peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/linear_model
/_huber.py
# Authors: Manoj Kumar [email protected] | |
# License: BSD 3 clause | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy import optimize | |
from ..base import BaseEstimator, RegressorMixin, _fit_context | |
from ..utils import axis0_safe_slice | |
from ..utils._param_validation import Interval | |
from ..utils.extmath import safe_sparse_dot | |
from ..utils.optimize import _check_optimize_result | |
from ..utils.validation import _check_sample_weight | |
from ._base import LinearModel | |
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None): | |
"""Returns the Huber loss and the gradient. | |
Parameters | |
---------- | |
w : ndarray, shape (n_features + 1,) or (n_features + 2,) | |
Feature vector. | |
w[:n_features] gives the coefficients | |
w[-1] gives the scale factor and if the intercept is fit w[-2] | |
gives the intercept factor. | |
X : ndarray of shape (n_samples, n_features) | |
Input data. | |
y : ndarray of shape (n_samples,) | |
Target vector. | |
epsilon : float | |
Robustness of the Huber estimator. | |
alpha : float | |
Regularization parameter. | |
sample_weight : ndarray of shape (n_samples,), default=None | |
Weight assigned to each sample. | |
Returns | |
------- | |
loss : float | |
Huber loss. | |
gradient : ndarray, shape (len(w)) | |
Returns the derivative of the Huber loss with respect to each | |
coefficient, intercept and the scale as a vector. | |
""" | |
_, n_features = X.shape | |
fit_intercept = n_features + 2 == w.shape[0] | |
if fit_intercept: | |
intercept = w[-2] | |
sigma = w[-1] | |
w = w[:n_features] | |
n_samples = np.sum(sample_weight) | |
# Calculate the values where |y - X'w -c / sigma| > epsilon | |
# The values above this threshold are outliers. | |
linear_loss = y - safe_sparse_dot(X, w) | |
if fit_intercept: | |
linear_loss -= intercept | |
abs_linear_loss = np.abs(linear_loss) | |
outliers_mask = abs_linear_loss > epsilon * sigma | |
# Calculate the linear loss due to the outliers. | |
# This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma | |
outliers = abs_linear_loss[outliers_mask] | |
num_outliers = np.count_nonzero(outliers_mask) | |
n_non_outliers = X.shape[0] - num_outliers | |
# n_sq_outliers includes the weight give to the outliers while | |
# num_outliers is just the number of outliers. | |
outliers_sw = sample_weight[outliers_mask] | |
n_sw_outliers = np.sum(outliers_sw) | |
outlier_loss = ( | |
2.0 * epsilon * np.sum(outliers_sw * outliers) | |
- sigma * n_sw_outliers * epsilon**2 | |
) | |
# Calculate the quadratic loss due to the non-outliers.- | |
# This is equal to |(y - X'w - c)**2 / sigma**2| * sigma | |
non_outliers = linear_loss[~outliers_mask] | |
weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers | |
weighted_loss = np.dot(weighted_non_outliers.T, non_outliers) | |
squared_loss = weighted_loss / sigma | |
if fit_intercept: | |
grad = np.zeros(n_features + 2) | |
else: | |
grad = np.zeros(n_features + 1) | |
# Gradient due to the squared loss. | |
X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers) | |
grad[:n_features] = ( | |
2.0 / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers) | |
) | |
# Gradient due to the linear loss. | |
signed_outliers = np.ones_like(outliers) | |
signed_outliers_mask = linear_loss[outliers_mask] < 0 | |
signed_outliers[signed_outliers_mask] = -1.0 | |
X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers) | |
sw_outliers = sample_weight[outliers_mask] * signed_outliers | |
grad[:n_features] -= 2.0 * epsilon * (safe_sparse_dot(sw_outliers, X_outliers)) | |
# Gradient due to the penalty. | |
grad[:n_features] += alpha * 2.0 * w | |
# Gradient due to sigma. | |
grad[-1] = n_samples | |
grad[-1] -= n_sw_outliers * epsilon**2 | |
grad[-1] -= squared_loss / sigma | |
# Gradient due to the intercept. | |
if fit_intercept: | |
grad[-2] = -2.0 * np.sum(weighted_non_outliers) / sigma | |
grad[-2] -= 2.0 * epsilon * np.sum(sw_outliers) | |
loss = n_samples * sigma + squared_loss + outlier_loss | |
loss += alpha * np.dot(w, w) | |
return loss, grad | |
class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator): | |
"""L2-regularized linear regression model that is robust to outliers. | |
The Huber Regressor optimizes the squared loss for the samples where | |
``|(y - Xw - c) / sigma| < epsilon`` and the absolute loss for the samples | |
where ``|(y - Xw - c) / sigma| > epsilon``, where the model coefficients | |
``w``, the intercept ``c`` and the scale ``sigma`` are parameters | |
to be optimized. The parameter sigma makes sure that if y is scaled up | |
or down by a certain factor, one does not need to rescale epsilon to | |
achieve the same robustness. Note that this does not take into account | |
the fact that the different features of X may be of different scales. | |
The Huber loss function has the advantage of not being heavily influenced | |
by the outliers while not completely ignoring their effect. | |
Read more in the :ref:`User Guide <huber_regression>` | |
.. versionadded:: 0.18 | |
Parameters | |
---------- | |
epsilon : float, default=1.35 | |
The parameter epsilon controls the number of samples that should be | |
classified as outliers. The smaller the epsilon, the more robust it is | |
to outliers. Epsilon must be in the range `[1, inf)`. | |
max_iter : int, default=100 | |
Maximum number of iterations that | |
``scipy.optimize.minimize(method="L-BFGS-B")`` should run for. | |
alpha : float, default=0.0001 | |
Strength of the squared L2 regularization. Note that the penalty is | |
equal to ``alpha * ||w||^2``. | |
Must be in the range `[0, inf)`. | |
warm_start : bool, default=False | |
This is useful if the stored attributes of a previously used model | |
has to be reused. If set to False, then the coefficients will | |
be rewritten for every call to fit. | |
See :term:`the Glossary <warm_start>`. | |
fit_intercept : bool, default=True | |
Whether or not to fit the intercept. This can be set to False | |
if the data is already centered around the origin. | |
tol : float, default=1e-05 | |
The iteration will stop when | |
``max{|proj g_i | i = 1, ..., n}`` <= ``tol`` | |
where pg_i is the i-th component of the projected gradient. | |
Attributes | |
---------- | |
coef_ : array, shape (n_features,) | |
Features got by optimizing the L2-regularized Huber loss. | |
intercept_ : float | |
Bias. | |
scale_ : float | |
The value by which ``|y - Xw - c|`` is scaled down. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_iter_ : int | |
Number of iterations that | |
``scipy.optimize.minimize(method="L-BFGS-B")`` has run for. | |
.. versionchanged:: 0.20 | |
In SciPy <= 1.0.0 the number of lbfgs iterations may exceed | |
``max_iter``. ``n_iter_`` will now report at most ``max_iter``. | |
outliers_ : array, shape (n_samples,) | |
A boolean mask which is set to True where the samples are identified | |
as outliers. | |
See Also | |
-------- | |
RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm. | |
TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model. | |
SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD. | |
References | |
---------- | |
.. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics | |
Concomitant scale estimates, pg 172 | |
.. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression. | |
https://statweb.stanford.edu/~owen/reports/hhu.pdf | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.linear_model import HuberRegressor, LinearRegression | |
>>> from sklearn.datasets import make_regression | |
>>> rng = np.random.RandomState(0) | |
>>> X, y, coef = make_regression( | |
... n_samples=200, n_features=2, noise=4.0, coef=True, random_state=0) | |
>>> X[:4] = rng.uniform(10, 20, (4, 2)) | |
>>> y[:4] = rng.uniform(10, 20, 4) | |
>>> huber = HuberRegressor().fit(X, y) | |
>>> huber.score(X, y) | |
-7.284... | |
>>> huber.predict(X[:1,]) | |
array([806.7200...]) | |
>>> linear = LinearRegression().fit(X, y) | |
>>> print("True coefficients:", coef) | |
True coefficients: [20.4923... 34.1698...] | |
>>> print("Huber coefficients:", huber.coef_) | |
Huber coefficients: [17.7906... 31.0106...] | |
>>> print("Linear Regression coefficients:", linear.coef_) | |
Linear Regression coefficients: [-1.9221... 7.0226...] | |
""" | |
_parameter_constraints: dict = { | |
"epsilon": [Interval(Real, 1.0, None, closed="left")], | |
"max_iter": [Interval(Integral, 0, None, closed="left")], | |
"alpha": [Interval(Real, 0, None, closed="left")], | |
"warm_start": ["boolean"], | |
"fit_intercept": ["boolean"], | |
"tol": [Interval(Real, 0.0, None, closed="left")], | |
} | |
def __init__( | |
self, | |
*, | |
epsilon=1.35, | |
max_iter=100, | |
alpha=0.0001, | |
warm_start=False, | |
fit_intercept=True, | |
tol=1e-05, | |
): | |
self.epsilon = epsilon | |
self.max_iter = max_iter | |
self.alpha = alpha | |
self.warm_start = warm_start | |
self.fit_intercept = fit_intercept | |
self.tol = tol | |
def fit(self, X, y, sample_weight=None): | |
"""Fit the model according to the given training data. | |
Parameters | |
---------- | |
X : array-like, shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : array-like, shape (n_samples,) | |
Target vector relative to X. | |
sample_weight : array-like, shape (n_samples,) | |
Weight given to each sample. | |
Returns | |
------- | |
self : object | |
Fitted `HuberRegressor` estimator. | |
""" | |
X, y = self._validate_data( | |
X, | |
y, | |
copy=False, | |
accept_sparse=["csr"], | |
y_numeric=True, | |
dtype=[np.float64, np.float32], | |
) | |
sample_weight = _check_sample_weight(sample_weight, X) | |
if self.warm_start and hasattr(self, "coef_"): | |
parameters = np.concatenate((self.coef_, [self.intercept_, self.scale_])) | |
else: | |
if self.fit_intercept: | |
parameters = np.zeros(X.shape[1] + 2) | |
else: | |
parameters = np.zeros(X.shape[1] + 1) | |
# Make sure to initialize the scale parameter to a strictly | |
# positive value: | |
parameters[-1] = 1 | |
# Sigma or the scale factor should be non-negative. | |
# Setting it to be zero might cause undefined bounds hence we set it | |
# to a value close to zero. | |
bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1)) | |
bounds[-1][0] = np.finfo(np.float64).eps * 10 | |
opt_res = optimize.minimize( | |
_huber_loss_and_gradient, | |
parameters, | |
method="L-BFGS-B", | |
jac=True, | |
args=(X, y, self.epsilon, self.alpha, sample_weight), | |
options={"maxiter": self.max_iter, "gtol": self.tol, "iprint": -1}, | |
bounds=bounds, | |
) | |
parameters = opt_res.x | |
if opt_res.status == 2: | |
raise ValueError( | |
"HuberRegressor convergence failed: l-BFGS-b solver terminated with %s" | |
% opt_res.message | |
) | |
self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter) | |
self.scale_ = parameters[-1] | |
if self.fit_intercept: | |
self.intercept_ = parameters[-2] | |
else: | |
self.intercept_ = 0.0 | |
self.coef_ = parameters[: X.shape[1]] | |
residual = np.abs(y - safe_sparse_dot(X, self.coef_) - self.intercept_) | |
self.outliers_ = residual > self.scale_ * self.epsilon | |
return self | |