peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/manifold
/_isomap.py
"""Isomap for manifold learning""" | |
# Author: Jake Vanderplas -- <[email protected]> | |
# License: BSD 3 clause (C) 2011 | |
import warnings | |
from numbers import Integral, Real | |
import numpy as np | |
from scipy.sparse import issparse | |
from scipy.sparse.csgraph import connected_components, shortest_path | |
from ..base import ( | |
BaseEstimator, | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_fit_context, | |
) | |
from ..decomposition import KernelPCA | |
from ..metrics.pairwise import _VALID_METRICS | |
from ..neighbors import NearestNeighbors, kneighbors_graph, radius_neighbors_graph | |
from ..preprocessing import KernelCenterer | |
from ..utils._param_validation import Interval, StrOptions | |
from ..utils.graph import _fix_connected_components | |
from ..utils.validation import check_is_fitted | |
class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
"""Isomap Embedding. | |
Non-linear dimensionality reduction through Isometric Mapping | |
Read more in the :ref:`User Guide <isomap>`. | |
Parameters | |
---------- | |
n_neighbors : int or None, default=5 | |
Number of neighbors to consider for each point. If `n_neighbors` is an int, | |
then `radius` must be `None`. | |
radius : float or None, default=None | |
Limiting distance of neighbors to return. If `radius` is a float, | |
then `n_neighbors` must be set to `None`. | |
.. versionadded:: 1.1 | |
n_components : int, default=2 | |
Number of coordinates for the manifold. | |
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' | |
'auto' : Attempt to choose the most efficient solver | |
for the given problem. | |
'arpack' : Use Arnoldi decomposition to find the eigenvalues | |
and eigenvectors. | |
'dense' : Use a direct solver (i.e. LAPACK) | |
for the eigenvalue decomposition. | |
tol : float, default=0 | |
Convergence tolerance passed to arpack or lobpcg. | |
not used if eigen_solver == 'dense'. | |
max_iter : int, default=None | |
Maximum number of iterations for the arpack solver. | |
not used if eigen_solver == 'dense'. | |
path_method : {'auto', 'FW', 'D'}, default='auto' | |
Method to use in finding shortest path. | |
'auto' : attempt to choose the best algorithm automatically. | |
'FW' : Floyd-Warshall algorithm. | |
'D' : Dijkstra's algorithm. | |
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ | |
default='auto' | |
Algorithm to use for nearest neighbors search, | |
passed to neighbors.NearestNeighbors instance. | |
n_jobs : int or None, default=None | |
The number of parallel jobs to run. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
metric : str, or callable, default="minkowski" | |
The metric to use when calculating distance between instances in a | |
feature array. If metric is a string or callable, it must be one of | |
the options allowed by :func:`sklearn.metrics.pairwise_distances` for | |
its metric parameter. | |
If metric is "precomputed", X is assumed to be a distance matrix and | |
must be square. X may be a :term:`Glossary <sparse graph>`. | |
.. versionadded:: 0.22 | |
p : float, default=2 | |
Parameter for the Minkowski metric from | |
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is | |
equivalent to using manhattan_distance (l1), and euclidean_distance | |
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. | |
.. versionadded:: 0.22 | |
metric_params : dict, default=None | |
Additional keyword arguments for the metric function. | |
.. versionadded:: 0.22 | |
Attributes | |
---------- | |
embedding_ : array-like, shape (n_samples, n_components) | |
Stores the embedding vectors. | |
kernel_pca_ : object | |
:class:`~sklearn.decomposition.KernelPCA` object used to implement the | |
embedding. | |
nbrs_ : sklearn.neighbors.NearestNeighbors instance | |
Stores nearest neighbors instance, including BallTree or KDtree | |
if applicable. | |
dist_matrix_ : array-like, shape (n_samples, n_samples) | |
Stores the geodesic distance matrix of training data. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
sklearn.decomposition.PCA : Principal component analysis that is a linear | |
dimensionality reduction method. | |
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using | |
kernels and PCA. | |
MDS : Manifold learning using multidimensional scaling. | |
TSNE : T-distributed Stochastic Neighbor Embedding. | |
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding. | |
SpectralEmbedding : Spectral embedding for non-linear dimensionality. | |
References | |
---------- | |
.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric | |
framework for nonlinear dimensionality reduction. Science 290 (5500) | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_digits | |
>>> from sklearn.manifold import Isomap | |
>>> X, _ = load_digits(return_X_y=True) | |
>>> X.shape | |
(1797, 64) | |
>>> embedding = Isomap(n_components=2) | |
>>> X_transformed = embedding.fit_transform(X[:100]) | |
>>> X_transformed.shape | |
(100, 2) | |
""" | |
_parameter_constraints: dict = { | |
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None], | |
"radius": [Interval(Real, 0, None, closed="both"), None], | |
"n_components": [Interval(Integral, 1, None, closed="left")], | |
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})], | |
"tol": [Interval(Real, 0, None, closed="left")], | |
"max_iter": [Interval(Integral, 1, None, closed="left"), None], | |
"path_method": [StrOptions({"auto", "FW", "D"})], | |
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], | |
"n_jobs": [Integral, None], | |
"p": [Interval(Real, 1, None, closed="left")], | |
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable], | |
"metric_params": [dict, None], | |
} | |
def __init__( | |
self, | |
*, | |
n_neighbors=5, | |
radius=None, | |
n_components=2, | |
eigen_solver="auto", | |
tol=0, | |
max_iter=None, | |
path_method="auto", | |
neighbors_algorithm="auto", | |
n_jobs=None, | |
metric="minkowski", | |
p=2, | |
metric_params=None, | |
): | |
self.n_neighbors = n_neighbors | |
self.radius = radius | |
self.n_components = n_components | |
self.eigen_solver = eigen_solver | |
self.tol = tol | |
self.max_iter = max_iter | |
self.path_method = path_method | |
self.neighbors_algorithm = neighbors_algorithm | |
self.n_jobs = n_jobs | |
self.metric = metric | |
self.p = p | |
self.metric_params = metric_params | |
def _fit_transform(self, X): | |
if self.n_neighbors is not None and self.radius is not None: | |
raise ValueError( | |
"Both n_neighbors and radius are provided. Use" | |
f" Isomap(radius={self.radius}, n_neighbors=None) if intended to use" | |
" radius-based neighbors" | |
) | |
self.nbrs_ = NearestNeighbors( | |
n_neighbors=self.n_neighbors, | |
radius=self.radius, | |
algorithm=self.neighbors_algorithm, | |
metric=self.metric, | |
p=self.p, | |
metric_params=self.metric_params, | |
n_jobs=self.n_jobs, | |
) | |
self.nbrs_.fit(X) | |
self.n_features_in_ = self.nbrs_.n_features_in_ | |
if hasattr(self.nbrs_, "feature_names_in_"): | |
self.feature_names_in_ = self.nbrs_.feature_names_in_ | |
self.kernel_pca_ = KernelPCA( | |
n_components=self.n_components, | |
kernel="precomputed", | |
eigen_solver=self.eigen_solver, | |
tol=self.tol, | |
max_iter=self.max_iter, | |
n_jobs=self.n_jobs, | |
).set_output(transform="default") | |
if self.n_neighbors is not None: | |
nbg = kneighbors_graph( | |
self.nbrs_, | |
self.n_neighbors, | |
metric=self.metric, | |
p=self.p, | |
metric_params=self.metric_params, | |
mode="distance", | |
n_jobs=self.n_jobs, | |
) | |
else: | |
nbg = radius_neighbors_graph( | |
self.nbrs_, | |
radius=self.radius, | |
metric=self.metric, | |
p=self.p, | |
metric_params=self.metric_params, | |
mode="distance", | |
n_jobs=self.n_jobs, | |
) | |
# Compute the number of connected components, and connect the different | |
# components to be able to compute a shortest path between all pairs | |
# of samples in the graph. | |
# Similar fix to cluster._agglomerative._fix_connectivity. | |
n_connected_components, labels = connected_components(nbg) | |
if n_connected_components > 1: | |
if self.metric == "precomputed" and issparse(X): | |
raise RuntimeError( | |
"The number of connected components of the neighbors graph" | |
f" is {n_connected_components} > 1. The graph cannot be " | |
"completed with metric='precomputed', and Isomap cannot be" | |
"fitted. Increase the number of neighbors to avoid this " | |
"issue, or precompute the full distance matrix instead " | |
"of passing a sparse neighbors graph." | |
) | |
warnings.warn( | |
( | |
"The number of connected components of the neighbors graph " | |
f"is {n_connected_components} > 1. Completing the graph to fit" | |
" Isomap might be slow. Increase the number of neighbors to " | |
"avoid this issue." | |
), | |
stacklevel=2, | |
) | |
# use array validated by NearestNeighbors | |
nbg = _fix_connected_components( | |
X=self.nbrs_._fit_X, | |
graph=nbg, | |
n_connected_components=n_connected_components, | |
component_labels=labels, | |
mode="distance", | |
metric=self.nbrs_.effective_metric_, | |
**self.nbrs_.effective_metric_params_, | |
) | |
self.dist_matrix_ = shortest_path(nbg, method=self.path_method, directed=False) | |
if self.nbrs_._fit_X.dtype == np.float32: | |
self.dist_matrix_ = self.dist_matrix_.astype( | |
self.nbrs_._fit_X.dtype, copy=False | |
) | |
G = self.dist_matrix_**2 | |
G *= -0.5 | |
self.embedding_ = self.kernel_pca_.fit_transform(G) | |
self._n_features_out = self.embedding_.shape[1] | |
def reconstruction_error(self): | |
"""Compute the reconstruction error for the embedding. | |
Returns | |
------- | |
reconstruction_error : float | |
Reconstruction error. | |
Notes | |
----- | |
The cost function of an isomap embedding is | |
``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` | |
Where D is the matrix of distances for the input data X, | |
D_fit is the matrix of distances for the output embedding X_fit, | |
and K is the isomap kernel: | |
``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` | |
""" | |
G = -0.5 * self.dist_matrix_**2 | |
G_center = KernelCenterer().fit_transform(G) | |
evals = self.kernel_pca_.eigenvalues_ | |
return np.sqrt(np.sum(G_center**2) - np.sum(evals**2)) / G.shape[0] | |
def fit(self, X, y=None): | |
"""Compute the embedding vectors for data X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} | |
Sample data, shape = (n_samples, n_features), in the form of a | |
numpy array, sparse matrix, precomputed tree, or NearestNeighbors | |
object. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Returns a fitted instance of self. | |
""" | |
self._fit_transform(X) | |
return self | |
def fit_transform(self, X, y=None): | |
"""Fit the model from data in X and transform X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix, BallTree, KDTree} | |
Training vector, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
X_new : array-like, shape (n_samples, n_components) | |
X transformed in the new space. | |
""" | |
self._fit_transform(X) | |
return self.embedding_ | |
def transform(self, X): | |
"""Transform X. | |
This is implemented by linking the points X into the graph of geodesic | |
distances of the training data. First the `n_neighbors` nearest | |
neighbors of X are found in the training data, and from these the | |
shortest geodesic distances from each point in X to each point in | |
the training data are computed in order to construct the kernel. | |
The embedding of X is the projection of this kernel onto the | |
embedding vectors of the training set. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_queries, n_features) | |
If neighbors_algorithm='precomputed', X is assumed to be a | |
distance matrix or a sparse graph of shape | |
(n_queries, n_samples_fit). | |
Returns | |
------- | |
X_new : array-like, shape (n_queries, n_components) | |
X transformed in the new space. | |
""" | |
check_is_fitted(self) | |
if self.n_neighbors is not None: | |
distances, indices = self.nbrs_.kneighbors(X, return_distance=True) | |
else: | |
distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True) | |
# Create the graph of shortest distances from X to | |
# training data via the nearest neighbors of X. | |
# This can be done as a single array operation, but it potentially | |
# takes a lot of memory. To avoid that, use a loop: | |
n_samples_fit = self.nbrs_.n_samples_fit_ | |
n_queries = distances.shape[0] | |
if hasattr(X, "dtype") and X.dtype == np.float32: | |
dtype = np.float32 | |
else: | |
dtype = np.float64 | |
G_X = np.zeros((n_queries, n_samples_fit), dtype) | |
for i in range(n_queries): | |
G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) | |
G_X **= 2 | |
G_X *= -0.5 | |
return self.kernel_pca_.transform(G_X) | |
def _more_tags(self): | |
return {"preserves_dtype": [np.float64, np.float32]} | |