peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/random
/bit_generator.pyi
| import abc | |
| from threading import Lock | |
| from collections.abc import Callable, Mapping, Sequence | |
| from typing import ( | |
| Any, | |
| NamedTuple, | |
| TypedDict, | |
| TypeVar, | |
| Union, | |
| overload, | |
| Literal, | |
| ) | |
| from numpy import dtype, ndarray, uint32, uint64 | |
| from numpy._typing import _ArrayLikeInt_co, _ShapeLike, _SupportsDType, _UInt32Codes, _UInt64Codes | |
| _T = TypeVar("_T") | |
| _DTypeLikeUint32 = Union[ | |
| dtype[uint32], | |
| _SupportsDType[dtype[uint32]], | |
| type[uint32], | |
| _UInt32Codes, | |
| ] | |
| _DTypeLikeUint64 = Union[ | |
| dtype[uint64], | |
| _SupportsDType[dtype[uint64]], | |
| type[uint64], | |
| _UInt64Codes, | |
| ] | |
| class _SeedSeqState(TypedDict): | |
| entropy: None | int | Sequence[int] | |
| spawn_key: tuple[int, ...] | |
| pool_size: int | |
| n_children_spawned: int | |
| class _Interface(NamedTuple): | |
| state_address: Any | |
| state: Any | |
| next_uint64: Any | |
| next_uint32: Any | |
| next_double: Any | |
| bit_generator: Any | |
| class ISeedSequence(abc.ABC): | |
| def generate_state( | |
| self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ... | |
| ) -> ndarray[Any, dtype[uint32 | uint64]]: ... | |
| class ISpawnableSeedSequence(ISeedSequence): | |
| def spawn(self: _T, n_children: int) -> list[_T]: ... | |
| class SeedlessSeedSequence(ISpawnableSeedSequence): | |
| def generate_state( | |
| self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ... | |
| ) -> ndarray[Any, dtype[uint32 | uint64]]: ... | |
| def spawn(self: _T, n_children: int) -> list[_T]: ... | |
| class SeedSequence(ISpawnableSeedSequence): | |
| entropy: None | int | Sequence[int] | |
| spawn_key: tuple[int, ...] | |
| pool_size: int | |
| n_children_spawned: int | |
| pool: ndarray[Any, dtype[uint32]] | |
| def __init__( | |
| self, | |
| entropy: None | int | Sequence[int] | _ArrayLikeInt_co = ..., | |
| *, | |
| spawn_key: Sequence[int] = ..., | |
| pool_size: int = ..., | |
| n_children_spawned: int = ..., | |
| ) -> None: ... | |
| def __repr__(self) -> str: ... | |
| def state( | |
| self, | |
| ) -> _SeedSeqState: ... | |
| def generate_state( | |
| self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ... | |
| ) -> ndarray[Any, dtype[uint32 | uint64]]: ... | |
| def spawn(self, n_children: int) -> list[SeedSequence]: ... | |
| class BitGenerator(abc.ABC): | |
| lock: Lock | |
| def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ... | |
| def __getstate__(self) -> dict[str, Any]: ... | |
| def __setstate__(self, state: dict[str, Any]) -> None: ... | |
| def __reduce__( | |
| self, | |
| ) -> tuple[Callable[[str], BitGenerator], tuple[str], tuple[dict[str, Any]]]: ... | |
| def state(self) -> Mapping[str, Any]: ... | |
| def state(self, value: Mapping[str, Any]) -> None: ... | |
| def seed_seq(self) -> ISeedSequence: ... | |
| def spawn(self, n_children: int) -> list[BitGenerator]: ... | |
| def random_raw(self, size: None = ..., output: Literal[True] = ...) -> int: ... # type: ignore[misc] | |
| def random_raw(self, size: _ShapeLike = ..., output: Literal[True] = ...) -> ndarray[Any, dtype[uint64]]: ... # type: ignore[misc] | |
| def random_raw(self, size: None | _ShapeLike = ..., output: Literal[False] = ...) -> None: ... # type: ignore[misc] | |
| def _benchmark(self, cnt: int, method: str = ...) -> None: ... | |
| def ctypes(self) -> _Interface: ... | |
| def cffi(self) -> _Interface: ... | |