peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_tnc.py
""" | |
Unit tests for TNC optimization routine from tnc.py | |
""" | |
import pytest | |
from numpy.testing import assert_allclose, assert_equal | |
import numpy as np | |
from math import pow | |
from scipy import optimize | |
class TestTnc: | |
"""TNC non-linear optimization. | |
These tests are taken from Prof. K. Schittkowski's test examples | |
for constrained non-linear programming. | |
http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm | |
""" | |
def setup_method(self): | |
# options for minimize | |
self.opts = {'disp': False, 'maxfun': 200} | |
# objective functions and Jacobian for each test | |
def f1(self, x, a=100.0): | |
return a * pow((x[1] - pow(x[0], 2)), 2) + pow(1.0 - x[0], 2) | |
def g1(self, x, a=100.0): | |
dif = [0, 0] | |
dif[1] = 2 * a * (x[1] - pow(x[0], 2)) | |
dif[0] = -2.0 * (x[0] * (dif[1] - 1.0) + 1.0) | |
return dif | |
def fg1(self, x, a=100.0): | |
return self.f1(x, a), self.g1(x, a) | |
def f3(self, x): | |
return x[1] + pow(x[1] - x[0], 2) * 1.0e-5 | |
def g3(self, x): | |
dif = [0, 0] | |
dif[0] = -2.0 * (x[1] - x[0]) * 1.0e-5 | |
dif[1] = 1.0 - dif[0] | |
return dif | |
def fg3(self, x): | |
return self.f3(x), self.g3(x) | |
def f4(self, x): | |
return pow(x[0] + 1.0, 3) / 3.0 + x[1] | |
def g4(self, x): | |
dif = [0, 0] | |
dif[0] = pow(x[0] + 1.0, 2) | |
dif[1] = 1.0 | |
return dif | |
def fg4(self, x): | |
return self.f4(x), self.g4(x) | |
def f5(self, x): | |
return np.sin(x[0] + x[1]) + pow(x[0] - x[1], 2) - \ | |
1.5 * x[0] + 2.5 * x[1] + 1.0 | |
def g5(self, x): | |
dif = [0, 0] | |
v1 = np.cos(x[0] + x[1]) | |
v2 = 2.0*(x[0] - x[1]) | |
dif[0] = v1 + v2 - 1.5 | |
dif[1] = v1 - v2 + 2.5 | |
return dif | |
def fg5(self, x): | |
return self.f5(x), self.g5(x) | |
def f38(self, x): | |
return (100.0 * pow(x[1] - pow(x[0], 2), 2) + | |
pow(1.0 - x[0], 2) + 90.0 * pow(x[3] - pow(x[2], 2), 2) + | |
pow(1.0 - x[2], 2) + 10.1 * (pow(x[1] - 1.0, 2) + | |
pow(x[3] - 1.0, 2)) + | |
19.8 * (x[1] - 1.0) * (x[3] - 1.0)) * 1.0e-5 | |
def g38(self, x): | |
dif = [0, 0, 0, 0] | |
dif[0] = (-400.0 * x[0] * (x[1] - pow(x[0], 2)) - | |
2.0 * (1.0 - x[0])) * 1.0e-5 | |
dif[1] = (200.0 * (x[1] - pow(x[0], 2)) + 20.2 * (x[1] - 1.0) + | |
19.8 * (x[3] - 1.0)) * 1.0e-5 | |
dif[2] = (- 360.0 * x[2] * (x[3] - pow(x[2], 2)) - | |
2.0 * (1.0 - x[2])) * 1.0e-5 | |
dif[3] = (180.0 * (x[3] - pow(x[2], 2)) + 20.2 * (x[3] - 1.0) + | |
19.8 * (x[1] - 1.0)) * 1.0e-5 | |
return dif | |
def fg38(self, x): | |
return self.f38(x), self.g38(x) | |
def f45(self, x): | |
return 2.0 - x[0] * x[1] * x[2] * x[3] * x[4] / 120.0 | |
def g45(self, x): | |
dif = [0] * 5 | |
dif[0] = - x[1] * x[2] * x[3] * x[4] / 120.0 | |
dif[1] = - x[0] * x[2] * x[3] * x[4] / 120.0 | |
dif[2] = - x[0] * x[1] * x[3] * x[4] / 120.0 | |
dif[3] = - x[0] * x[1] * x[2] * x[4] / 120.0 | |
dif[4] = - x[0] * x[1] * x[2] * x[3] / 120.0 | |
return dif | |
def fg45(self, x): | |
return self.f45(x), self.g45(x) | |
# tests | |
# minimize with method=TNC | |
def test_minimize_tnc1(self): | |
x0, bnds = [-2, 1], ([-np.inf, None], [-1.5, None]) | |
xopt = [1, 1] | |
iterx = [] # to test callback | |
res = optimize.minimize(self.f1, x0, method='TNC', jac=self.g1, | |
bounds=bnds, options=self.opts, | |
callback=iterx.append) | |
assert_allclose(res.fun, self.f1(xopt), atol=1e-8) | |
assert_equal(len(iterx), res.nit) | |
def test_minimize_tnc1b(self): | |
x0, bnds = np.array([-2, 1]), ([-np.inf, None], [-1.5, None]) | |
xopt = [1, 1] | |
x = optimize.minimize(self.f1, x0, method='TNC', | |
bounds=bnds, options=self.opts).x | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-4) | |
def test_minimize_tnc1c(self): | |
x0, bnds = [-2, 1], ([-np.inf, None],[-1.5, None]) | |
xopt = [1, 1] | |
x = optimize.minimize(self.fg1, x0, method='TNC', | |
jac=True, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8) | |
def test_minimize_tnc2(self): | |
x0, bnds = [-2, 1], ([-np.inf, None], [1.5, None]) | |
xopt = [-1.2210262419616387, 1.5] | |
x = optimize.minimize(self.f1, x0, method='TNC', | |
jac=self.g1, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8) | |
def test_minimize_tnc3(self): | |
x0, bnds = [10, 1], ([-np.inf, None], [0.0, None]) | |
xopt = [0, 0] | |
x = optimize.minimize(self.f3, x0, method='TNC', | |
jac=self.g3, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f3(x), self.f3(xopt), atol=1e-8) | |
def test_minimize_tnc4(self): | |
x0,bnds = [1.125, 0.125], [(1, None), (0, None)] | |
xopt = [1, 0] | |
x = optimize.minimize(self.f4, x0, method='TNC', | |
jac=self.g4, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f4(x), self.f4(xopt), atol=1e-8) | |
def test_minimize_tnc5(self): | |
x0, bnds = [0, 0], [(-1.5, 4),(-3, 3)] | |
xopt = [-0.54719755119659763, -1.5471975511965976] | |
x = optimize.minimize(self.f5, x0, method='TNC', | |
jac=self.g5, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f5(x), self.f5(xopt), atol=1e-8) | |
def test_minimize_tnc38(self): | |
x0, bnds = np.array([-3, -1, -3, -1]), [(-10, 10)]*4 | |
xopt = [1]*4 | |
x = optimize.minimize(self.f38, x0, method='TNC', | |
jac=self.g38, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f38(x), self.f38(xopt), atol=1e-8) | |
def test_minimize_tnc45(self): | |
x0, bnds = [2] * 5, [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)] | |
xopt = [1, 2, 3, 4, 5] | |
x = optimize.minimize(self.f45, x0, method='TNC', | |
jac=self.g45, bounds=bnds, | |
options=self.opts).x | |
assert_allclose(self.f45(x), self.f45(xopt), atol=1e-8) | |
# fmin_tnc | |
def test_tnc1(self): | |
fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [-1.5, None]) | |
xopt = [1, 1] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, args=(100.0, ), | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc1b(self): | |
x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None]) | |
xopt = [1, 1] | |
x, nf, rc = optimize.fmin_tnc(self.f1, x, approx_grad=True, | |
bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-4, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc1c(self): | |
x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None]) | |
xopt = [1, 1] | |
x, nf, rc = optimize.fmin_tnc(self.f1, x, fprime=self.g1, | |
bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc2(self): | |
fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [1.5, None]) | |
xopt = [-1.2210262419616387, 1.5] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc3(self): | |
fg, x, bounds = self.fg3, [10, 1], ([-np.inf, None], [0.0, None]) | |
xopt = [0, 0] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f3(x), self.f3(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc4(self): | |
fg, x, bounds = self.fg4, [1.125, 0.125], [(1, None), (0, None)] | |
xopt = [1, 0] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f4(x), self.f4(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc5(self): | |
fg, x, bounds = self.fg5, [0, 0], [(-1.5, 4),(-3, 3)] | |
xopt = [-0.54719755119659763, -1.5471975511965976] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f5(x), self.f5(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc38(self): | |
fg, x, bounds = self.fg38, np.array([-3, -1, -3, -1]), [(-10, 10)]*4 | |
xopt = [1]*4 | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f38(x), self.f38(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_tnc45(self): | |
fg, x, bounds = self.fg45, [2] * 5, [(0, 1), (0, 2), (0, 3), | |
(0, 4), (0, 5)] | |
xopt = [1, 2, 3, 4, 5] | |
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, | |
messages=optimize._tnc.MSG_NONE, | |
maxfun=200) | |
assert_allclose(self.f45(x), self.f45(xopt), atol=1e-8, | |
err_msg="TNC failed with status: " + | |
optimize._tnc.RCSTRINGS[rc]) | |
def test_raising_exceptions(self): | |
# tnc was ported to cython from hand-crafted cpython code | |
# check that Exception handling works. | |
def myfunc(x): | |
raise RuntimeError("myfunc") | |
def myfunc1(x): | |
return optimize.rosen(x) | |
def callback(x): | |
raise ValueError("callback") | |
with pytest.raises(RuntimeError): | |
optimize.minimize(myfunc, [0, 1], method="TNC") | |
with pytest.raises(ValueError): | |
optimize.minimize( | |
myfunc1, [0, 1], method="TNC", callback=callback | |
) | |
def test_callback_shouldnt_affect_minimization(self): | |
# gh14879. The output of a TNC minimization was different depending | |
# on whether a callback was used or not. The two should be equivalent. | |
# The issue was that TNC was unscaling/scaling x, and this process was | |
# altering x in the process. Now the callback uses an unscaled | |
# temporary copy of x. | |
def callback(x): | |
pass | |
fun = optimize.rosen | |
bounds = [(0, 10)] * 4 | |
x0 = [1, 2, 3, 4.] | |
res = optimize.minimize( | |
fun, x0, bounds=bounds, method="TNC", options={"maxfun": 1000} | |
) | |
res2 = optimize.minimize( | |
fun, x0, bounds=bounds, method="TNC", options={"maxfun": 1000}, | |
callback=callback | |
) | |
assert_allclose(res2.x, res.x) | |
assert_allclose(res2.fun, res.fun) | |
assert_equal(res2.nfev, res.nfev) | |