peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/parse
/evaluate.py
| # Natural Language Toolkit: evaluation of dependency parser | |
| # | |
| # Author: Long Duong <[email protected]> | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import unicodedata | |
| class DependencyEvaluator: | |
| """ | |
| Class for measuring labelled and unlabelled attachment score for | |
| dependency parsing. Note that the evaluation ignores punctuation. | |
| >>> from nltk.parse import DependencyGraph, DependencyEvaluator | |
| >>> gold_sent = DependencyGraph(\""" | |
| ... Pierre NNP 2 NMOD | |
| ... Vinken NNP 8 SUB | |
| ... , , 2 P | |
| ... 61 CD 5 NMOD | |
| ... years NNS 6 AMOD | |
| ... old JJ 2 NMOD | |
| ... , , 2 P | |
| ... will MD 0 ROOT | |
| ... join VB 8 VC | |
| ... the DT 11 NMOD | |
| ... board NN 9 OBJ | |
| ... as IN 9 VMOD | |
| ... a DT 15 NMOD | |
| ... nonexecutive JJ 15 NMOD | |
| ... director NN 12 PMOD | |
| ... Nov. NNP 9 VMOD | |
| ... 29 CD 16 NMOD | |
| ... . . 9 VMOD | |
| ... \""") | |
| >>> parsed_sent = DependencyGraph(\""" | |
| ... Pierre NNP 8 NMOD | |
| ... Vinken NNP 1 SUB | |
| ... , , 3 P | |
| ... 61 CD 6 NMOD | |
| ... years NNS 6 AMOD | |
| ... old JJ 2 NMOD | |
| ... , , 3 AMOD | |
| ... will MD 0 ROOT | |
| ... join VB 8 VC | |
| ... the DT 11 AMOD | |
| ... board NN 9 OBJECT | |
| ... as IN 9 NMOD | |
| ... a DT 15 NMOD | |
| ... nonexecutive JJ 15 NMOD | |
| ... director NN 12 PMOD | |
| ... Nov. NNP 9 VMOD | |
| ... 29 CD 16 NMOD | |
| ... . . 9 VMOD | |
| ... \""") | |
| >>> de = DependencyEvaluator([parsed_sent],[gold_sent]) | |
| >>> las, uas = de.eval() | |
| >>> las | |
| 0.6 | |
| >>> uas | |
| 0.8 | |
| >>> abs(uas - 0.8) < 0.00001 | |
| True | |
| """ | |
| def __init__(self, parsed_sents, gold_sents): | |
| """ | |
| :param parsed_sents: the list of parsed_sents as the output of parser | |
| :type parsed_sents: list(DependencyGraph) | |
| """ | |
| self._parsed_sents = parsed_sents | |
| self._gold_sents = gold_sents | |
| def _remove_punct(self, inStr): | |
| """ | |
| Function to remove punctuation from Unicode string. | |
| :param input: the input string | |
| :return: Unicode string after remove all punctuation | |
| """ | |
| punc_cat = {"Pc", "Pd", "Ps", "Pe", "Pi", "Pf", "Po"} | |
| return "".join(x for x in inStr if unicodedata.category(x) not in punc_cat) | |
| def eval(self): | |
| """ | |
| Return the Labeled Attachment Score (LAS) and Unlabeled Attachment Score (UAS) | |
| :return : tuple(float,float) | |
| """ | |
| if len(self._parsed_sents) != len(self._gold_sents): | |
| raise ValueError( | |
| " Number of parsed sentence is different with number of gold sentence." | |
| ) | |
| corr = 0 | |
| corrL = 0 | |
| total = 0 | |
| for i in range(len(self._parsed_sents)): | |
| parsed_sent_nodes = self._parsed_sents[i].nodes | |
| gold_sent_nodes = self._gold_sents[i].nodes | |
| if len(parsed_sent_nodes) != len(gold_sent_nodes): | |
| raise ValueError("Sentences must have equal length.") | |
| for parsed_node_address, parsed_node in parsed_sent_nodes.items(): | |
| gold_node = gold_sent_nodes[parsed_node_address] | |
| if parsed_node["word"] is None: | |
| continue | |
| if parsed_node["word"] != gold_node["word"]: | |
| raise ValueError("Sentence sequence is not matched.") | |
| # Ignore if word is punctuation by default | |
| # if (parsed_sent[j]["word"] in string.punctuation): | |
| if self._remove_punct(parsed_node["word"]) == "": | |
| continue | |
| total += 1 | |
| if parsed_node["head"] == gold_node["head"]: | |
| corr += 1 | |
| if parsed_node["rel"] == gold_node["rel"]: | |
| corrL += 1 | |
| return corrL / total, corr / total | |