peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/impute
/tests
/test_knn.py
import numpy as np | |
import pytest | |
from sklearn import config_context | |
from sklearn.impute import KNNImputer | |
from sklearn.metrics.pairwise import nan_euclidean_distances, pairwise_distances | |
from sklearn.neighbors import KNeighborsRegressor | |
from sklearn.utils._testing import assert_allclose | |
def test_knn_imputer_shape(weights, n_neighbors): | |
# Verify the shapes of the imputed matrix for different weights and | |
# number of neighbors. | |
n_rows = 10 | |
n_cols = 2 | |
X = np.random.rand(n_rows, n_cols) | |
X[0, 0] = np.nan | |
imputer = KNNImputer(n_neighbors=n_neighbors, weights=weights) | |
X_imputed = imputer.fit_transform(X) | |
assert X_imputed.shape == (n_rows, n_cols) | |
def test_knn_imputer_default_with_invalid_input(na): | |
# Test imputation with default values and invalid input | |
# Test with inf present | |
X = np.array( | |
[ | |
[np.inf, 1, 1, 2, na], | |
[2, 1, 2, 2, 3], | |
[3, 2, 3, 3, 8], | |
[na, 6, 0, 5, 13], | |
[na, 7, 0, 7, 8], | |
[6, 6, 2, 5, 7], | |
] | |
) | |
with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"): | |
KNNImputer(missing_values=na).fit(X) | |
# Test with inf present in matrix passed in transform() | |
X = np.array( | |
[ | |
[np.inf, 1, 1, 2, na], | |
[2, 1, 2, 2, 3], | |
[3, 2, 3, 3, 8], | |
[na, 6, 0, 5, 13], | |
[na, 7, 0, 7, 8], | |
[6, 6, 2, 5, 7], | |
] | |
) | |
X_fit = np.array( | |
[ | |
[0, 1, 1, 2, na], | |
[2, 1, 2, 2, 3], | |
[3, 2, 3, 3, 8], | |
[na, 6, 0, 5, 13], | |
[na, 7, 0, 7, 8], | |
[6, 6, 2, 5, 7], | |
] | |
) | |
imputer = KNNImputer(missing_values=na).fit(X_fit) | |
with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"): | |
imputer.transform(X) | |
# Test with missing_values=0 when NaN present | |
imputer = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform") | |
X = np.array( | |
[ | |
[np.nan, 0, 0, 0, 5], | |
[np.nan, 1, 0, np.nan, 3], | |
[np.nan, 2, 0, 0, 0], | |
[np.nan, 6, 0, 5, 13], | |
] | |
) | |
msg = "Input X contains NaN" | |
with pytest.raises(ValueError, match=msg): | |
imputer.fit(X) | |
X = np.array( | |
[ | |
[0, 0], | |
[np.nan, 2], | |
] | |
) | |
def test_knn_imputer_removes_all_na_features(na): | |
X = np.array( | |
[ | |
[1, 1, na, 1, 1, 1.0], | |
[2, 3, na, 2, 2, 2], | |
[3, 4, na, 3, 3, na], | |
[6, 4, na, na, 6, 6], | |
] | |
) | |
knn = KNNImputer(missing_values=na, n_neighbors=2).fit(X) | |
X_transform = knn.transform(X) | |
assert not np.isnan(X_transform).any() | |
assert X_transform.shape == (4, 5) | |
X_test = np.arange(0, 12).reshape(2, 6) | |
X_transform = knn.transform(X_test) | |
assert_allclose(X_test[:, [0, 1, 3, 4, 5]], X_transform) | |
def test_knn_imputer_zero_nan_imputes_the_same(na): | |
# Test with an imputable matrix and compare with different missing_values | |
X_zero = np.array( | |
[ | |
[1, 0, 1, 1, 1.0], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, 0], | |
[6, 6, 0, 6, 6], | |
] | |
) | |
X_nan = np.array( | |
[ | |
[1, na, 1, 1, 1.0], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, na], | |
[6, 6, na, 6, 6], | |
] | |
) | |
X_imputed = np.array( | |
[ | |
[1, 2.5, 1, 1, 1.0], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, 1.5], | |
[6, 6, 2.5, 6, 6], | |
] | |
) | |
imputer_zero = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform") | |
imputer_nan = KNNImputer(missing_values=na, n_neighbors=2, weights="uniform") | |
assert_allclose(imputer_zero.fit_transform(X_zero), X_imputed) | |
assert_allclose( | |
imputer_zero.fit_transform(X_zero), imputer_nan.fit_transform(X_nan) | |
) | |
def test_knn_imputer_verify(na): | |
# Test with an imputable matrix | |
X = np.array( | |
[ | |
[1, 0, 0, 1], | |
[2, 1, 2, na], | |
[3, 2, 3, na], | |
[na, 4, 5, 5], | |
[6, na, 6, 7], | |
[8, 8, 8, 8], | |
[16, 15, 18, 19], | |
] | |
) | |
X_imputed = np.array( | |
[ | |
[1, 0, 0, 1], | |
[2, 1, 2, 8], | |
[3, 2, 3, 8], | |
[4, 4, 5, 5], | |
[6, 3, 6, 7], | |
[8, 8, 8, 8], | |
[16, 15, 18, 19], | |
] | |
) | |
imputer = KNNImputer(missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
# Test when there is not enough neighbors | |
X = np.array( | |
[ | |
[1, 0, 0, na], | |
[2, 1, 2, na], | |
[3, 2, 3, na], | |
[4, 4, 5, na], | |
[6, 7, 6, na], | |
[8, 8, 8, na], | |
[20, 20, 20, 20], | |
[22, 22, 22, 22], | |
] | |
) | |
# Not enough neighbors, use column mean from training | |
X_impute_value = (20 + 22) / 2 | |
X_imputed = np.array( | |
[ | |
[1, 0, 0, X_impute_value], | |
[2, 1, 2, X_impute_value], | |
[3, 2, 3, X_impute_value], | |
[4, 4, 5, X_impute_value], | |
[6, 7, 6, X_impute_value], | |
[8, 8, 8, X_impute_value], | |
[20, 20, 20, 20], | |
[22, 22, 22, 22], | |
] | |
) | |
imputer = KNNImputer(missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
# Test when data in fit() and transform() are different | |
X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 16]]) | |
X1 = np.array([[1, 0], [3, 2], [4, na]]) | |
X_2_1 = (0 + 3 + 6 + 7 + 8) / 5 | |
X1_imputed = np.array([[1, 0], [3, 2], [4, X_2_1]]) | |
imputer = KNNImputer(missing_values=na) | |
assert_allclose(imputer.fit(X).transform(X1), X1_imputed) | |
def test_knn_imputer_one_n_neighbors(na): | |
X = np.array([[0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13]]) | |
X_imputed = np.array([[0, 0], [4, 2], [4, 3], [5, 3], [7, 7], [7, 8], [14, 13]]) | |
imputer = KNNImputer(n_neighbors=1, missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
def test_knn_imputer_all_samples_are_neighbors(na): | |
X = np.array([[0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13]]) | |
X_imputed = np.array([[0, 0], [6, 2], [4, 3], [5, 5.5], [7, 7], [6, 8], [14, 13]]) | |
n_neighbors = X.shape[0] - 1 | |
imputer = KNNImputer(n_neighbors=n_neighbors, missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
n_neighbors = X.shape[0] | |
imputer_plus1 = KNNImputer(n_neighbors=n_neighbors, missing_values=na) | |
assert_allclose(imputer_plus1.fit_transform(X), X_imputed) | |
def test_knn_imputer_weight_uniform(na): | |
X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]]) | |
# Test with "uniform" weight (or unweighted) | |
X_imputed_uniform = np.array( | |
[[0, 0], [5, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]] | |
) | |
imputer = KNNImputer(weights="uniform", missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed_uniform) | |
# Test with "callable" weight | |
def no_weight(dist): | |
return None | |
imputer = KNNImputer(weights=no_weight, missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed_uniform) | |
# Test with "callable" uniform weight | |
def uniform_weight(dist): | |
return np.ones_like(dist) | |
imputer = KNNImputer(weights=uniform_weight, missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed_uniform) | |
def test_knn_imputer_weight_distance(na): | |
X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]]) | |
# Test with "distance" weight | |
nn = KNeighborsRegressor(metric="euclidean", weights="distance") | |
X_rows_idx = [0, 2, 3, 4, 5, 6] | |
nn.fit(X[X_rows_idx, 1:], X[X_rows_idx, 0]) | |
knn_imputed_value = nn.predict(X[1:2, 1:])[0] | |
# Manual calculation | |
X_neighbors_idx = [0, 2, 3, 4, 5] | |
dist = nan_euclidean_distances(X[1:2, :], X, missing_values=na) | |
weights = 1 / dist[:, X_neighbors_idx].ravel() | |
manual_imputed_value = np.average(X[X_neighbors_idx, 0], weights=weights) | |
X_imputed_distance1 = np.array( | |
[[0, 0], [manual_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]] | |
) | |
# NearestNeighbor calculation | |
X_imputed_distance2 = np.array( | |
[[0, 0], [knn_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]] | |
) | |
imputer = KNNImputer(weights="distance", missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed_distance1) | |
assert_allclose(imputer.fit_transform(X), X_imputed_distance2) | |
# Test with weights = "distance" and n_neighbors=2 | |
X = np.array( | |
[ | |
[na, 0, 0], | |
[2, 1, 2], | |
[3, 2, 3], | |
[4, 5, 5], | |
] | |
) | |
# neighbors are rows 1, 2, the nan_euclidean_distances are: | |
dist_0_1 = np.sqrt((3 / 2) * ((1 - 0) ** 2 + (2 - 0) ** 2)) | |
dist_0_2 = np.sqrt((3 / 2) * ((2 - 0) ** 2 + (3 - 0) ** 2)) | |
imputed_value = np.average([2, 3], weights=[1 / dist_0_1, 1 / dist_0_2]) | |
X_imputed = np.array( | |
[ | |
[imputed_value, 0, 0], | |
[2, 1, 2], | |
[3, 2, 3], | |
[4, 5, 5], | |
] | |
) | |
imputer = KNNImputer(n_neighbors=2, weights="distance", missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
# Test with varying missingness patterns | |
X = np.array( | |
[ | |
[1, 0, 0, 1], | |
[0, na, 1, na], | |
[1, 1, 1, na], | |
[0, 1, 0, 0], | |
[0, 0, 0, 0], | |
[1, 0, 1, 1], | |
[10, 10, 10, 10], | |
] | |
) | |
# Get weights of donor neighbors | |
dist = nan_euclidean_distances(X, missing_values=na) | |
r1c1_nbor_dists = dist[1, [0, 2, 3, 4, 5]] | |
r1c3_nbor_dists = dist[1, [0, 3, 4, 5, 6]] | |
r1c1_nbor_wt = 1 / r1c1_nbor_dists | |
r1c3_nbor_wt = 1 / r1c3_nbor_dists | |
r2c3_nbor_dists = dist[2, [0, 3, 4, 5, 6]] | |
r2c3_nbor_wt = 1 / r2c3_nbor_dists | |
# Collect donor values | |
col1_donor_values = np.ma.masked_invalid(X[[0, 2, 3, 4, 5], 1]).copy() | |
col3_donor_values = np.ma.masked_invalid(X[[0, 3, 4, 5, 6], 3]).copy() | |
# Final imputed values | |
r1c1_imp = np.ma.average(col1_donor_values, weights=r1c1_nbor_wt) | |
r1c3_imp = np.ma.average(col3_donor_values, weights=r1c3_nbor_wt) | |
r2c3_imp = np.ma.average(col3_donor_values, weights=r2c3_nbor_wt) | |
X_imputed = np.array( | |
[ | |
[1, 0, 0, 1], | |
[0, r1c1_imp, 1, r1c3_imp], | |
[1, 1, 1, r2c3_imp], | |
[0, 1, 0, 0], | |
[0, 0, 0, 0], | |
[1, 0, 1, 1], | |
[10, 10, 10, 10], | |
] | |
) | |
imputer = KNNImputer(weights="distance", missing_values=na) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
X = np.array( | |
[ | |
[0, 0, 0, na], | |
[1, 1, 1, na], | |
[2, 2, na, 2], | |
[3, 3, 3, 3], | |
[4, 4, 4, 4], | |
[5, 5, 5, 5], | |
[6, 6, 6, 6], | |
[na, 7, 7, 7], | |
] | |
) | |
dist = pairwise_distances( | |
X, metric="nan_euclidean", squared=False, missing_values=na | |
) | |
# Calculate weights | |
r0c3_w = 1.0 / dist[0, 2:-1] | |
r1c3_w = 1.0 / dist[1, 2:-1] | |
r2c2_w = 1.0 / dist[2, (0, 1, 3, 4, 5)] | |
r7c0_w = 1.0 / dist[7, 2:7] | |
# Calculate weighted averages | |
r0c3 = np.average(X[2:-1, -1], weights=r0c3_w) | |
r1c3 = np.average(X[2:-1, -1], weights=r1c3_w) | |
r2c2 = np.average(X[(0, 1, 3, 4, 5), 2], weights=r2c2_w) | |
r7c0 = np.average(X[2:7, 0], weights=r7c0_w) | |
X_imputed = np.array( | |
[ | |
[0, 0, 0, r0c3], | |
[1, 1, 1, r1c3], | |
[2, 2, r2c2, 2], | |
[3, 3, 3, 3], | |
[4, 4, 4, 4], | |
[5, 5, 5, 5], | |
[6, 6, 6, 6], | |
[r7c0, 7, 7, 7], | |
] | |
) | |
imputer_comp_wt = KNNImputer(missing_values=na, weights="distance") | |
assert_allclose(imputer_comp_wt.fit_transform(X), X_imputed) | |
def test_knn_imputer_callable_metric(): | |
# Define callable metric that returns the l1 norm: | |
def custom_callable(x, y, missing_values=np.nan, squared=False): | |
x = np.ma.array(x, mask=np.isnan(x)) | |
y = np.ma.array(y, mask=np.isnan(y)) | |
dist = np.nansum(np.abs(x - y)) | |
return dist | |
X = np.array([[4, 3, 3, np.nan], [6, 9, 6, 9], [4, 8, 6, 9], [np.nan, 9, 11, 10.0]]) | |
X_0_3 = (9 + 9) / 2 | |
X_3_0 = (6 + 4) / 2 | |
X_imputed = np.array( | |
[[4, 3, 3, X_0_3], [6, 9, 6, 9], [4, 8, 6, 9], [X_3_0, 9, 11, 10.0]] | |
) | |
imputer = KNNImputer(n_neighbors=2, metric=custom_callable) | |
assert_allclose(imputer.fit_transform(X), X_imputed) | |
# Note that we use working_memory=0 to ensure that chunking is tested, even | |
# for a small dataset. However, it should raise a UserWarning that we ignore. | |
def test_knn_imputer_with_simple_example(na, working_memory): | |
X = np.array( | |
[ | |
[0, na, 0, na], | |
[1, 1, 1, na], | |
[2, 2, na, 2], | |
[3, 3, 3, 3], | |
[4, 4, 4, 4], | |
[5, 5, 5, 5], | |
[6, 6, 6, 6], | |
[na, 7, 7, 7], | |
] | |
) | |
r0c1 = np.mean(X[1:6, 1]) | |
r0c3 = np.mean(X[2:-1, -1]) | |
r1c3 = np.mean(X[2:-1, -1]) | |
r2c2 = np.mean(X[[0, 1, 3, 4, 5], 2]) | |
r7c0 = np.mean(X[2:-1, 0]) | |
X_imputed = np.array( | |
[ | |
[0, r0c1, 0, r0c3], | |
[1, 1, 1, r1c3], | |
[2, 2, r2c2, 2], | |
[3, 3, 3, 3], | |
[4, 4, 4, 4], | |
[5, 5, 5, 5], | |
[6, 6, 6, 6], | |
[r7c0, 7, 7, 7], | |
] | |
) | |
with config_context(working_memory=working_memory): | |
imputer_comp = KNNImputer(missing_values=na) | |
assert_allclose(imputer_comp.fit_transform(X), X_imputed) | |
def test_knn_imputer_not_enough_valid_distances(na, weights): | |
# Samples with needed feature has nan distance | |
X1 = np.array([[na, 11], [na, 1], [3, na]]) | |
X1_imputed = np.array([[3, 11], [3, 1], [3, 6]]) | |
knn = KNNImputer(missing_values=na, n_neighbors=1, weights=weights) | |
assert_allclose(knn.fit_transform(X1), X1_imputed) | |
X2 = np.array([[4, na]]) | |
X2_imputed = np.array([[4, 6]]) | |
assert_allclose(knn.transform(X2), X2_imputed) | |
def test_knn_imputer_drops_all_nan_features(na): | |
X1 = np.array([[na, 1], [na, 2]]) | |
knn = KNNImputer(missing_values=na, n_neighbors=1) | |
X1_expected = np.array([[1], [2]]) | |
assert_allclose(knn.fit_transform(X1), X1_expected) | |
X2 = np.array([[1, 2], [3, na]]) | |
X2_expected = np.array([[2], [1.5]]) | |
assert_allclose(knn.transform(X2), X2_expected) | |
def test_knn_imputer_distance_weighted_not_enough_neighbors(na, working_memory): | |
X = np.array([[3, na], [2, na], [na, 4], [5, 6], [6, 8], [na, 5]]) | |
dist = pairwise_distances( | |
X, metric="nan_euclidean", squared=False, missing_values=na | |
) | |
X_01 = np.average(X[3:5, 1], weights=1 / dist[0, 3:5]) | |
X_11 = np.average(X[3:5, 1], weights=1 / dist[1, 3:5]) | |
X_20 = np.average(X[3:5, 0], weights=1 / dist[2, 3:5]) | |
X_50 = np.average(X[3:5, 0], weights=1 / dist[5, 3:5]) | |
X_expected = np.array([[3, X_01], [2, X_11], [X_20, 4], [5, 6], [6, 8], [X_50, 5]]) | |
with config_context(working_memory=working_memory): | |
knn_3 = KNNImputer(missing_values=na, n_neighbors=3, weights="distance") | |
assert_allclose(knn_3.fit_transform(X), X_expected) | |
knn_4 = KNNImputer(missing_values=na, n_neighbors=4, weights="distance") | |
assert_allclose(knn_4.fit_transform(X), X_expected) | |
def test_knn_tags(na, allow_nan): | |
knn = KNNImputer(missing_values=na) | |
assert knn._get_tags()["allow_nan"] == allow_nan | |