peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/parse
/stanford.py
| # Natural Language Toolkit: Interface to the Stanford Parser | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Steven Xu <[email protected]> | |
| # | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| import os | |
| import tempfile | |
| import warnings | |
| from subprocess import PIPE | |
| from nltk.internals import ( | |
| _java_options, | |
| config_java, | |
| find_jar_iter, | |
| find_jars_within_path, | |
| java, | |
| ) | |
| from nltk.parse.api import ParserI | |
| from nltk.parse.dependencygraph import DependencyGraph | |
| from nltk.tree import Tree | |
| _stanford_url = "https://nlp.stanford.edu/software/lex-parser.shtml" | |
| class GenericStanfordParser(ParserI): | |
| """Interface to the Stanford Parser""" | |
| _MODEL_JAR_PATTERN = r"stanford-parser-(\d+)(\.(\d+))+-models\.jar" | |
| _JAR = r"stanford-parser\.jar" | |
| _MAIN_CLASS = "edu.stanford.nlp.parser.lexparser.LexicalizedParser" | |
| _USE_STDIN = False | |
| _DOUBLE_SPACED_OUTPUT = False | |
| def __init__( | |
| self, | |
| path_to_jar=None, | |
| path_to_models_jar=None, | |
| model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz", | |
| encoding="utf8", | |
| verbose=False, | |
| java_options="-mx4g", | |
| corenlp_options="", | |
| ): | |
| # find the most recent code and model jar | |
| stanford_jar = max( | |
| find_jar_iter( | |
| self._JAR, | |
| path_to_jar, | |
| env_vars=("STANFORD_PARSER", "STANFORD_CORENLP"), | |
| searchpath=(), | |
| url=_stanford_url, | |
| verbose=verbose, | |
| is_regex=True, | |
| ), | |
| key=lambda model_path: os.path.dirname(model_path), | |
| ) | |
| model_jar = max( | |
| find_jar_iter( | |
| self._MODEL_JAR_PATTERN, | |
| path_to_models_jar, | |
| env_vars=("STANFORD_MODELS", "STANFORD_CORENLP"), | |
| searchpath=(), | |
| url=_stanford_url, | |
| verbose=verbose, | |
| is_regex=True, | |
| ), | |
| key=lambda model_path: os.path.dirname(model_path), | |
| ) | |
| # self._classpath = (stanford_jar, model_jar) | |
| # Adding logging jar files to classpath | |
| stanford_dir = os.path.split(stanford_jar)[0] | |
| self._classpath = tuple([model_jar] + find_jars_within_path(stanford_dir)) | |
| self.model_path = model_path | |
| self._encoding = encoding | |
| self.corenlp_options = corenlp_options | |
| self.java_options = java_options | |
| def _parse_trees_output(self, output_): | |
| res = [] | |
| cur_lines = [] | |
| cur_trees = [] | |
| blank = False | |
| for line in output_.splitlines(False): | |
| if line == "": | |
| if blank: | |
| res.append(iter(cur_trees)) | |
| cur_trees = [] | |
| blank = False | |
| elif self._DOUBLE_SPACED_OUTPUT: | |
| cur_trees.append(self._make_tree("\n".join(cur_lines))) | |
| cur_lines = [] | |
| blank = True | |
| else: | |
| res.append(iter([self._make_tree("\n".join(cur_lines))])) | |
| cur_lines = [] | |
| else: | |
| cur_lines.append(line) | |
| blank = False | |
| return iter(res) | |
| def parse_sents(self, sentences, verbose=False): | |
| """ | |
| Use StanfordParser to parse multiple sentences. Takes multiple sentences as a | |
| list where each sentence is a list of words. | |
| Each sentence will be automatically tagged with this StanfordParser instance's | |
| tagger. | |
| If whitespaces exists inside a token, then the token will be treated as | |
| separate tokens. | |
| :param sentences: Input sentences to parse | |
| :type sentences: list(list(str)) | |
| :rtype: iter(iter(Tree)) | |
| """ | |
| cmd = [ | |
| self._MAIN_CLASS, | |
| "-model", | |
| self.model_path, | |
| "-sentences", | |
| "newline", | |
| "-outputFormat", | |
| self._OUTPUT_FORMAT, | |
| "-tokenized", | |
| "-escaper", | |
| "edu.stanford.nlp.process.PTBEscapingProcessor", | |
| ] | |
| return self._parse_trees_output( | |
| self._execute( | |
| cmd, "\n".join(" ".join(sentence) for sentence in sentences), verbose | |
| ) | |
| ) | |
| def raw_parse(self, sentence, verbose=False): | |
| """ | |
| Use StanfordParser to parse a sentence. Takes a sentence as a string; | |
| before parsing, it will be automatically tokenized and tagged by | |
| the Stanford Parser. | |
| :param sentence: Input sentence to parse | |
| :type sentence: str | |
| :rtype: iter(Tree) | |
| """ | |
| return next(self.raw_parse_sents([sentence], verbose)) | |
| def raw_parse_sents(self, sentences, verbose=False): | |
| """ | |
| Use StanfordParser to parse multiple sentences. Takes multiple sentences as a | |
| list of strings. | |
| Each sentence will be automatically tokenized and tagged by the Stanford Parser. | |
| :param sentences: Input sentences to parse | |
| :type sentences: list(str) | |
| :rtype: iter(iter(Tree)) | |
| """ | |
| cmd = [ | |
| self._MAIN_CLASS, | |
| "-model", | |
| self.model_path, | |
| "-sentences", | |
| "newline", | |
| "-outputFormat", | |
| self._OUTPUT_FORMAT, | |
| ] | |
| return self._parse_trees_output( | |
| self._execute(cmd, "\n".join(sentences), verbose) | |
| ) | |
| def tagged_parse(self, sentence, verbose=False): | |
| """ | |
| Use StanfordParser to parse a sentence. Takes a sentence as a list of | |
| (word, tag) tuples; the sentence must have already been tokenized and | |
| tagged. | |
| :param sentence: Input sentence to parse | |
| :type sentence: list(tuple(str, str)) | |
| :rtype: iter(Tree) | |
| """ | |
| return next(self.tagged_parse_sents([sentence], verbose)) | |
| def tagged_parse_sents(self, sentences, verbose=False): | |
| """ | |
| Use StanfordParser to parse multiple sentences. Takes multiple sentences | |
| where each sentence is a list of (word, tag) tuples. | |
| The sentences must have already been tokenized and tagged. | |
| :param sentences: Input sentences to parse | |
| :type sentences: list(list(tuple(str, str))) | |
| :rtype: iter(iter(Tree)) | |
| """ | |
| tag_separator = "/" | |
| cmd = [ | |
| self._MAIN_CLASS, | |
| "-model", | |
| self.model_path, | |
| "-sentences", | |
| "newline", | |
| "-outputFormat", | |
| self._OUTPUT_FORMAT, | |
| "-tokenized", | |
| "-tagSeparator", | |
| tag_separator, | |
| "-tokenizerFactory", | |
| "edu.stanford.nlp.process.WhitespaceTokenizer", | |
| "-tokenizerMethod", | |
| "newCoreLabelTokenizerFactory", | |
| ] | |
| # We don't need to escape slashes as "splitting is done on the last instance of the character in the token" | |
| return self._parse_trees_output( | |
| self._execute( | |
| cmd, | |
| "\n".join( | |
| " ".join(tag_separator.join(tagged) for tagged in sentence) | |
| for sentence in sentences | |
| ), | |
| verbose, | |
| ) | |
| ) | |
| def _execute(self, cmd, input_, verbose=False): | |
| encoding = self._encoding | |
| cmd.extend(["-encoding", encoding]) | |
| if self.corenlp_options: | |
| cmd.extend(self.corenlp_options.split()) | |
| default_options = " ".join(_java_options) | |
| # Configure java. | |
| config_java(options=self.java_options, verbose=verbose) | |
| # Windows is incompatible with NamedTemporaryFile() without passing in delete=False. | |
| with tempfile.NamedTemporaryFile(mode="wb", delete=False) as input_file: | |
| # Write the actual sentences to the temporary input file | |
| if isinstance(input_, str) and encoding: | |
| input_ = input_.encode(encoding) | |
| input_file.write(input_) | |
| input_file.flush() | |
| # Run the tagger and get the output. | |
| if self._USE_STDIN: | |
| input_file.seek(0) | |
| stdout, stderr = java( | |
| cmd, | |
| classpath=self._classpath, | |
| stdin=input_file, | |
| stdout=PIPE, | |
| stderr=PIPE, | |
| ) | |
| else: | |
| cmd.append(input_file.name) | |
| stdout, stderr = java( | |
| cmd, classpath=self._classpath, stdout=PIPE, stderr=PIPE | |
| ) | |
| stdout = stdout.replace(b"\xc2\xa0", b" ") | |
| stdout = stdout.replace(b"\x00\xa0", b" ") | |
| stdout = stdout.decode(encoding) | |
| os.unlink(input_file.name) | |
| # Return java configurations to their default values. | |
| config_java(options=default_options, verbose=False) | |
| return stdout | |
| class StanfordParser(GenericStanfordParser): | |
| """ | |
| >>> parser=StanfordParser( | |
| ... model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz" | |
| ... ) # doctest: +SKIP | |
| >>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog")) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), | |
| Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), | |
| Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])] | |
| >>> sum([list(dep_graphs) for dep_graphs in parser.raw_parse_sents(( | |
| ... "the quick brown fox jumps over the lazy dog", | |
| ... "the quick grey wolf jumps over the lazy fox" | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), | |
| Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), | |
| Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])]), Tree('ROOT', [Tree('NP', | |
| [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['grey']), Tree('NN', ['wolf'])]), Tree('NP', | |
| [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']), | |
| Tree('JJ', ['lazy']), Tree('NN', ['fox'])])])])])])] | |
| >>> sum([list(dep_graphs) for dep_graphs in parser.parse_sents(( | |
| ... "I 'm a dog".split(), | |
| ... "This is my friends ' cat ( the tabby )".split(), | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['I'])]), Tree('VP', [Tree('VBP', ["'m"]), | |
| Tree('NP', [Tree('DT', ['a']), Tree('NN', ['dog'])])])])]), Tree('ROOT', [Tree('S', [Tree('NP', | |
| [Tree('DT', ['This'])]), Tree('VP', [Tree('VBZ', ['is']), Tree('NP', [Tree('NP', [Tree('NP', [Tree('PRP$', ['my']), | |
| Tree('NNS', ['friends']), Tree('POS', ["'"])]), Tree('NN', ['cat'])]), Tree('PRN', [Tree('-LRB-', [Tree('', []), | |
| Tree('NP', [Tree('DT', ['the']), Tree('NN', ['tabby'])]), Tree('-RRB-', [])])])])])])])] | |
| >>> sum([list(dep_graphs) for dep_graphs in parser.tagged_parse_sents(( | |
| ... ( | |
| ... ("The", "DT"), | |
| ... ("quick", "JJ"), | |
| ... ("brown", "JJ"), | |
| ... ("fox", "NN"), | |
| ... ("jumped", "VBD"), | |
| ... ("over", "IN"), | |
| ... ("the", "DT"), | |
| ... ("lazy", "JJ"), | |
| ... ("dog", "NN"), | |
| ... (".", "."), | |
| ... ), | |
| ... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('ROOT', [Tree('S', [Tree('NP', [Tree('DT', ['The']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), | |
| Tree('NN', ['fox'])]), Tree('VP', [Tree('VBD', ['jumped']), Tree('PP', [Tree('IN', ['over']), Tree('NP', | |
| [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])]), Tree('.', ['.'])])])] | |
| """ | |
| _OUTPUT_FORMAT = "penn" | |
| def __init__(self, *args, **kwargs): | |
| warnings.warn( | |
| "The StanfordParser will be deprecated\n" | |
| "Please use \033[91mnltk.parse.corenlp.CoreNLPParser\033[0m instead.", | |
| DeprecationWarning, | |
| stacklevel=2, | |
| ) | |
| super().__init__(*args, **kwargs) | |
| def _make_tree(self, result): | |
| return Tree.fromstring(result) | |
| class StanfordDependencyParser(GenericStanfordParser): | |
| """ | |
| >>> dep_parser=StanfordDependencyParser( | |
| ... model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz" | |
| ... ) # doctest: +SKIP | |
| >>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])])] | |
| >>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')), | |
| ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')), | |
| ((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')), | |
| ((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]] | |
| >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents(( | |
| ... "The quick brown fox jumps over the lazy dog.", | |
| ... "The quick grey wolf jumps over the lazy fox." | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])]), | |
| Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']), Tree('fox', ['over', 'the', 'lazy'])])] | |
| >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents(( | |
| ... "I 'm a dog".split(), | |
| ... "This is my friends ' cat ( the tabby )".split(), | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends', ['my', "'"]), Tree('tabby', ['the'])])] | |
| >>> sum([[list(parse.triples()) for parse in dep_graphs] for dep_graphs in dep_parser.tagged_parse_sents(( | |
| ... ( | |
| ... ("The", "DT"), | |
| ... ("quick", "JJ"), | |
| ... ("brown", "JJ"), | |
| ... ("fox", "NN"), | |
| ... ("jumped", "VBD"), | |
| ... ("over", "IN"), | |
| ... ("the", "DT"), | |
| ... ("lazy", "JJ"), | |
| ... ("dog", "NN"), | |
| ... (".", "."), | |
| ... ), | |
| ... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [[((u'jumped', u'VBD'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')), | |
| ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')), | |
| ((u'jumped', u'VBD'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')), | |
| ((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]] | |
| """ | |
| _OUTPUT_FORMAT = "conll2007" | |
| def __init__(self, *args, **kwargs): | |
| warnings.warn( | |
| "The StanfordDependencyParser will be deprecated\n" | |
| "Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.", | |
| DeprecationWarning, | |
| stacklevel=2, | |
| ) | |
| super().__init__(*args, **kwargs) | |
| def _make_tree(self, result): | |
| return DependencyGraph(result, top_relation_label="root") | |
| class StanfordNeuralDependencyParser(GenericStanfordParser): | |
| """ | |
| >>> from nltk.parse.stanford import StanfordNeuralDependencyParser # doctest: +SKIP | |
| >>> dep_parser=StanfordNeuralDependencyParser(java_options='-mx4g')# doctest: +SKIP | |
| >>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy']), '.'])] | |
| >>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', | |
| (u'The', u'DT')), ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), | |
| u'amod', (u'brown', u'JJ')), ((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')), | |
| ((u'dog', u'NN'), u'case', (u'over', u'IN')), ((u'dog', u'NN'), u'det', | |
| (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ')), ((u'jumps', u'VBZ'), | |
| u'punct', (u'.', u'.'))]] | |
| >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents(( | |
| ... "The quick brown fox jumps over the lazy dog.", | |
| ... "The quick grey wolf jumps over the lazy fox." | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', | |
| 'the', 'lazy']), '.']), Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']), | |
| Tree('fox', ['over', 'the', 'lazy']), '.'])] | |
| >>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents(( | |
| ... "I 'm a dog".split(), | |
| ... "This is my friends ' cat ( the tabby )".split(), | |
| ... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP | |
| [Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends', | |
| ['my', "'"]), Tree('tabby', ['-LRB-', 'the', '-RRB-'])])] | |
| """ | |
| _OUTPUT_FORMAT = "conll" | |
| _MAIN_CLASS = "edu.stanford.nlp.pipeline.StanfordCoreNLP" | |
| _JAR = r"stanford-corenlp-(\d+)(\.(\d+))+\.jar" | |
| _MODEL_JAR_PATTERN = r"stanford-corenlp-(\d+)(\.(\d+))+-models\.jar" | |
| _USE_STDIN = True | |
| _DOUBLE_SPACED_OUTPUT = True | |
| def __init__(self, *args, **kwargs): | |
| warnings.warn( | |
| "The StanfordNeuralDependencyParser will be deprecated\n" | |
| "Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.", | |
| DeprecationWarning, | |
| stacklevel=2, | |
| ) | |
| super().__init__(*args, **kwargs) | |
| self.corenlp_options += "-annotators tokenize,ssplit,pos,depparse" | |
| def tagged_parse_sents(self, sentences, verbose=False): | |
| """ | |
| Currently unimplemented because the neural dependency parser (and | |
| the StanfordCoreNLP pipeline class) doesn't support passing in pre- | |
| tagged tokens. | |
| """ | |
| raise NotImplementedError( | |
| "tagged_parse[_sents] is not supported by " | |
| "StanfordNeuralDependencyParser; use " | |
| "parse[_sents] or raw_parse[_sents] instead." | |
| ) | |
| def _make_tree(self, result): | |
| return DependencyGraph(result, top_relation_label="ROOT") | |