peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/decomposition
/_truncated_svd.py
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). | |
""" | |
# Author: Lars Buitinck | |
# Olivier Grisel <[email protected]> | |
# Michael Becker <[email protected]> | |
# License: 3-clause BSD. | |
from numbers import Integral, Real | |
import numpy as np | |
import scipy.sparse as sp | |
from scipy.sparse.linalg import svds | |
from ..base import ( | |
BaseEstimator, | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_fit_context, | |
) | |
from ..utils import check_array, check_random_state | |
from ..utils._arpack import _init_arpack_v0 | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip | |
from ..utils.sparsefuncs import mean_variance_axis | |
from ..utils.validation import check_is_fitted | |
__all__ = ["TruncatedSVD"] | |
class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
"""Dimensionality reduction using truncated SVD (aka LSA). | |
This transformer performs linear dimensionality reduction by means of | |
truncated singular value decomposition (SVD). Contrary to PCA, this | |
estimator does not center the data before computing the singular value | |
decomposition. This means it can work with sparse matrices | |
efficiently. | |
In particular, truncated SVD works on term count/tf-idf matrices as | |
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In | |
that context, it is known as latent semantic analysis (LSA). | |
This estimator supports two algorithms: a fast randomized SVD solver, and | |
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or | |
`X.T * X`, whichever is more efficient. | |
Read more in the :ref:`User Guide <LSA>`. | |
Parameters | |
---------- | |
n_components : int, default=2 | |
Desired dimensionality of output data. | |
If algorithm='arpack', must be strictly less than the number of features. | |
If algorithm='randomized', must be less than or equal to the number of features. | |
The default value is useful for visualisation. For LSA, a value of | |
100 is recommended. | |
algorithm : {'arpack', 'randomized'}, default='randomized' | |
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy | |
(scipy.sparse.linalg.svds), or "randomized" for the randomized | |
algorithm due to Halko (2009). | |
n_iter : int, default=5 | |
Number of iterations for randomized SVD solver. Not used by ARPACK. The | |
default is larger than the default in | |
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse | |
matrices that may have large slowly decaying spectrum. | |
n_oversamples : int, default=10 | |
Number of oversamples for randomized SVD solver. Not used by ARPACK. | |
See :func:`~sklearn.utils.extmath.randomized_svd` for a complete | |
description. | |
.. versionadded:: 1.1 | |
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto' | |
Power iteration normalizer for randomized SVD solver. | |
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd` | |
for more details. | |
.. versionadded:: 1.1 | |
random_state : int, RandomState instance or None, default=None | |
Used during randomized svd. Pass an int for reproducible results across | |
multiple function calls. | |
See :term:`Glossary <random_state>`. | |
tol : float, default=0.0 | |
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized | |
SVD solver. | |
Attributes | |
---------- | |
components_ : ndarray of shape (n_components, n_features) | |
The right singular vectors of the input data. | |
explained_variance_ : ndarray of shape (n_components,) | |
The variance of the training samples transformed by a projection to | |
each component. | |
explained_variance_ratio_ : ndarray of shape (n_components,) | |
Percentage of variance explained by each of the selected components. | |
singular_values_ : ndarray of shape (n_components,) | |
The singular values corresponding to each of the selected components. | |
The singular values are equal to the 2-norms of the ``n_components`` | |
variables in the lower-dimensional space. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
DictionaryLearning : Find a dictionary that sparsely encodes data. | |
FactorAnalysis : A simple linear generative model with | |
Gaussian latent variables. | |
IncrementalPCA : Incremental principal components analysis. | |
KernelPCA : Kernel Principal component analysis. | |
NMF : Non-Negative Matrix Factorization. | |
PCA : Principal component analysis. | |
Notes | |
----- | |
SVD suffers from a problem called "sign indeterminacy", which means the | |
sign of the ``components_`` and the output from transform depend on the | |
algorithm and random state. To work around this, fit instances of this | |
class to data once, then keep the instance around to do transformations. | |
References | |
---------- | |
:arxiv:`Halko, et al. (2009). "Finding structure with randomness: | |
Stochastic algorithms for constructing approximate matrix decompositions" | |
<0909.4061>` | |
Examples | |
-------- | |
>>> from sklearn.decomposition import TruncatedSVD | |
>>> from scipy.sparse import csr_matrix | |
>>> import numpy as np | |
>>> np.random.seed(0) | |
>>> X_dense = np.random.rand(100, 100) | |
>>> X_dense[:, 2 * np.arange(50)] = 0 | |
>>> X = csr_matrix(X_dense) | |
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42) | |
>>> svd.fit(X) | |
TruncatedSVD(n_components=5, n_iter=7, random_state=42) | |
>>> print(svd.explained_variance_ratio_) | |
[0.0157... 0.0512... 0.0499... 0.0479... 0.0453...] | |
>>> print(svd.explained_variance_ratio_.sum()) | |
0.2102... | |
>>> print(svd.singular_values_) | |
[35.2410... 4.5981... 4.5420... 4.4486... 4.3288...] | |
""" | |
_parameter_constraints: dict = { | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"algorithm": [StrOptions({"arpack", "randomized"})], | |
"n_iter": [Interval(Integral, 0, None, closed="left")], | |
"n_oversamples": [Interval(Integral, 1, None, closed="left")], | |
"power_iteration_normalizer": [StrOptions({"auto", "OR", "LU", "none"})], | |
"random_state": ["random_state"], | |
"tol": [Interval(Real, 0, None, closed="left")], | |
} | |
def __init__( | |
self, | |
n_components=2, | |
*, | |
algorithm="randomized", | |
n_iter=5, | |
n_oversamples=10, | |
power_iteration_normalizer="auto", | |
random_state=None, | |
tol=0.0, | |
): | |
self.algorithm = algorithm | |
self.n_components = n_components | |
self.n_iter = n_iter | |
self.n_oversamples = n_oversamples | |
self.power_iteration_normalizer = power_iteration_normalizer | |
self.random_state = random_state | |
self.tol = tol | |
def fit(self, X, y=None): | |
"""Fit model on training data X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training data. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Returns the transformer object. | |
""" | |
self.fit_transform(X) | |
return self | |
def fit_transform(self, X, y=None): | |
"""Fit model to X and perform dimensionality reduction on X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training data. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
X_new : ndarray of shape (n_samples, n_components) | |
Reduced version of X. This will always be a dense array. | |
""" | |
X = self._validate_data(X, accept_sparse=["csr", "csc"], ensure_min_features=2) | |
random_state = check_random_state(self.random_state) | |
if self.algorithm == "arpack": | |
v0 = _init_arpack_v0(min(X.shape), random_state) | |
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0) | |
# svds doesn't abide by scipy.linalg.svd/randomized_svd | |
# conventions, so reverse its outputs. | |
Sigma = Sigma[::-1] | |
U, VT = svd_flip(U[:, ::-1], VT[::-1]) | |
elif self.algorithm == "randomized": | |
if self.n_components > X.shape[1]: | |
raise ValueError( | |
f"n_components({self.n_components}) must be <=" | |
f" n_features({X.shape[1]})." | |
) | |
U, Sigma, VT = randomized_svd( | |
X, | |
self.n_components, | |
n_iter=self.n_iter, | |
n_oversamples=self.n_oversamples, | |
power_iteration_normalizer=self.power_iteration_normalizer, | |
random_state=random_state, | |
) | |
self.components_ = VT | |
# As a result of the SVD approximation error on X ~ U @ Sigma @ V.T, | |
# X @ V is not the same as U @ Sigma | |
if self.algorithm == "randomized" or ( | |
self.algorithm == "arpack" and self.tol > 0 | |
): | |
X_transformed = safe_sparse_dot(X, self.components_.T) | |
else: | |
X_transformed = U * Sigma | |
# Calculate explained variance & explained variance ratio | |
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) | |
if sp.issparse(X): | |
_, full_var = mean_variance_axis(X, axis=0) | |
full_var = full_var.sum() | |
else: | |
full_var = np.var(X, axis=0).sum() | |
self.explained_variance_ratio_ = exp_var / full_var | |
self.singular_values_ = Sigma # Store the singular values. | |
return X_transformed | |
def transform(self, X): | |
"""Perform dimensionality reduction on X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
New data. | |
Returns | |
------- | |
X_new : ndarray of shape (n_samples, n_components) | |
Reduced version of X. This will always be a dense array. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False) | |
return safe_sparse_dot(X, self.components_.T) | |
def inverse_transform(self, X): | |
"""Transform X back to its original space. | |
Returns an array X_original whose transform would be X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_components) | |
New data. | |
Returns | |
------- | |
X_original : ndarray of shape (n_samples, n_features) | |
Note that this is always a dense array. | |
""" | |
X = check_array(X) | |
return np.dot(X, self.components_) | |
def _more_tags(self): | |
return {"preserves_dtype": [np.float64, np.float32]} | |
def _n_features_out(self): | |
"""Number of transformed output features.""" | |
return self.components_.shape[0] | |