peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/megam.py
| # Natural Language Toolkit: Interface to Megam Classifier | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Edward Loper <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| A set of functions used to interface with the external megam_ maxent | |
| optimization package. Before megam can be used, you should tell NLTK where it | |
| can find the megam binary, using the ``config_megam()`` function. Typical | |
| usage: | |
| >>> from nltk.classify import megam | |
| >>> megam.config_megam() # pass path to megam if not found in PATH # doctest: +SKIP | |
| [Found megam: ...] | |
| Use with MaxentClassifier. Example below, see MaxentClassifier documentation | |
| for details. | |
| nltk.classify.MaxentClassifier.train(corpus, 'megam') | |
| .. _megam: https://www.umiacs.umd.edu/~hal/megam/index.html | |
| """ | |
| import subprocess | |
| from nltk.internals import find_binary | |
| try: | |
| import numpy | |
| except ImportError: | |
| numpy = None | |
| ###################################################################### | |
| # { Configuration | |
| ###################################################################### | |
| _megam_bin = None | |
| def config_megam(bin=None): | |
| """ | |
| Configure NLTK's interface to the ``megam`` maxent optimization | |
| package. | |
| :param bin: The full path to the ``megam`` binary. If not specified, | |
| then nltk will search the system for a ``megam`` binary; and if | |
| one is not found, it will raise a ``LookupError`` exception. | |
| :type bin: str | |
| """ | |
| global _megam_bin | |
| _megam_bin = find_binary( | |
| "megam", | |
| bin, | |
| env_vars=["MEGAM"], | |
| binary_names=["megam.opt", "megam", "megam_686", "megam_i686.opt"], | |
| url="https://www.umiacs.umd.edu/~hal/megam/index.html", | |
| ) | |
| ###################################################################### | |
| # { Megam Interface Functions | |
| ###################################################################### | |
| def write_megam_file(train_toks, encoding, stream, bernoulli=True, explicit=True): | |
| """ | |
| Generate an input file for ``megam`` based on the given corpus of | |
| classified tokens. | |
| :type train_toks: list(tuple(dict, str)) | |
| :param train_toks: Training data, represented as a list of | |
| pairs, the first member of which is a feature dictionary, | |
| and the second of which is a classification label. | |
| :type encoding: MaxentFeatureEncodingI | |
| :param encoding: A feature encoding, used to convert featuresets | |
| into feature vectors. May optionally implement a cost() method | |
| in order to assign different costs to different class predictions. | |
| :type stream: stream | |
| :param stream: The stream to which the megam input file should be | |
| written. | |
| :param bernoulli: If true, then use the 'bernoulli' format. I.e., | |
| all joint features have binary values, and are listed iff they | |
| are true. Otherwise, list feature values explicitly. If | |
| ``bernoulli=False``, then you must call ``megam`` with the | |
| ``-fvals`` option. | |
| :param explicit: If true, then use the 'explicit' format. I.e., | |
| list the features that would fire for any of the possible | |
| labels, for each token. If ``explicit=True``, then you must | |
| call ``megam`` with the ``-explicit`` option. | |
| """ | |
| # Look up the set of labels. | |
| labels = encoding.labels() | |
| labelnum = {label: i for (i, label) in enumerate(labels)} | |
| # Write the file, which contains one line per instance. | |
| for featureset, label in train_toks: | |
| # First, the instance number (or, in the weighted multiclass case, the cost of each label). | |
| if hasattr(encoding, "cost"): | |
| stream.write( | |
| ":".join(str(encoding.cost(featureset, label, l)) for l in labels) | |
| ) | |
| else: | |
| stream.write("%d" % labelnum[label]) | |
| # For implicit file formats, just list the features that fire | |
| # for this instance's actual label. | |
| if not explicit: | |
| _write_megam_features(encoding.encode(featureset, label), stream, bernoulli) | |
| # For explicit formats, list the features that would fire for | |
| # any of the possible labels. | |
| else: | |
| for l in labels: | |
| stream.write(" #") | |
| _write_megam_features(encoding.encode(featureset, l), stream, bernoulli) | |
| # End of the instance. | |
| stream.write("\n") | |
| def parse_megam_weights(s, features_count, explicit=True): | |
| """ | |
| Given the stdout output generated by ``megam`` when training a | |
| model, return a ``numpy`` array containing the corresponding weight | |
| vector. This function does not currently handle bias features. | |
| """ | |
| if numpy is None: | |
| raise ValueError("This function requires that numpy be installed") | |
| assert explicit, "non-explicit not supported yet" | |
| lines = s.strip().split("\n") | |
| weights = numpy.zeros(features_count, "d") | |
| for line in lines: | |
| if line.strip(): | |
| fid, weight = line.split() | |
| weights[int(fid)] = float(weight) | |
| return weights | |
| def _write_megam_features(vector, stream, bernoulli): | |
| if not vector: | |
| raise ValueError( | |
| "MEGAM classifier requires the use of an " "always-on feature." | |
| ) | |
| for (fid, fval) in vector: | |
| if bernoulli: | |
| if fval == 1: | |
| stream.write(" %s" % fid) | |
| elif fval != 0: | |
| raise ValueError( | |
| "If bernoulli=True, then all" "features must be binary." | |
| ) | |
| else: | |
| stream.write(f" {fid} {fval}") | |
| def call_megam(args): | |
| """ | |
| Call the ``megam`` binary with the given arguments. | |
| """ | |
| if isinstance(args, str): | |
| raise TypeError("args should be a list of strings") | |
| if _megam_bin is None: | |
| config_megam() | |
| # Call megam via a subprocess | |
| cmd = [_megam_bin] + args | |
| p = subprocess.Popen(cmd, stdout=subprocess.PIPE) | |
| (stdout, stderr) = p.communicate() | |
| # Check the return code. | |
| if p.returncode != 0: | |
| print() | |
| print(stderr) | |
| raise OSError("megam command failed!") | |
| if isinstance(stdout, str): | |
| return stdout | |
| else: | |
| return stdout.decode("utf-8") | |