peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/senna.py
| # Natural Language Toolkit: Senna Interface | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Rami Al-Rfou' <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| A general interface to the SENNA pipeline that supports any of the | |
| operations specified in SUPPORTED_OPERATIONS. | |
| Applying multiple operations at once has the speed advantage. For example, | |
| Senna will automatically determine POS tags if you are extracting named | |
| entities. Applying both of the operations will cost only the time of | |
| extracting the named entities. | |
| The SENNA pipeline has a fixed maximum size of the sentences that it can read. | |
| By default it is 1024 token/sentence. If you have larger sentences, changing | |
| the MAX_SENTENCE_SIZE value in SENNA_main.c should be considered and your | |
| system specific binary should be rebuilt. Otherwise this could introduce | |
| misalignment errors. | |
| The input is: | |
| - path to the directory that contains SENNA executables. If the path is incorrect, | |
| Senna will automatically search for executable file specified in SENNA environment variable | |
| - List of the operations needed to be performed. | |
| - (optionally) the encoding of the input data (default:utf-8) | |
| Note: Unit tests for this module can be found in test/unit/test_senna.py | |
| from nltk.classify import Senna | |
| pipeline = Senna('/usr/share/senna-v3.0', ['pos', 'chk', 'ner']) # doctest: +SKIP | |
| sent = 'Dusseldorf is an international business center'.split() | |
| [(token['word'], token['chk'], token['ner'], token['pos']) for token in pipeline.tag(sent)] # doctest: +SKIP | |
| [('Dusseldorf', 'B-NP', 'B-LOC', 'NNP'), ('is', 'B-VP', 'O', 'VBZ'), ('an', 'B-NP', 'O', 'DT'), | |
| ('international', 'I-NP', 'O', 'JJ'), ('business', 'I-NP', 'O', 'NN'), ('center', 'I-NP', 'O', 'NN')] | |
| """ | |
| from os import environ, path, sep | |
| from platform import architecture, system | |
| from subprocess import PIPE, Popen | |
| from nltk.tag.api import TaggerI | |
| class Senna(TaggerI): | |
| SUPPORTED_OPERATIONS = ["pos", "chk", "ner"] | |
| def __init__(self, senna_path, operations, encoding="utf-8"): | |
| self._encoding = encoding | |
| self._path = path.normpath(senna_path) + sep | |
| # Verifies the existence of the executable on the self._path first | |
| # senna_binary_file_1 = self.executable(self._path) | |
| exe_file_1 = self.executable(self._path) | |
| if not path.isfile(exe_file_1): | |
| # Check for the system environment | |
| if "SENNA" in environ: | |
| # self._path = path.join(environ['SENNA'],'') | |
| self._path = path.normpath(environ["SENNA"]) + sep | |
| exe_file_2 = self.executable(self._path) | |
| if not path.isfile(exe_file_2): | |
| raise LookupError( | |
| "Senna executable expected at %s or %s but not found" | |
| % (exe_file_1, exe_file_2) | |
| ) | |
| self.operations = operations | |
| def executable(self, base_path): | |
| """ | |
| The function that determines the system specific binary that should be | |
| used in the pipeline. In case, the system is not known the default senna binary will | |
| be used. | |
| """ | |
| os_name = system() | |
| if os_name == "Linux": | |
| bits = architecture()[0] | |
| if bits == "64bit": | |
| return path.join(base_path, "senna-linux64") | |
| return path.join(base_path, "senna-linux32") | |
| if os_name == "Windows": | |
| return path.join(base_path, "senna-win32.exe") | |
| if os_name == "Darwin": | |
| return path.join(base_path, "senna-osx") | |
| return path.join(base_path, "senna") | |
| def _map(self): | |
| """ | |
| A method that calculates the order of the columns that SENNA pipeline | |
| will output the tags into. This depends on the operations being ordered. | |
| """ | |
| _map = {} | |
| i = 1 | |
| for operation in Senna.SUPPORTED_OPERATIONS: | |
| if operation in self.operations: | |
| _map[operation] = i | |
| i += 1 | |
| return _map | |
| def tag(self, tokens): | |
| """ | |
| Applies the specified operation(s) on a list of tokens. | |
| """ | |
| return self.tag_sents([tokens])[0] | |
| def tag_sents(self, sentences): | |
| """ | |
| Applies the tag method over a list of sentences. This method will return a | |
| list of dictionaries. Every dictionary will contain a word with its | |
| calculated annotations/tags. | |
| """ | |
| encoding = self._encoding | |
| if not path.isfile(self.executable(self._path)): | |
| raise LookupError( | |
| "Senna executable expected at %s but not found" | |
| % self.executable(self._path) | |
| ) | |
| # Build the senna command to run the tagger | |
| _senna_cmd = [ | |
| self.executable(self._path), | |
| "-path", | |
| self._path, | |
| "-usrtokens", | |
| "-iobtags", | |
| ] | |
| _senna_cmd.extend(["-" + op for op in self.operations]) | |
| # Serialize the actual sentences to a temporary string | |
| _input = "\n".join(" ".join(x) for x in sentences) + "\n" | |
| if isinstance(_input, str) and encoding: | |
| _input = _input.encode(encoding) | |
| # Run the tagger and get the output | |
| p = Popen(_senna_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) | |
| (stdout, stderr) = p.communicate(input=_input) | |
| senna_output = stdout | |
| # Check the return code. | |
| if p.returncode != 0: | |
| raise RuntimeError("Senna command failed! Details: %s" % stderr) | |
| if encoding: | |
| senna_output = stdout.decode(encoding) | |
| # Output the tagged sentences | |
| map_ = self._map() | |
| tagged_sentences = [[]] | |
| sentence_index = 0 | |
| token_index = 0 | |
| for tagged_word in senna_output.strip().split("\n"): | |
| if not tagged_word: | |
| tagged_sentences.append([]) | |
| sentence_index += 1 | |
| token_index = 0 | |
| continue | |
| tags = tagged_word.split("\t") | |
| result = {} | |
| for tag in map_: | |
| result[tag] = tags[map_[tag]].strip() | |
| try: | |
| result["word"] = sentences[sentence_index][token_index] | |
| except IndexError as e: | |
| raise IndexError( | |
| "Misalignment error occurred at sentence number %d. Possible reason" | |
| " is that the sentence size exceeded the maximum size. Check the " | |
| "documentation of Senna class for more information." | |
| % sentence_index | |
| ) from e | |
| tagged_sentences[-1].append(result) | |
| token_index += 1 | |
| return tagged_sentences | |