peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/isotonic.py
# Authors: Fabian Pedregosa <[email protected]> | |
# Alexandre Gramfort <[email protected]> | |
# Nelle Varoquaux <[email protected]> | |
# License: BSD 3 clause | |
import math | |
import warnings | |
from numbers import Real | |
import numpy as np | |
from scipy import interpolate | |
from scipy.stats import spearmanr | |
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique | |
from .base import BaseEstimator, RegressorMixin, TransformerMixin, _fit_context | |
from .utils import check_array, check_consistent_length | |
from .utils._param_validation import Interval, StrOptions, validate_params | |
from .utils.validation import _check_sample_weight, check_is_fitted | |
__all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"] | |
def check_increasing(x, y): | |
"""Determine whether y is monotonically correlated with x. | |
y is found increasing or decreasing with respect to x based on a Spearman | |
correlation test. | |
Parameters | |
---------- | |
x : array-like of shape (n_samples,) | |
Training data. | |
y : array-like of shape (n_samples,) | |
Training target. | |
Returns | |
------- | |
increasing_bool : boolean | |
Whether the relationship is increasing or decreasing. | |
Notes | |
----- | |
The Spearman correlation coefficient is estimated from the data, and the | |
sign of the resulting estimate is used as the result. | |
In the event that the 95% confidence interval based on Fisher transform | |
spans zero, a warning is raised. | |
References | |
---------- | |
Fisher transformation. Wikipedia. | |
https://en.wikipedia.org/wiki/Fisher_transformation | |
Examples | |
-------- | |
>>> from sklearn.isotonic import check_increasing | |
>>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10] | |
>>> check_increasing(x, y) | |
True | |
>>> y = [10, 8, 6, 4, 2] | |
>>> check_increasing(x, y) | |
False | |
""" | |
# Calculate Spearman rho estimate and set return accordingly. | |
rho, _ = spearmanr(x, y) | |
increasing_bool = rho >= 0 | |
# Run Fisher transform to get the rho CI, but handle rho=+/-1 | |
if rho not in [-1.0, 1.0] and len(x) > 3: | |
F = 0.5 * math.log((1.0 + rho) / (1.0 - rho)) | |
F_se = 1 / math.sqrt(len(x) - 3) | |
# Use a 95% CI, i.e., +/-1.96 S.E. | |
# https://en.wikipedia.org/wiki/Fisher_transformation | |
rho_0 = math.tanh(F - 1.96 * F_se) | |
rho_1 = math.tanh(F + 1.96 * F_se) | |
# Warn if the CI spans zero. | |
if np.sign(rho_0) != np.sign(rho_1): | |
warnings.warn( | |
"Confidence interval of the Spearman " | |
"correlation coefficient spans zero. " | |
"Determination of ``increasing`` may be " | |
"suspect." | |
) | |
return increasing_bool | |
def isotonic_regression( | |
y, *, sample_weight=None, y_min=None, y_max=None, increasing=True | |
): | |
"""Solve the isotonic regression model. | |
Read more in the :ref:`User Guide <isotonic>`. | |
Parameters | |
---------- | |
y : array-like of shape (n_samples,) | |
The data. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Weights on each point of the regression. | |
If None, weight is set to 1 (equal weights). | |
y_min : float, default=None | |
Lower bound on the lowest predicted value (the minimum value may | |
still be higher). If not set, defaults to -inf. | |
y_max : float, default=None | |
Upper bound on the highest predicted value (the maximum may still be | |
lower). If not set, defaults to +inf. | |
increasing : bool, default=True | |
Whether to compute ``y_`` is increasing (if set to True) or decreasing | |
(if set to False). | |
Returns | |
------- | |
y_ : ndarray of shape (n_samples,) | |
Isotonic fit of y. | |
References | |
---------- | |
"Active set algorithms for isotonic regression; A unifying framework" | |
by Michael J. Best and Nilotpal Chakravarti, section 3. | |
Examples | |
-------- | |
>>> from sklearn.isotonic import isotonic_regression | |
>>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4]) | |
array([2.75 , 2.75 , 2.75 , 2.75 , 7.33..., | |
7.33..., 7.33..., 7.33..., 7.33..., 7.33...]) | |
""" | |
order = np.s_[:] if increasing else np.s_[::-1] | |
y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32]) | |
y = np.array(y[order], dtype=y.dtype) | |
sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True) | |
sample_weight = np.ascontiguousarray(sample_weight[order]) | |
_inplace_contiguous_isotonic_regression(y, sample_weight) | |
if y_min is not None or y_max is not None: | |
# Older versions of np.clip don't accept None as a bound, so use np.inf | |
if y_min is None: | |
y_min = -np.inf | |
if y_max is None: | |
y_max = np.inf | |
np.clip(y, y_min, y_max, y) | |
return y[order] | |
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator): | |
"""Isotonic regression model. | |
Read more in the :ref:`User Guide <isotonic>`. | |
.. versionadded:: 0.13 | |
Parameters | |
---------- | |
y_min : float, default=None | |
Lower bound on the lowest predicted value (the minimum value may | |
still be higher). If not set, defaults to -inf. | |
y_max : float, default=None | |
Upper bound on the highest predicted value (the maximum may still be | |
lower). If not set, defaults to +inf. | |
increasing : bool or 'auto', default=True | |
Determines whether the predictions should be constrained to increase | |
or decrease with `X`. 'auto' will decide based on the Spearman | |
correlation estimate's sign. | |
out_of_bounds : {'nan', 'clip', 'raise'}, default='nan' | |
Handles how `X` values outside of the training domain are handled | |
during prediction. | |
- 'nan', predictions will be NaN. | |
- 'clip', predictions will be set to the value corresponding to | |
the nearest train interval endpoint. | |
- 'raise', a `ValueError` is raised. | |
Attributes | |
---------- | |
X_min_ : float | |
Minimum value of input array `X_` for left bound. | |
X_max_ : float | |
Maximum value of input array `X_` for right bound. | |
X_thresholds_ : ndarray of shape (n_thresholds,) | |
Unique ascending `X` values used to interpolate | |
the y = f(X) monotonic function. | |
.. versionadded:: 0.24 | |
y_thresholds_ : ndarray of shape (n_thresholds,) | |
De-duplicated `y` values suitable to interpolate the y = f(X) | |
monotonic function. | |
.. versionadded:: 0.24 | |
f_ : function | |
The stepwise interpolating function that covers the input domain ``X``. | |
increasing_ : bool | |
Inferred value for ``increasing``. | |
See Also | |
-------- | |
sklearn.linear_model.LinearRegression : Ordinary least squares Linear | |
Regression. | |
sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that | |
is a non-parametric model accepting monotonicity constraints. | |
isotonic_regression : Function to solve the isotonic regression model. | |
Notes | |
----- | |
Ties are broken using the secondary method from de Leeuw, 1977. | |
References | |
---------- | |
Isotonic Median Regression: A Linear Programming Approach | |
Nilotpal Chakravarti | |
Mathematics of Operations Research | |
Vol. 14, No. 2 (May, 1989), pp. 303-308 | |
Isotone Optimization in R : Pool-Adjacent-Violators | |
Algorithm (PAVA) and Active Set Methods | |
de Leeuw, Hornik, Mair | |
Journal of Statistical Software 2009 | |
Correctness of Kruskal's algorithms for monotone regression with ties | |
de Leeuw, Psychometrica, 1977 | |
Examples | |
-------- | |
>>> from sklearn.datasets import make_regression | |
>>> from sklearn.isotonic import IsotonicRegression | |
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41) | |
>>> iso_reg = IsotonicRegression().fit(X, y) | |
>>> iso_reg.predict([.1, .2]) | |
array([1.8628..., 3.7256...]) | |
""" | |
_parameter_constraints: dict = { | |
"y_min": [Interval(Real, None, None, closed="both"), None], | |
"y_max": [Interval(Real, None, None, closed="both"), None], | |
"increasing": ["boolean", StrOptions({"auto"})], | |
"out_of_bounds": [StrOptions({"nan", "clip", "raise"})], | |
} | |
def __init__(self, *, y_min=None, y_max=None, increasing=True, out_of_bounds="nan"): | |
self.y_min = y_min | |
self.y_max = y_max | |
self.increasing = increasing | |
self.out_of_bounds = out_of_bounds | |
def _check_input_data_shape(self, X): | |
if not (X.ndim == 1 or (X.ndim == 2 and X.shape[1] == 1)): | |
msg = ( | |
"Isotonic regression input X should be a 1d array or " | |
"2d array with 1 feature" | |
) | |
raise ValueError(msg) | |
def _build_f(self, X, y): | |
"""Build the f_ interp1d function.""" | |
bounds_error = self.out_of_bounds == "raise" | |
if len(y) == 1: | |
# single y, constant prediction | |
self.f_ = lambda x: y.repeat(x.shape) | |
else: | |
self.f_ = interpolate.interp1d( | |
X, y, kind="linear", bounds_error=bounds_error | |
) | |
def _build_y(self, X, y, sample_weight, trim_duplicates=True): | |
"""Build the y_ IsotonicRegression.""" | |
self._check_input_data_shape(X) | |
X = X.reshape(-1) # use 1d view | |
# Determine increasing if auto-determination requested | |
if self.increasing == "auto": | |
self.increasing_ = check_increasing(X, y) | |
else: | |
self.increasing_ = self.increasing | |
# If sample_weights is passed, removed zero-weight values and clean | |
# order | |
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) | |
mask = sample_weight > 0 | |
X, y, sample_weight = X[mask], y[mask], sample_weight[mask] | |
order = np.lexsort((y, X)) | |
X, y, sample_weight = [array[order] for array in [X, y, sample_weight]] | |
unique_X, unique_y, unique_sample_weight = _make_unique(X, y, sample_weight) | |
X = unique_X | |
y = isotonic_regression( | |
unique_y, | |
sample_weight=unique_sample_weight, | |
y_min=self.y_min, | |
y_max=self.y_max, | |
increasing=self.increasing_, | |
) | |
# Handle the left and right bounds on X | |
self.X_min_, self.X_max_ = np.min(X), np.max(X) | |
if trim_duplicates: | |
# Remove unnecessary points for faster prediction | |
keep_data = np.ones((len(y),), dtype=bool) | |
# Aside from the 1st and last point, remove points whose y values | |
# are equal to both the point before and the point after it. | |
keep_data[1:-1] = np.logical_or( | |
np.not_equal(y[1:-1], y[:-2]), np.not_equal(y[1:-1], y[2:]) | |
) | |
return X[keep_data], y[keep_data] | |
else: | |
# The ability to turn off trim_duplicates is only used to it make | |
# easier to unit test that removing duplicates in y does not have | |
# any impact the resulting interpolation function (besides | |
# prediction speed). | |
return X, y | |
def fit(self, X, y, sample_weight=None): | |
"""Fit the model using X, y as training data. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples,) or (n_samples, 1) | |
Training data. | |
.. versionchanged:: 0.24 | |
Also accepts 2d array with 1 feature. | |
y : array-like of shape (n_samples,) | |
Training target. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Weights. If set to None, all weights will be set to 1 (equal | |
weights). | |
Returns | |
------- | |
self : object | |
Returns an instance of self. | |
Notes | |
----- | |
X is stored for future use, as :meth:`transform` needs X to interpolate | |
new input data. | |
""" | |
check_params = dict(accept_sparse=False, ensure_2d=False) | |
X = check_array( | |
X, input_name="X", dtype=[np.float64, np.float32], **check_params | |
) | |
y = check_array(y, input_name="y", dtype=X.dtype, **check_params) | |
check_consistent_length(X, y, sample_weight) | |
# Transform y by running the isotonic regression algorithm and | |
# transform X accordingly. | |
X, y = self._build_y(X, y, sample_weight) | |
# It is necessary to store the non-redundant part of the training set | |
# on the model to make it possible to support model persistence via | |
# the pickle module as the object built by scipy.interp1d is not | |
# picklable directly. | |
self.X_thresholds_, self.y_thresholds_ = X, y | |
# Build the interpolation function | |
self._build_f(X, y) | |
return self | |
def _transform(self, T): | |
"""`_transform` is called by both `transform` and `predict` methods. | |
Since `transform` is wrapped to output arrays of specific types (e.g. | |
NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform` | |
directly. | |
The above behaviour could be changed in the future, if we decide to output | |
other type of arrays when calling `predict`. | |
""" | |
if hasattr(self, "X_thresholds_"): | |
dtype = self.X_thresholds_.dtype | |
else: | |
dtype = np.float64 | |
T = check_array(T, dtype=dtype, ensure_2d=False) | |
self._check_input_data_shape(T) | |
T = T.reshape(-1) # use 1d view | |
if self.out_of_bounds == "clip": | |
T = np.clip(T, self.X_min_, self.X_max_) | |
res = self.f_(T) | |
# on scipy 0.17, interp1d up-casts to float64, so we cast back | |
res = res.astype(T.dtype) | |
return res | |
def transform(self, T): | |
"""Transform new data by linear interpolation. | |
Parameters | |
---------- | |
T : array-like of shape (n_samples,) or (n_samples, 1) | |
Data to transform. | |
.. versionchanged:: 0.24 | |
Also accepts 2d array with 1 feature. | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,) | |
The transformed data. | |
""" | |
return self._transform(T) | |
def predict(self, T): | |
"""Predict new data by linear interpolation. | |
Parameters | |
---------- | |
T : array-like of shape (n_samples,) or (n_samples, 1) | |
Data to transform. | |
Returns | |
------- | |
y_pred : ndarray of shape (n_samples,) | |
Transformed data. | |
""" | |
return self._transform(T) | |
# We implement get_feature_names_out here instead of using | |
# `ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored. | |
# `input_features` are ignored because `IsotonicRegression` accepts 1d | |
# arrays and the semantics of `feature_names_in_` are not clear for 1d arrays. | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Ignored. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
An ndarray with one string i.e. ["isotonicregression0"]. | |
""" | |
check_is_fitted(self, "f_") | |
class_name = self.__class__.__name__.lower() | |
return np.asarray([f"{class_name}0"], dtype=object) | |
def __getstate__(self): | |
"""Pickle-protocol - return state of the estimator.""" | |
state = super().__getstate__() | |
# remove interpolation method | |
state.pop("f_", None) | |
return state | |
def __setstate__(self, state): | |
"""Pickle-protocol - set state of the estimator. | |
We need to rebuild the interpolation function. | |
""" | |
super().__setstate__(state) | |
if hasattr(self, "X_thresholds_") and hasattr(self, "y_thresholds_"): | |
self._build_f(self.X_thresholds_, self.y_thresholds_) | |
def _more_tags(self): | |
return {"X_types": ["1darray"]} | |