copy=...): ...
|
141 |
+
def masked_less_equal(x, value, copy=...): ...
|
142 |
+
def masked_not_equal(x, value, copy=...): ...
|
143 |
+
def masked_equal(x, value, copy=...): ...
|
144 |
+
def masked_inside(x, v1, v2, copy=...): ...
|
145 |
+
def masked_outside(x, v1, v2, copy=...): ...
|
146 |
+
def masked_object(x, value, copy=..., shrink=...): ...
|
147 |
+
def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ...
|
148 |
+
def masked_invalid(a, copy=...): ...
|
149 |
+
|
150 |
+
class _MaskedPrintOption:
|
151 |
+
def __init__(self, display): ...
|
152 |
+
def display(self): ...
|
153 |
+
def set_display(self, s): ...
|
154 |
+
def enabled(self): ...
|
155 |
+
def enable(self, shrink=...): ...
|
156 |
+
|
157 |
+
masked_print_option: _MaskedPrintOption
|
158 |
+
|
159 |
+
def flatten_structured_array(a): ...
|
160 |
+
|
161 |
+
class MaskedIterator:
|
162 |
+
ma: Any
|
163 |
+
dataiter: Any
|
164 |
+
maskiter: Any
|
165 |
+
def __init__(self, ma): ...
|
166 |
+
def __iter__(self): ...
|
167 |
+
def __getitem__(self, indx): ...
|
168 |
+
def __setitem__(self, index, value): ...
|
169 |
+
def __next__(self): ...
|
170 |
+
|
171 |
+
class MaskedArray(ndarray[_ShapeType, _DType_co]):
|
172 |
+
__array_priority__: Any
|
173 |
+
def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ...
|
174 |
+
def __array_finalize__(self, obj): ...
|
175 |
+
def __array_wrap__(self, obj, context=...): ...
|
176 |
+
def view(self, dtype=..., type=..., fill_value=...): ...
|
177 |
+
def __getitem__(self, indx): ...
|
178 |
+
def __setitem__(self, indx, value): ...
|
179 |
+
@property
|
180 |
+
def dtype(self): ...
|
181 |
+
@dtype.setter
|
182 |
+
def dtype(self, dtype): ...
|
183 |
+
@property
|
184 |
+
def shape(self): ...
|
185 |
+
@shape.setter
|
186 |
+
def shape(self, shape): ...
|
187 |
+
def __setmask__(self, mask, copy=...): ...
|
188 |
+
@property
|
189 |
+
def mask(self): ...
|
190 |
+
@mask.setter
|
191 |
+
def mask(self, value): ...
|
192 |
+
@property
|
193 |
+
def recordmask(self): ...
|
194 |
+
@recordmask.setter
|
195 |
+
def recordmask(self, mask): ...
|
196 |
+
def harden_mask(self): ...
|
197 |
+
def soften_mask(self): ...
|
198 |
+
@property
|
199 |
+
def hardmask(self): ...
|
200 |
+
def unshare_mask(self): ...
|
201 |
+
@property
|
202 |
+
def sharedmask(self): ...
|
203 |
+
def shrink_mask(self): ...
|
204 |
+
@property
|
205 |
+
def baseclass(self): ...
|
206 |
+
data: Any
|
207 |
+
@property
|
208 |
+
def flat(self): ...
|
209 |
+
@flat.setter
|
210 |
+
def flat(self, value): ...
|
211 |
+
@property
|
212 |
+
def fill_value(self): ...
|
213 |
+
@fill_value.setter
|
214 |
+
def fill_value(self, value=...): ...
|
215 |
+
get_fill_value: Any
|
216 |
+
set_fill_value: Any
|
217 |
+
def filled(self, fill_value=...): ...
|
218 |
+
def compressed(self): ...
|
219 |
+
def compress(self, condition, axis=..., out=...): ...
|
220 |
+
def __eq__(self, other): ...
|
221 |
+
def __ne__(self, other): ...
|
222 |
+
def __ge__(self, other): ...
|
223 |
+
def __gt__(self, other): ...
|
224 |
+
def __le__(self, other): ...
|
225 |
+
def __lt__(self, other): ...
|
226 |
+
def __add__(self, other): ...
|
227 |
+
def __radd__(self, other): ...
|
228 |
+
def __sub__(self, other): ...
|
229 |
+
def __rsub__(self, other): ...
|
230 |
+
def __mul__(self, other): ...
|
231 |
+
def __rmul__(self, other): ...
|
232 |
+
def __div__(self, other): ...
|
233 |
+
def __truediv__(self, other): ...
|
234 |
+
def __rtruediv__(self, other): ...
|
235 |
+
def __floordiv__(self, other): ...
|
236 |
+
def __rfloordiv__(self, other): ...
|
237 |
+
def __pow__(self, other): ...
|
238 |
+
def __rpow__(self, other): ...
|
239 |
+
def __iadd__(self, other): ...
|
240 |
+
def __isub__(self, other): ...
|
241 |
+
def __imul__(self, other): ...
|
242 |
+
def __idiv__(self, other): ...
|
243 |
+
def __ifloordiv__(self, other): ...
|
244 |
+
def __itruediv__(self, other): ...
|
245 |
+
def __ipow__(self, other): ...
|
246 |
+
def __float__(self): ...
|
247 |
+
def __int__(self): ...
|
248 |
+
@property # type: ignore[misc]
|
249 |
+
def imag(self): ...
|
250 |
+
get_imag: Any
|
251 |
+
@property # type: ignore[misc]
|
252 |
+
def real(self): ...
|
253 |
+
get_real: Any
|
254 |
+
def count(self, axis=..., keepdims=...): ...
|
255 |
+
def ravel(self, order=...): ...
|
256 |
+
def reshape(self, *s, **kwargs): ...
|
257 |
+
def resize(self, newshape, refcheck=..., order=...): ...
|
258 |
+
def put(self, indices, values, mode=...): ...
|
259 |
+
def ids(self): ...
|
260 |
+
def iscontiguous(self): ...
|
261 |
+
def all(self, axis=..., out=..., keepdims=...): ...
|
262 |
+
def any(self, axis=..., out=..., keepdims=...): ...
|
263 |
+
def nonzero(self): ...
|
264 |
+
def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ...
|
265 |
+
def dot(self, b, out=..., strict=...): ...
|
266 |
+
def sum(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
267 |
+
def cumsum(self, axis=..., dtype=..., out=...): ...
|
268 |
+
def prod(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
269 |
+
product: Any
|
270 |
+
def cumprod(self, axis=..., dtype=..., out=...): ...
|
271 |
+
def mean(self, axis=..., dtype=..., out=..., keepdims=...): ...
|
272 |
+
def anom(self, axis=..., dtype=...): ...
|
273 |
+
def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
|
274 |
+
def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ...
|
275 |
+
def round(self, decimals=..., out=...): ...
|
276 |
+
def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
277 |
+
def argmin(self, axis=..., fill_value=..., out=..., *, keepdims=...): ...
|
278 |
+
def argmax(self, axis=..., fill_value=..., out=..., *, keepdims=...): ...
|
279 |
+
def sort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
280 |
+
def min(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
281 |
+
# NOTE: deprecated
|
282 |
+
# def tostring(self, fill_value=..., order=...): ...
|
283 |
+
def max(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
284 |
+
def ptp(self, axis=..., out=..., fill_value=..., keepdims=...): ...
|
285 |
+
def partition(self, *args, **kwargs): ...
|
286 |
+
def argpartition(self, *args, **kwargs): ...
|
287 |
+
def take(self, indices, axis=..., out=..., mode=...): ...
|
288 |
+
copy: Any
|
289 |
+
diagonal: Any
|
290 |
+
flatten: Any
|
291 |
+
repeat: Any
|
292 |
+
squeeze: Any
|
293 |
+
swapaxes: Any
|
294 |
+
T: Any
|
295 |
+
transpose: Any
|
296 |
+
def tolist(self, fill_value=...): ...
|
297 |
+
def tobytes(self, fill_value=..., order=...): ...
|
298 |
+
def tofile(self, fid, sep=..., format=...): ...
|
299 |
+
def toflex(self): ...
|
300 |
+
torecords: Any
|
301 |
+
def __reduce__(self): ...
|
302 |
+
def __deepcopy__(self, memo=...): ...
|
303 |
+
|
304 |
+
class mvoid(MaskedArray[_ShapeType, _DType_co]):
|
305 |
+
def __new__(
|
306 |
+
self,
|
307 |
+
data,
|
308 |
+
mask=...,
|
309 |
+
dtype=...,
|
310 |
+
fill_value=...,
|
311 |
+
hardmask=...,
|
312 |
+
copy=...,
|
313 |
+
subok=...,
|
314 |
+
): ...
|
315 |
+
def __getitem__(self, indx): ...
|
316 |
+
def __setitem__(self, indx, value): ...
|
317 |
+
def __iter__(self): ...
|
318 |
+
def __len__(self): ...
|
319 |
+
def filled(self, fill_value=...): ...
|
320 |
+
def tolist(self): ...
|
321 |
+
|
322 |
+
def isMaskedArray(x): ...
|
323 |
+
isarray = isMaskedArray
|
324 |
+
isMA = isMaskedArray
|
325 |
+
|
326 |
+
# 0D float64 array
|
327 |
+
class MaskedConstant(MaskedArray[Any, dtype[float64]]):
|
328 |
+
def __new__(cls): ...
|
329 |
+
__class__: Any
|
330 |
+
def __array_finalize__(self, obj): ...
|
331 |
+
def __array_prepare__(self, obj, context=...): ...
|
332 |
+
def __array_wrap__(self, obj, context=...): ...
|
333 |
+
def __format__(self, format_spec): ...
|
334 |
+
def __reduce__(self): ...
|
335 |
+
def __iop__(self, other): ...
|
336 |
+
__iadd__: Any
|
337 |
+
__isub__: Any
|
338 |
+
__imul__: Any
|
339 |
+
__ifloordiv__: Any
|
340 |
+
__itruediv__: Any
|
341 |
+
__ipow__: Any
|
342 |
+
def copy(self, *args, **kwargs): ...
|
343 |
+
def __copy__(self): ...
|
344 |
+
def __deepcopy__(self, memo): ...
|
345 |
+
def __setattr__(self, attr, value): ...
|
346 |
+
|
347 |
+
masked: MaskedConstant
|
348 |
+
masked_singleton: MaskedConstant
|
349 |
+
masked_array = MaskedArray
|
350 |
+
|
351 |
+
def array(
|
352 |
+
data,
|
353 |
+
dtype=...,
|
354 |
+
copy=...,
|
355 |
+
order=...,
|
356 |
+
mask=...,
|
357 |
+
fill_value=...,
|
358 |
+
keep_mask=...,
|
359 |
+
hard_mask=...,
|
360 |
+
shrink=...,
|
361 |
+
subok=...,
|
362 |
+
ndmin=...,
|
363 |
+
): ...
|
364 |
+
def is_masked(x): ...
|
365 |
+
|
366 |
+
class _extrema_operation(_MaskedUFunc):
|
367 |
+
compare: Any
|
368 |
+
fill_value_func: Any
|
369 |
+
def __init__(self, ufunc, compare, fill_value): ...
|
370 |
+
# NOTE: in practice `b` has a default value, but users should
|
371 |
+
# explicitly provide a value here as the default is deprecated
|
372 |
+
def __call__(self, a, b): ...
|
373 |
+
def reduce(self, target, axis=...): ...
|
374 |
+
def outer(self, a, b): ...
|
375 |
+
|
376 |
+
def min(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
377 |
+
def max(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
378 |
+
def ptp(obj, axis=..., out=..., fill_value=..., keepdims=...): ...
|
379 |
+
|
380 |
+
class _frommethod:
|
381 |
+
__name__: Any
|
382 |
+
__doc__: Any
|
383 |
+
reversed: Any
|
384 |
+
def __init__(self, methodname, reversed=...): ...
|
385 |
+
def getdoc(self): ...
|
386 |
+
def __call__(self, a, *args, **params): ...
|
387 |
+
|
388 |
+
all: _frommethod
|
389 |
+
anomalies: _frommethod
|
390 |
+
anom: _frommethod
|
391 |
+
any: _frommethod
|
392 |
+
compress: _frommethod
|
393 |
+
cumprod: _frommethod
|
394 |
+
cumsum: _frommethod
|
395 |
+
copy: _frommethod
|
396 |
+
diagonal: _frommethod
|
397 |
+
harden_mask: _frommethod
|
398 |
+
ids: _frommethod
|
399 |
+
mean: _frommethod
|
400 |
+
nonzero: _frommethod
|
401 |
+
prod: _frommethod
|
402 |
+
product: _frommethod
|
403 |
+
ravel: _frommethod
|
404 |
+
repeat: _frommethod
|
405 |
+
soften_mask: _frommethod
|
406 |
+
std: _frommethod
|
407 |
+
sum: _frommethod
|
408 |
+
swapaxes: _frommethod
|
409 |
+
trace: _frommethod
|
410 |
+
var: _frommethod
|
411 |
+
count: _frommethod
|
412 |
+
argmin: _frommethod
|
413 |
+
argmax: _frommethod
|
414 |
+
|
415 |
+
minimum: _extrema_operation
|
416 |
+
maximum: _extrema_operation
|
417 |
+
|
418 |
+
def take(a, indices, axis=..., out=..., mode=...): ...
|
419 |
+
def power(a, b, third=...): ...
|
420 |
+
def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
421 |
+
def sort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ...
|
422 |
+
def compressed(x): ...
|
423 |
+
def concatenate(arrays, axis=...): ...
|
424 |
+
def diag(v, k=...): ...
|
425 |
+
def left_shift(a, n): ...
|
426 |
+
def right_shift(a, n): ...
|
427 |
+
def put(a, indices, values, mode=...): ...
|
428 |
+
def putmask(a, mask, values): ...
|
429 |
+
def transpose(a, axes=...): ...
|
430 |
+
def reshape(a, new_shape, order=...): ...
|
431 |
+
def resize(x, new_shape): ...
|
432 |
+
def ndim(obj): ...
|
433 |
+
def shape(obj): ...
|
434 |
+
def size(obj, axis=...): ...
|
435 |
+
def diff(a, /, n=..., axis=..., prepend=..., append=...): ...
|
436 |
+
def where(condition, x=..., y=...): ...
|
437 |
+
def choose(indices, choices, out=..., mode=...): ...
|
438 |
+
def round(a, decimals=..., out=...): ...
|
439 |
+
|
440 |
+
def inner(a, b): ...
|
441 |
+
innerproduct = inner
|
442 |
+
|
443 |
+
def outer(a, b): ...
|
444 |
+
outerproduct = outer
|
445 |
+
|
446 |
+
def correlate(a, v, mode=..., propagate_mask=...): ...
|
447 |
+
def convolve(a, v, mode=..., propagate_mask=...): ...
|
448 |
+
def allequal(a, b, fill_value=...): ...
|
449 |
+
def allclose(a, b, masked_equal=..., rtol=..., atol=...): ...
|
450 |
+
def asarray(a, dtype=..., order=...): ...
|
451 |
+
def asanyarray(a, dtype=...): ...
|
452 |
+
def fromflex(fxarray): ...
|
453 |
+
|
454 |
+
class _convert2ma:
|
455 |
+
__doc__: Any
|
456 |
+
def __init__(self, funcname, params=...): ...
|
457 |
+
def getdoc(self): ...
|
458 |
+
def __call__(self, *args, **params): ...
|
459 |
+
|
460 |
+
arange: _convert2ma
|
461 |
+
empty: _convert2ma
|
462 |
+
empty_like: _convert2ma
|
463 |
+
frombuffer: _convert2ma
|
464 |
+
fromfunction: _convert2ma
|
465 |
+
identity: _convert2ma
|
466 |
+
ones: _convert2ma
|
467 |
+
zeros: _convert2ma
|
468 |
+
|
469 |
+
def append(a, b, axis=...): ...
|
470 |
+
def dot(a, b, strict=..., out=...): ...
|
471 |
+
def mask_rowcols(a, axis=...): ...
|
venv/lib/python3.10/site-packages/numpy/ma/extras.pyi
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
from numpy.lib.index_tricks import AxisConcatenator
|
3 |
+
|
4 |
+
from numpy.ma.core import (
|
5 |
+
dot as dot,
|
6 |
+
mask_rowcols as mask_rowcols,
|
7 |
+
)
|
8 |
+
|
9 |
+
__all__: list[str]
|
10 |
+
|
11 |
+
def count_masked(arr, axis=...): ...
|
12 |
+
def masked_all(shape, dtype = ...): ...
|
13 |
+
def masked_all_like(arr): ...
|
14 |
+
|
15 |
+
class _fromnxfunction:
|
16 |
+
__name__: Any
|
17 |
+
__doc__: Any
|
18 |
+
def __init__(self, funcname): ...
|
19 |
+
def getdoc(self): ...
|
20 |
+
def __call__(self, *args, **params): ...
|
21 |
+
|
22 |
+
class _fromnxfunction_single(_fromnxfunction):
|
23 |
+
def __call__(self, x, *args, **params): ...
|
24 |
+
|
25 |
+
class _fromnxfunction_seq(_fromnxfunction):
|
26 |
+
def __call__(self, x, *args, **params): ...
|
27 |
+
|
28 |
+
class _fromnxfunction_allargs(_fromnxfunction):
|
29 |
+
def __call__(self, *args, **params): ...
|
30 |
+
|
31 |
+
atleast_1d: _fromnxfunction_allargs
|
32 |
+
atleast_2d: _fromnxfunction_allargs
|
33 |
+
atleast_3d: _fromnxfunction_allargs
|
34 |
+
|
35 |
+
vstack: _fromnxfunction_seq
|
36 |
+
row_stack: _fromnxfunction_seq
|
37 |
+
hstack: _fromnxfunction_seq
|
38 |
+
column_stack: _fromnxfunction_seq
|
39 |
+
dstack: _fromnxfunction_seq
|
40 |
+
stack: _fromnxfunction_seq
|
41 |
+
|
42 |
+
hsplit: _fromnxfunction_single
|
43 |
+
diagflat: _fromnxfunction_single
|
44 |
+
|
45 |
+
def apply_along_axis(func1d, axis, arr, *args, **kwargs): ...
|
46 |
+
def apply_over_axes(func, a, axes): ...
|
47 |
+
def average(a, axis=..., weights=..., returned=..., keepdims=...): ...
|
48 |
+
def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ...
|
49 |
+
def compress_nd(x, axis=...): ...
|
50 |
+
def compress_rowcols(x, axis=...): ...
|
51 |
+
def compress_rows(a): ...
|
52 |
+
def compress_cols(a): ...
|
53 |
+
def mask_rows(a, axis = ...): ...
|
54 |
+
def mask_cols(a, axis = ...): ...
|
55 |
+
def ediff1d(arr, to_end=..., to_begin=...): ...
|
56 |
+
def unique(ar1, return_index=..., return_inverse=...): ...
|
57 |
+
def intersect1d(ar1, ar2, assume_unique=...): ...
|
58 |
+
def setxor1d(ar1, ar2, assume_unique=...): ...
|
59 |
+
def in1d(ar1, ar2, assume_unique=..., invert=...): ...
|
60 |
+
def isin(element, test_elements, assume_unique=..., invert=...): ...
|
61 |
+
def union1d(ar1, ar2): ...
|
62 |
+
def setdiff1d(ar1, ar2, assume_unique=...): ...
|
63 |
+
def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ...
|
64 |
+
def corrcoef(x, y=..., rowvar=..., bias = ..., allow_masked=..., ddof = ...): ...
|
65 |
+
|
66 |
+
class MAxisConcatenator(AxisConcatenator):
|
67 |
+
concatenate: Any
|
68 |
+
@classmethod
|
69 |
+
def makemat(cls, arr): ...
|
70 |
+
def __getitem__(self, key): ...
|
71 |
+
|
72 |
+
class mr_class(MAxisConcatenator):
|
73 |
+
def __init__(self): ...
|
74 |
+
|
75 |
+
mr_: mr_class
|
76 |
+
|
77 |
+
def ndenumerate(a, compressed=...): ...
|
78 |
+
def flatnotmasked_edges(a): ...
|
79 |
+
def notmasked_edges(a, axis=...): ...
|
80 |
+
def flatnotmasked_contiguous(a): ...
|
81 |
+
def notmasked_contiguous(a, axis=...): ...
|
82 |
+
def clump_unmasked(a): ...
|
83 |
+
def clump_masked(a): ...
|
84 |
+
def vander(x, n=...): ...
|
85 |
+
def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ...
|
venv/lib/python3.10/site-packages/numpy/ma/mrecords.pyi
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, TypeVar
|
2 |
+
|
3 |
+
from numpy import dtype
|
4 |
+
from numpy.ma import MaskedArray
|
5 |
+
|
6 |
+
__all__: list[str]
|
7 |
+
|
8 |
+
# TODO: Set the `bound` to something more suitable once we
|
9 |
+
# have proper shape support
|
10 |
+
_ShapeType = TypeVar("_ShapeType", bound=Any)
|
11 |
+
_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True)
|
12 |
+
|
13 |
+
class MaskedRecords(MaskedArray[_ShapeType, _DType_co]):
|
14 |
+
def __new__(
|
15 |
+
cls,
|
16 |
+
shape,
|
17 |
+
dtype=...,
|
18 |
+
buf=...,
|
19 |
+
offset=...,
|
20 |
+
strides=...,
|
21 |
+
formats=...,
|
22 |
+
names=...,
|
23 |
+
titles=...,
|
24 |
+
byteorder=...,
|
25 |
+
aligned=...,
|
26 |
+
mask=...,
|
27 |
+
hard_mask=...,
|
28 |
+
fill_value=...,
|
29 |
+
keep_mask=...,
|
30 |
+
copy=...,
|
31 |
+
**options,
|
32 |
+
): ...
|
33 |
+
_mask: Any
|
34 |
+
_fill_value: Any
|
35 |
+
@property
|
36 |
+
def _data(self): ...
|
37 |
+
@property
|
38 |
+
def _fieldmask(self): ...
|
39 |
+
def __array_finalize__(self, obj): ...
|
40 |
+
def __len__(self): ...
|
41 |
+
def __getattribute__(self, attr): ...
|
42 |
+
def __setattr__(self, attr, val): ...
|
43 |
+
def __getitem__(self, indx): ...
|
44 |
+
def __setitem__(self, indx, value): ...
|
45 |
+
def view(self, dtype=..., type=...): ...
|
46 |
+
def harden_mask(self): ...
|
47 |
+
def soften_mask(self): ...
|
48 |
+
def copy(self): ...
|
49 |
+
def tolist(self, fill_value=...): ...
|
50 |
+
def __reduce__(self): ...
|
51 |
+
|
52 |
+
mrecarray = MaskedRecords
|
53 |
+
|
54 |
+
def fromarrays(
|
55 |
+
arraylist,
|
56 |
+
dtype=...,
|
57 |
+
shape=...,
|
58 |
+
formats=...,
|
59 |
+
names=...,
|
60 |
+
titles=...,
|
61 |
+
aligned=...,
|
62 |
+
byteorder=...,
|
63 |
+
fill_value=...,
|
64 |
+
): ...
|
65 |
+
|
66 |
+
def fromrecords(
|
67 |
+
reclist,
|
68 |
+
dtype=...,
|
69 |
+
shape=...,
|
70 |
+
formats=...,
|
71 |
+
names=...,
|
72 |
+
titles=...,
|
73 |
+
aligned=...,
|
74 |
+
byteorder=...,
|
75 |
+
fill_value=...,
|
76 |
+
mask=...,
|
77 |
+
): ...
|
78 |
+
|
79 |
+
def fromtextfile(
|
80 |
+
fname,
|
81 |
+
delimiter=...,
|
82 |
+
commentchar=...,
|
83 |
+
missingchar=...,
|
84 |
+
varnames=...,
|
85 |
+
vartypes=...,
|
86 |
+
# NOTE: deprecated: NumPy 1.22.0, 2021-09-23
|
87 |
+
# delimitor=...,
|
88 |
+
): ...
|
89 |
+
|
90 |
+
def addfield(mrecord, newfield, newfieldname=...): ...
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-310.pyc
ADDED
Binary file (169 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-310.pyc
ADDED
Binary file (2.96 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-310.pyc
ADDED
Binary file (56.8 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|