peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/linear_model
/_bayes.py
""" | |
Various bayesian regression | |
""" | |
# Authors: V. Michel, F. Pedregosa, A. Gramfort | |
# License: BSD 3 clause | |
import warnings | |
from math import log | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy import linalg | |
from scipy.linalg import pinvh | |
from ..base import RegressorMixin, _fit_context | |
from ..utils import _safe_indexing | |
from ..utils._param_validation import Hidden, Interval, StrOptions | |
from ..utils.extmath import fast_logdet | |
from ..utils.validation import _check_sample_weight | |
from ._base import LinearModel, _preprocess_data, _rescale_data | |
# TODO(1.5) Remove | |
def _deprecate_n_iter(n_iter, max_iter): | |
"""Deprecates n_iter in favour of max_iter. Checks if the n_iter has been | |
used instead of max_iter and generates a deprecation warning if True. | |
Parameters | |
---------- | |
n_iter : int, | |
Value of n_iter attribute passed by the estimator. | |
max_iter : int, default=None | |
Value of max_iter attribute passed by the estimator. | |
If `None`, it corresponds to `max_iter=300`. | |
Returns | |
------- | |
max_iter : int, | |
Value of max_iter which shall further be used by the estimator. | |
Notes | |
----- | |
This function should be completely removed in 1.5. | |
""" | |
if n_iter != "deprecated": | |
if max_iter is not None: | |
raise ValueError( | |
"Both `n_iter` and `max_iter` attributes were set. Attribute" | |
" `n_iter` was deprecated in version 1.3 and will be removed in" | |
" 1.5. To avoid this error, only set the `max_iter` attribute." | |
) | |
warnings.warn( | |
( | |
"'n_iter' was renamed to 'max_iter' in version 1.3 and " | |
"will be removed in 1.5" | |
), | |
FutureWarning, | |
) | |
max_iter = n_iter | |
elif max_iter is None: | |
max_iter = 300 | |
return max_iter | |
############################################################################### | |
# BayesianRidge regression | |
class BayesianRidge(RegressorMixin, LinearModel): | |
"""Bayesian ridge regression. | |
Fit a Bayesian ridge model. See the Notes section for details on this | |
implementation and the optimization of the regularization parameters | |
lambda (precision of the weights) and alpha (precision of the noise). | |
Read more in the :ref:`User Guide <bayesian_regression>`. | |
Parameters | |
---------- | |
max_iter : int, default=None | |
Maximum number of iterations over the complete dataset before | |
stopping independently of any early stopping criterion. If `None`, it | |
corresponds to `max_iter=300`. | |
.. versionchanged:: 1.3 | |
tol : float, default=1e-3 | |
Stop the algorithm if w has converged. | |
alpha_1 : float, default=1e-6 | |
Hyper-parameter : shape parameter for the Gamma distribution prior | |
over the alpha parameter. | |
alpha_2 : float, default=1e-6 | |
Hyper-parameter : inverse scale parameter (rate parameter) for the | |
Gamma distribution prior over the alpha parameter. | |
lambda_1 : float, default=1e-6 | |
Hyper-parameter : shape parameter for the Gamma distribution prior | |
over the lambda parameter. | |
lambda_2 : float, default=1e-6 | |
Hyper-parameter : inverse scale parameter (rate parameter) for the | |
Gamma distribution prior over the lambda parameter. | |
alpha_init : float, default=None | |
Initial value for alpha (precision of the noise). | |
If not set, alpha_init is 1/Var(y). | |
.. versionadded:: 0.22 | |
lambda_init : float, default=None | |
Initial value for lambda (precision of the weights). | |
If not set, lambda_init is 1. | |
.. versionadded:: 0.22 | |
compute_score : bool, default=False | |
If True, compute the log marginal likelihood at each iteration of the | |
optimization. | |
fit_intercept : bool, default=True | |
Whether to calculate the intercept for this model. | |
The intercept is not treated as a probabilistic parameter | |
and thus has no associated variance. If set | |
to False, no intercept will be used in calculations | |
(i.e. data is expected to be centered). | |
copy_X : bool, default=True | |
If True, X will be copied; else, it may be overwritten. | |
verbose : bool, default=False | |
Verbose mode when fitting the model. | |
n_iter : int | |
Maximum number of iterations. Should be greater than or equal to 1. | |
.. deprecated:: 1.3 | |
`n_iter` is deprecated in 1.3 and will be removed in 1.5. Use | |
`max_iter` instead. | |
Attributes | |
---------- | |
coef_ : array-like of shape (n_features,) | |
Coefficients of the regression model (mean of distribution) | |
intercept_ : float | |
Independent term in decision function. Set to 0.0 if | |
`fit_intercept = False`. | |
alpha_ : float | |
Estimated precision of the noise. | |
lambda_ : float | |
Estimated precision of the weights. | |
sigma_ : array-like of shape (n_features, n_features) | |
Estimated variance-covariance matrix of the weights | |
scores_ : array-like of shape (n_iter_+1,) | |
If computed_score is True, value of the log marginal likelihood (to be | |
maximized) at each iteration of the optimization. The array starts | |
with the value of the log marginal likelihood obtained for the initial | |
values of alpha and lambda and ends with the value obtained for the | |
estimated alpha and lambda. | |
n_iter_ : int | |
The actual number of iterations to reach the stopping criterion. | |
X_offset_ : ndarray of shape (n_features,) | |
If `fit_intercept=True`, offset subtracted for centering data to a | |
zero mean. Set to np.zeros(n_features) otherwise. | |
X_scale_ : ndarray of shape (n_features,) | |
Set to np.ones(n_features). | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
ARDRegression : Bayesian ARD regression. | |
Notes | |
----- | |
There exist several strategies to perform Bayesian ridge regression. This | |
implementation is based on the algorithm described in Appendix A of | |
(Tipping, 2001) where updates of the regularization parameters are done as | |
suggested in (MacKay, 1992). Note that according to A New | |
View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these | |
update rules do not guarantee that the marginal likelihood is increasing | |
between two consecutive iterations of the optimization. | |
References | |
---------- | |
D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, | |
Vol. 4, No. 3, 1992. | |
M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, | |
Journal of Machine Learning Research, Vol. 1, 2001. | |
Examples | |
-------- | |
>>> from sklearn import linear_model | |
>>> clf = linear_model.BayesianRidge() | |
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) | |
BayesianRidge() | |
>>> clf.predict([[1, 1]]) | |
array([1.]) | |
""" | |
_parameter_constraints: dict = { | |
"max_iter": [Interval(Integral, 1, None, closed="left"), None], | |
"tol": [Interval(Real, 0, None, closed="neither")], | |
"alpha_1": [Interval(Real, 0, None, closed="left")], | |
"alpha_2": [Interval(Real, 0, None, closed="left")], | |
"lambda_1": [Interval(Real, 0, None, closed="left")], | |
"lambda_2": [Interval(Real, 0, None, closed="left")], | |
"alpha_init": [None, Interval(Real, 0, None, closed="left")], | |
"lambda_init": [None, Interval(Real, 0, None, closed="left")], | |
"compute_score": ["boolean"], | |
"fit_intercept": ["boolean"], | |
"copy_X": ["boolean"], | |
"verbose": ["verbose"], | |
"n_iter": [ | |
Interval(Integral, 1, None, closed="left"), | |
Hidden(StrOptions({"deprecated"})), | |
], | |
} | |
def __init__( | |
self, | |
*, | |
max_iter=None, # TODO(1.5): Set to 300 | |
tol=1.0e-3, | |
alpha_1=1.0e-6, | |
alpha_2=1.0e-6, | |
lambda_1=1.0e-6, | |
lambda_2=1.0e-6, | |
alpha_init=None, | |
lambda_init=None, | |
compute_score=False, | |
fit_intercept=True, | |
copy_X=True, | |
verbose=False, | |
n_iter="deprecated", # TODO(1.5): Remove | |
): | |
self.max_iter = max_iter | |
self.tol = tol | |
self.alpha_1 = alpha_1 | |
self.alpha_2 = alpha_2 | |
self.lambda_1 = lambda_1 | |
self.lambda_2 = lambda_2 | |
self.alpha_init = alpha_init | |
self.lambda_init = lambda_init | |
self.compute_score = compute_score | |
self.fit_intercept = fit_intercept | |
self.copy_X = copy_X | |
self.verbose = verbose | |
self.n_iter = n_iter | |
def fit(self, X, y, sample_weight=None): | |
"""Fit the model. | |
Parameters | |
---------- | |
X : ndarray of shape (n_samples, n_features) | |
Training data. | |
y : ndarray of shape (n_samples,) | |
Target values. Will be cast to X's dtype if necessary. | |
sample_weight : ndarray of shape (n_samples,), default=None | |
Individual weights for each sample. | |
.. versionadded:: 0.20 | |
parameter *sample_weight* support to BayesianRidge. | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
max_iter = _deprecate_n_iter(self.n_iter, self.max_iter) | |
X, y = self._validate_data(X, y, dtype=[np.float64, np.float32], y_numeric=True) | |
dtype = X.dtype | |
if sample_weight is not None: | |
sample_weight = _check_sample_weight(sample_weight, X, dtype=dtype) | |
X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data( | |
X, | |
y, | |
fit_intercept=self.fit_intercept, | |
copy=self.copy_X, | |
sample_weight=sample_weight, | |
) | |
if sample_weight is not None: | |
# Sample weight can be implemented via a simple rescaling. | |
X, y, _ = _rescale_data(X, y, sample_weight) | |
self.X_offset_ = X_offset_ | |
self.X_scale_ = X_scale_ | |
n_samples, n_features = X.shape | |
# Initialization of the values of the parameters | |
eps = np.finfo(np.float64).eps | |
# Add `eps` in the denominator to omit division by zero if `np.var(y)` | |
# is zero | |
alpha_ = self.alpha_init | |
lambda_ = self.lambda_init | |
if alpha_ is None: | |
alpha_ = 1.0 / (np.var(y) + eps) | |
if lambda_ is None: | |
lambda_ = 1.0 | |
# Avoid unintended type promotion to float64 with numpy 2 | |
alpha_ = np.asarray(alpha_, dtype=dtype) | |
lambda_ = np.asarray(lambda_, dtype=dtype) | |
verbose = self.verbose | |
lambda_1 = self.lambda_1 | |
lambda_2 = self.lambda_2 | |
alpha_1 = self.alpha_1 | |
alpha_2 = self.alpha_2 | |
self.scores_ = list() | |
coef_old_ = None | |
XT_y = np.dot(X.T, y) | |
U, S, Vh = linalg.svd(X, full_matrices=False) | |
eigen_vals_ = S**2 | |
# Convergence loop of the bayesian ridge regression | |
for iter_ in range(max_iter): | |
# update posterior mean coef_ based on alpha_ and lambda_ and | |
# compute corresponding rmse | |
coef_, rmse_ = self._update_coef_( | |
X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_ | |
) | |
if self.compute_score: | |
# compute the log marginal likelihood | |
s = self._log_marginal_likelihood( | |
n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_ | |
) | |
self.scores_.append(s) | |
# Update alpha and lambda according to (MacKay, 1992) | |
gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_)) | |
lambda_ = (gamma_ + 2 * lambda_1) / (np.sum(coef_**2) + 2 * lambda_2) | |
alpha_ = (n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2) | |
# Check for convergence | |
if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: | |
if verbose: | |
print("Convergence after ", str(iter_), " iterations") | |
break | |
coef_old_ = np.copy(coef_) | |
self.n_iter_ = iter_ + 1 | |
# return regularization parameters and corresponding posterior mean, | |
# log marginal likelihood and posterior covariance | |
self.alpha_ = alpha_ | |
self.lambda_ = lambda_ | |
self.coef_, rmse_ = self._update_coef_( | |
X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_ | |
) | |
if self.compute_score: | |
# compute the log marginal likelihood | |
s = self._log_marginal_likelihood( | |
n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_ | |
) | |
self.scores_.append(s) | |
self.scores_ = np.array(self.scores_) | |
# posterior covariance is given by 1/alpha_ * scaled_sigma_ | |
scaled_sigma_ = np.dot( | |
Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis] | |
) | |
self.sigma_ = (1.0 / alpha_) * scaled_sigma_ | |
self._set_intercept(X_offset_, y_offset_, X_scale_) | |
return self | |
def predict(self, X, return_std=False): | |
"""Predict using the linear model. | |
In addition to the mean of the predictive distribution, also its | |
standard deviation can be returned. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Samples. | |
return_std : bool, default=False | |
Whether to return the standard deviation of posterior prediction. | |
Returns | |
------- | |
y_mean : array-like of shape (n_samples,) | |
Mean of predictive distribution of query points. | |
y_std : array-like of shape (n_samples,) | |
Standard deviation of predictive distribution of query points. | |
""" | |
y_mean = self._decision_function(X) | |
if not return_std: | |
return y_mean | |
else: | |
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) | |
y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_)) | |
return y_mean, y_std | |
def _update_coef_( | |
self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_ | |
): | |
"""Update posterior mean and compute corresponding rmse. | |
Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where | |
scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features) | |
+ np.dot(X.T, X))^-1 | |
""" | |
if n_samples > n_features: | |
coef_ = np.linalg.multi_dot( | |
[Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis], XT_y] | |
) | |
else: | |
coef_ = np.linalg.multi_dot( | |
[X.T, U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T, y] | |
) | |
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) | |
return coef_, rmse_ | |
def _log_marginal_likelihood( | |
self, n_samples, n_features, eigen_vals, alpha_, lambda_, coef, rmse | |
): | |
"""Log marginal likelihood.""" | |
alpha_1 = self.alpha_1 | |
alpha_2 = self.alpha_2 | |
lambda_1 = self.lambda_1 | |
lambda_2 = self.lambda_2 | |
# compute the log of the determinant of the posterior covariance. | |
# posterior covariance is given by | |
# sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1 | |
if n_samples > n_features: | |
logdet_sigma = -np.sum(np.log(lambda_ + alpha_ * eigen_vals)) | |
else: | |
logdet_sigma = np.full(n_features, lambda_, dtype=np.array(lambda_).dtype) | |
logdet_sigma[:n_samples] += alpha_ * eigen_vals | |
logdet_sigma = -np.sum(np.log(logdet_sigma)) | |
score = lambda_1 * log(lambda_) - lambda_2 * lambda_ | |
score += alpha_1 * log(alpha_) - alpha_2 * alpha_ | |
score += 0.5 * ( | |
n_features * log(lambda_) | |
+ n_samples * log(alpha_) | |
- alpha_ * rmse | |
- lambda_ * np.sum(coef**2) | |
+ logdet_sigma | |
- n_samples * log(2 * np.pi) | |
) | |
return score | |
############################################################################### | |
# ARD (Automatic Relevance Determination) regression | |
class ARDRegression(RegressorMixin, LinearModel): | |
"""Bayesian ARD regression. | |
Fit the weights of a regression model, using an ARD prior. The weights of | |
the regression model are assumed to be in Gaussian distributions. | |
Also estimate the parameters lambda (precisions of the distributions of the | |
weights) and alpha (precision of the distribution of the noise). | |
The estimation is done by an iterative procedures (Evidence Maximization) | |
Read more in the :ref:`User Guide <bayesian_regression>`. | |
Parameters | |
---------- | |
max_iter : int, default=None | |
Maximum number of iterations. If `None`, it corresponds to `max_iter=300`. | |
.. versionchanged:: 1.3 | |
tol : float, default=1e-3 | |
Stop the algorithm if w has converged. | |
alpha_1 : float, default=1e-6 | |
Hyper-parameter : shape parameter for the Gamma distribution prior | |
over the alpha parameter. | |
alpha_2 : float, default=1e-6 | |
Hyper-parameter : inverse scale parameter (rate parameter) for the | |
Gamma distribution prior over the alpha parameter. | |
lambda_1 : float, default=1e-6 | |
Hyper-parameter : shape parameter for the Gamma distribution prior | |
over the lambda parameter. | |
lambda_2 : float, default=1e-6 | |
Hyper-parameter : inverse scale parameter (rate parameter) for the | |
Gamma distribution prior over the lambda parameter. | |
compute_score : bool, default=False | |
If True, compute the objective function at each step of the model. | |
threshold_lambda : float, default=10 000 | |
Threshold for removing (pruning) weights with high precision from | |
the computation. | |
fit_intercept : bool, default=True | |
Whether to calculate the intercept for this model. If set | |
to false, no intercept will be used in calculations | |
(i.e. data is expected to be centered). | |
copy_X : bool, default=True | |
If True, X will be copied; else, it may be overwritten. | |
verbose : bool, default=False | |
Verbose mode when fitting the model. | |
n_iter : int | |
Maximum number of iterations. | |
.. deprecated:: 1.3 | |
`n_iter` is deprecated in 1.3 and will be removed in 1.5. Use | |
`max_iter` instead. | |
Attributes | |
---------- | |
coef_ : array-like of shape (n_features,) | |
Coefficients of the regression model (mean of distribution) | |
alpha_ : float | |
estimated precision of the noise. | |
lambda_ : array-like of shape (n_features,) | |
estimated precisions of the weights. | |
sigma_ : array-like of shape (n_features, n_features) | |
estimated variance-covariance matrix of the weights | |
scores_ : float | |
if computed, value of the objective function (to be maximized) | |
n_iter_ : int | |
The actual number of iterations to reach the stopping criterion. | |
.. versionadded:: 1.3 | |
intercept_ : float | |
Independent term in decision function. Set to 0.0 if | |
``fit_intercept = False``. | |
X_offset_ : float | |
If `fit_intercept=True`, offset subtracted for centering data to a | |
zero mean. Set to np.zeros(n_features) otherwise. | |
X_scale_ : float | |
Set to np.ones(n_features). | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
BayesianRidge : Bayesian ridge regression. | |
Notes | |
----- | |
For an example, see :ref:`examples/linear_model/plot_ard.py | |
<sphx_glr_auto_examples_linear_model_plot_ard.py>`. | |
References | |
---------- | |
D. J. C. MacKay, Bayesian nonlinear modeling for the prediction | |
competition, ASHRAE Transactions, 1994. | |
R. Salakhutdinov, Lecture notes on Statistical Machine Learning, | |
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 | |
Their beta is our ``self.alpha_`` | |
Their alpha is our ``self.lambda_`` | |
ARD is a little different than the slide: only dimensions/features for | |
which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are | |
discarded. | |
Examples | |
-------- | |
>>> from sklearn import linear_model | |
>>> clf = linear_model.ARDRegression() | |
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) | |
ARDRegression() | |
>>> clf.predict([[1, 1]]) | |
array([1.]) | |
""" | |
_parameter_constraints: dict = { | |
"max_iter": [Interval(Integral, 1, None, closed="left"), None], | |
"tol": [Interval(Real, 0, None, closed="left")], | |
"alpha_1": [Interval(Real, 0, None, closed="left")], | |
"alpha_2": [Interval(Real, 0, None, closed="left")], | |
"lambda_1": [Interval(Real, 0, None, closed="left")], | |
"lambda_2": [Interval(Real, 0, None, closed="left")], | |
"compute_score": ["boolean"], | |
"threshold_lambda": [Interval(Real, 0, None, closed="left")], | |
"fit_intercept": ["boolean"], | |
"copy_X": ["boolean"], | |
"verbose": ["verbose"], | |
"n_iter": [ | |
Interval(Integral, 1, None, closed="left"), | |
Hidden(StrOptions({"deprecated"})), | |
], | |
} | |
def __init__( | |
self, | |
*, | |
max_iter=None, # TODO(1.5): Set to 300 | |
tol=1.0e-3, | |
alpha_1=1.0e-6, | |
alpha_2=1.0e-6, | |
lambda_1=1.0e-6, | |
lambda_2=1.0e-6, | |
compute_score=False, | |
threshold_lambda=1.0e4, | |
fit_intercept=True, | |
copy_X=True, | |
verbose=False, | |
n_iter="deprecated", # TODO(1.5): Remove | |
): | |
self.max_iter = max_iter | |
self.tol = tol | |
self.fit_intercept = fit_intercept | |
self.alpha_1 = alpha_1 | |
self.alpha_2 = alpha_2 | |
self.lambda_1 = lambda_1 | |
self.lambda_2 = lambda_2 | |
self.compute_score = compute_score | |
self.threshold_lambda = threshold_lambda | |
self.copy_X = copy_X | |
self.verbose = verbose | |
self.n_iter = n_iter | |
def fit(self, X, y): | |
"""Fit the model according to the given training data and parameters. | |
Iterative procedure to maximize the evidence | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : array-like of shape (n_samples,) | |
Target values (integers). Will be cast to X's dtype if necessary. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
max_iter = _deprecate_n_iter(self.n_iter, self.max_iter) | |
X, y = self._validate_data( | |
X, y, dtype=[np.float64, np.float32], y_numeric=True, ensure_min_samples=2 | |
) | |
dtype = X.dtype | |
n_samples, n_features = X.shape | |
coef_ = np.zeros(n_features, dtype=dtype) | |
X, y, X_offset_, y_offset_, X_scale_ = _preprocess_data( | |
X, y, fit_intercept=self.fit_intercept, copy=self.copy_X | |
) | |
self.X_offset_ = X_offset_ | |
self.X_scale_ = X_scale_ | |
# Launch the convergence loop | |
keep_lambda = np.ones(n_features, dtype=bool) | |
lambda_1 = self.lambda_1 | |
lambda_2 = self.lambda_2 | |
alpha_1 = self.alpha_1 | |
alpha_2 = self.alpha_2 | |
verbose = self.verbose | |
# Initialization of the values of the parameters | |
eps = np.finfo(np.float64).eps | |
# Add `eps` in the denominator to omit division by zero if `np.var(y)` | |
# is zero. | |
# Explicitly set dtype to avoid unintended type promotion with numpy 2. | |
alpha_ = np.asarray(1.0 / (np.var(y) + eps), dtype=dtype) | |
lambda_ = np.ones(n_features, dtype=dtype) | |
self.scores_ = list() | |
coef_old_ = None | |
def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_): | |
coef_[keep_lambda] = alpha_ * np.linalg.multi_dot( | |
[sigma_, X[:, keep_lambda].T, y] | |
) | |
return coef_ | |
update_sigma = ( | |
self._update_sigma | |
if n_samples >= n_features | |
else self._update_sigma_woodbury | |
) | |
# Iterative procedure of ARDRegression | |
for iter_ in range(max_iter): | |
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) | |
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) | |
# Update alpha and lambda | |
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) | |
gamma_ = 1.0 - lambda_[keep_lambda] * np.diag(sigma_) | |
lambda_[keep_lambda] = (gamma_ + 2.0 * lambda_1) / ( | |
(coef_[keep_lambda]) ** 2 + 2.0 * lambda_2 | |
) | |
alpha_ = (n_samples - gamma_.sum() + 2.0 * alpha_1) / ( | |
rmse_ + 2.0 * alpha_2 | |
) | |
# Prune the weights with a precision over a threshold | |
keep_lambda = lambda_ < self.threshold_lambda | |
coef_[~keep_lambda] = 0 | |
# Compute the objective function | |
if self.compute_score: | |
s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() | |
s += alpha_1 * log(alpha_) - alpha_2 * alpha_ | |
s += 0.5 * ( | |
fast_logdet(sigma_) | |
+ n_samples * log(alpha_) | |
+ np.sum(np.log(lambda_)) | |
) | |
s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_**2).sum()) | |
self.scores_.append(s) | |
# Check for convergence | |
if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: | |
if verbose: | |
print("Converged after %s iterations" % iter_) | |
break | |
coef_old_ = np.copy(coef_) | |
if not keep_lambda.any(): | |
break | |
self.n_iter_ = iter_ + 1 | |
if keep_lambda.any(): | |
# update sigma and mu using updated params from the last iteration | |
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) | |
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) | |
else: | |
sigma_ = np.array([]).reshape(0, 0) | |
self.coef_ = coef_ | |
self.alpha_ = alpha_ | |
self.sigma_ = sigma_ | |
self.lambda_ = lambda_ | |
self._set_intercept(X_offset_, y_offset_, X_scale_) | |
return self | |
def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda): | |
# See slides as referenced in the docstring note | |
# this function is used when n_samples < n_features and will invert | |
# a matrix of shape (n_samples, n_samples) making use of the | |
# woodbury formula: | |
# https://en.wikipedia.org/wiki/Woodbury_matrix_identity | |
n_samples = X.shape[0] | |
X_keep = X[:, keep_lambda] | |
inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1) | |
sigma_ = pinvh( | |
np.eye(n_samples, dtype=X.dtype) / alpha_ | |
+ np.dot(X_keep * inv_lambda, X_keep.T) | |
) | |
sigma_ = np.dot(sigma_, X_keep * inv_lambda) | |
sigma_ = -np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_) | |
sigma_[np.diag_indices(sigma_.shape[1])] += 1.0 / lambda_[keep_lambda] | |
return sigma_ | |
def _update_sigma(self, X, alpha_, lambda_, keep_lambda): | |
# See slides as referenced in the docstring note | |
# this function is used when n_samples >= n_features and will | |
# invert a matrix of shape (n_features, n_features) | |
X_keep = X[:, keep_lambda] | |
gram = np.dot(X_keep.T, X_keep) | |
eye = np.eye(gram.shape[0], dtype=X.dtype) | |
sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram | |
sigma_ = pinvh(sigma_inv) | |
return sigma_ | |
def predict(self, X, return_std=False): | |
"""Predict using the linear model. | |
In addition to the mean of the predictive distribution, also its | |
standard deviation can be returned. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Samples. | |
return_std : bool, default=False | |
Whether to return the standard deviation of posterior prediction. | |
Returns | |
------- | |
y_mean : array-like of shape (n_samples,) | |
Mean of predictive distribution of query points. | |
y_std : array-like of shape (n_samples,) | |
Standard deviation of predictive distribution of query points. | |
""" | |
y_mean = self._decision_function(X) | |
if return_std is False: | |
return y_mean | |
else: | |
col_index = self.lambda_ < self.threshold_lambda | |
X = _safe_indexing(X, indices=col_index, axis=1) | |
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) | |
y_std = np.sqrt(sigmas_squared_data + (1.0 / self.alpha_)) | |
return y_mean, y_std | |