peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/tadm.py
| # Natural Language Toolkit: Interface to TADM Classifier | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Joseph Frazee <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import subprocess | |
| import sys | |
| from nltk.internals import find_binary | |
| try: | |
| import numpy | |
| except ImportError: | |
| pass | |
| _tadm_bin = None | |
| def config_tadm(bin=None): | |
| global _tadm_bin | |
| _tadm_bin = find_binary( | |
| "tadm", bin, env_vars=["TADM"], binary_names=["tadm"], url="http://tadm.sf.net" | |
| ) | |
| def write_tadm_file(train_toks, encoding, stream): | |
| """ | |
| Generate an input file for ``tadm`` based on the given corpus of | |
| classified tokens. | |
| :type train_toks: list(tuple(dict, str)) | |
| :param train_toks: Training data, represented as a list of | |
| pairs, the first member of which is a feature dictionary, | |
| and the second of which is a classification label. | |
| :type encoding: TadmEventMaxentFeatureEncoding | |
| :param encoding: A feature encoding, used to convert featuresets | |
| into feature vectors. | |
| :type stream: stream | |
| :param stream: The stream to which the ``tadm`` input file should be | |
| written. | |
| """ | |
| # See the following for a file format description: | |
| # | |
| # https://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054 | |
| # https://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054 | |
| labels = encoding.labels() | |
| for featureset, label in train_toks: | |
| length_line = "%d\n" % len(labels) | |
| stream.write(length_line) | |
| for known_label in labels: | |
| v = encoding.encode(featureset, known_label) | |
| line = "%d %d %s\n" % ( | |
| int(label == known_label), | |
| len(v), | |
| " ".join("%d %d" % u for u in v), | |
| ) | |
| stream.write(line) | |
| def parse_tadm_weights(paramfile): | |
| """ | |
| Given the stdout output generated by ``tadm`` when training a | |
| model, return a ``numpy`` array containing the corresponding weight | |
| vector. | |
| """ | |
| weights = [] | |
| for line in paramfile: | |
| weights.append(float(line.strip())) | |
| return numpy.array(weights, "d") | |
| def call_tadm(args): | |
| """ | |
| Call the ``tadm`` binary with the given arguments. | |
| """ | |
| if isinstance(args, str): | |
| raise TypeError("args should be a list of strings") | |
| if _tadm_bin is None: | |
| config_tadm() | |
| # Call tadm via a subprocess | |
| cmd = [_tadm_bin] + args | |
| p = subprocess.Popen(cmd, stdout=sys.stdout) | |
| (stdout, stderr) = p.communicate() | |
| # Check the return code. | |
| if p.returncode != 0: | |
| print() | |
| print(stderr) | |
| raise OSError("tadm command failed!") | |
| def names_demo(): | |
| from nltk.classify.maxent import TadmMaxentClassifier | |
| from nltk.classify.util import names_demo | |
| classifier = names_demo(TadmMaxentClassifier.train) | |
| def encoding_demo(): | |
| import sys | |
| from nltk.classify.maxent import TadmEventMaxentFeatureEncoding | |
| tokens = [ | |
| ({"f0": 1, "f1": 1, "f3": 1}, "A"), | |
| ({"f0": 1, "f2": 1, "f4": 1}, "B"), | |
| ({"f0": 2, "f2": 1, "f3": 1, "f4": 1}, "A"), | |
| ] | |
| encoding = TadmEventMaxentFeatureEncoding.train(tokens) | |
| write_tadm_file(tokens, encoding, sys.stdout) | |
| print() | |
| for i in range(encoding.length()): | |
| print("%s --> %d" % (encoding.describe(i), i)) | |
| print() | |
| if __name__ == "__main__": | |
| encoding_demo() | |
| names_demo() | |