peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/random
/mtrand.pyi
| import builtins | |
| from collections.abc import Callable | |
| from typing import Any, Union, overload, Literal | |
| from numpy import ( | |
| bool_, | |
| dtype, | |
| float32, | |
| float64, | |
| int8, | |
| int16, | |
| int32, | |
| int64, | |
| int_, | |
| ndarray, | |
| uint, | |
| uint8, | |
| uint16, | |
| uint32, | |
| uint64, | |
| ) | |
| from numpy.random.bit_generator import BitGenerator | |
| from numpy._typing import ( | |
| ArrayLike, | |
| _ArrayLikeFloat_co, | |
| _ArrayLikeInt_co, | |
| _DoubleCodes, | |
| _DTypeLikeBool, | |
| _DTypeLikeInt, | |
| _DTypeLikeUInt, | |
| _Float32Codes, | |
| _Float64Codes, | |
| _Int8Codes, | |
| _Int16Codes, | |
| _Int32Codes, | |
| _Int64Codes, | |
| _IntCodes, | |
| _ShapeLike, | |
| _SingleCodes, | |
| _SupportsDType, | |
| _UInt8Codes, | |
| _UInt16Codes, | |
| _UInt32Codes, | |
| _UInt64Codes, | |
| _UIntCodes, | |
| ) | |
| _DTypeLikeFloat32 = Union[ | |
| dtype[float32], | |
| _SupportsDType[dtype[float32]], | |
| type[float32], | |
| _Float32Codes, | |
| _SingleCodes, | |
| ] | |
| _DTypeLikeFloat64 = Union[ | |
| dtype[float64], | |
| _SupportsDType[dtype[float64]], | |
| type[float], | |
| type[float64], | |
| _Float64Codes, | |
| _DoubleCodes, | |
| ] | |
| class RandomState: | |
| _bit_generator: BitGenerator | |
| def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ... | |
| def __repr__(self) -> str: ... | |
| def __str__(self) -> str: ... | |
| def __getstate__(self) -> dict[str, Any]: ... | |
| def __setstate__(self, state: dict[str, Any]) -> None: ... | |
| def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ... | |
| def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ... | |
| def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ... | |
| def get_state( | |
| self, legacy: Literal[True] = ... | |
| ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ... | |
| def set_state( | |
| self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float] | |
| ) -> None: ... | |
| def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc] | |
| def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
| def random(self, size: None = ...) -> float: ... # type: ignore[misc] | |
| def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
| def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def beta( | |
| self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def exponential( | |
| self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc] | |
| def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
| def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc] | |
| def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: int, | |
| high: None | int = ..., | |
| ) -> int: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: int, | |
| high: None | int = ..., | |
| size: None = ..., | |
| dtype: _DTypeLikeBool = ..., | |
| ) -> bool: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: int, | |
| high: None | int = ..., | |
| size: None = ..., | |
| dtype: _DTypeLikeInt | _DTypeLikeUInt = ..., | |
| ) -> int: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: _DTypeLikeBool = ..., | |
| ) -> ndarray[Any, dtype[bool_]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., | |
| ) -> ndarray[Any, dtype[int8]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., | |
| ) -> ndarray[Any, dtype[int16]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., | |
| ) -> ndarray[Any, dtype[int32]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., | |
| ) -> ndarray[Any, dtype[int64]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., | |
| ) -> ndarray[Any, dtype[uint8]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., | |
| ) -> ndarray[Any, dtype[uint16]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., | |
| ) -> ndarray[Any, dtype[uint32]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., | |
| ) -> ndarray[Any, dtype[uint64]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def randint( # type: ignore[misc] | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., | |
| ) -> ndarray[Any, dtype[uint]]: ... | |
| def bytes(self, length: int) -> builtins.bytes: ... | |
| def choice( | |
| self, | |
| a: int, | |
| size: None = ..., | |
| replace: bool = ..., | |
| p: None | _ArrayLikeFloat_co = ..., | |
| ) -> int: ... | |
| def choice( | |
| self, | |
| a: int, | |
| size: _ShapeLike = ..., | |
| replace: bool = ..., | |
| p: None | _ArrayLikeFloat_co = ..., | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def choice( | |
| self, | |
| a: ArrayLike, | |
| size: None = ..., | |
| replace: bool = ..., | |
| p: None | _ArrayLikeFloat_co = ..., | |
| ) -> Any: ... | |
| def choice( | |
| self, | |
| a: ArrayLike, | |
| size: _ShapeLike = ..., | |
| replace: bool = ..., | |
| p: None | _ArrayLikeFloat_co = ..., | |
| ) -> ndarray[Any, Any]: ... | |
| def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def uniform( | |
| self, | |
| low: _ArrayLikeFloat_co = ..., | |
| high: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def rand(self) -> float: ... | |
| def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ... | |
| def randn(self) -> float: ... | |
| def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ... | |
| def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ... # type: ignore[misc] | |
| def random_integers( | |
| self, | |
| low: _ArrayLikeInt_co, | |
| high: None | _ArrayLikeInt_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc] | |
| def standard_normal( # type: ignore[misc] | |
| self, size: _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def normal( | |
| self, | |
| loc: _ArrayLikeFloat_co = ..., | |
| scale: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def standard_gamma( # type: ignore[misc] | |
| self, | |
| shape: float, | |
| size: None = ..., | |
| ) -> float: ... | |
| def standard_gamma( | |
| self, | |
| shape: _ArrayLikeFloat_co, | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def gamma( | |
| self, | |
| shape: _ArrayLikeFloat_co, | |
| scale: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def f( | |
| self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def noncentral_f( | |
| self, | |
| dfnum: _ArrayLikeFloat_co, | |
| dfden: _ArrayLikeFloat_co, | |
| nonc: _ArrayLikeFloat_co, | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def chisquare( | |
| self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def noncentral_chisquare( | |
| self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def standard_t( | |
| self, df: _ArrayLikeFloat_co, size: None = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def standard_t( | |
| self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def vonmises( | |
| self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def pareto( | |
| self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def weibull( | |
| self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def power( | |
| self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] | |
| def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ... | |
| def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def laplace( | |
| self, | |
| loc: _ArrayLikeFloat_co = ..., | |
| scale: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def gumbel( | |
| self, | |
| loc: _ArrayLikeFloat_co = ..., | |
| scale: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def logistic( | |
| self, | |
| loc: _ArrayLikeFloat_co = ..., | |
| scale: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def lognormal( | |
| self, | |
| mean: _ArrayLikeFloat_co = ..., | |
| sigma: _ArrayLikeFloat_co = ..., | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] | |
| def rayleigh( | |
| self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def wald( | |
| self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc] | |
| def triangular( | |
| self, | |
| left: _ArrayLikeFloat_co, | |
| mode: _ArrayLikeFloat_co, | |
| right: _ArrayLikeFloat_co, | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
| def binomial( | |
| self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
| def negative_binomial( | |
| self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc] | |
| def poisson( | |
| self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] | |
| def zipf( | |
| self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
| def geometric( | |
| self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc] | |
| def hypergeometric( | |
| self, | |
| ngood: _ArrayLikeInt_co, | |
| nbad: _ArrayLikeInt_co, | |
| nsample: _ArrayLikeInt_co, | |
| size: None | _ShapeLike = ..., | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] | |
| def logseries( | |
| self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def multivariate_normal( | |
| self, | |
| mean: _ArrayLikeFloat_co, | |
| cov: _ArrayLikeFloat_co, | |
| size: None | _ShapeLike = ..., | |
| check_valid: Literal["warn", "raise", "ignore"] = ..., | |
| tol: float = ..., | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def multinomial( | |
| self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[int_]]: ... | |
| def dirichlet( | |
| self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ... | |
| ) -> ndarray[Any, dtype[float64]]: ... | |
| def shuffle(self, x: ArrayLike) -> None: ... | |
| def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ... | |
| def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ... | |
| _rand: RandomState | |
| beta = _rand.beta | |
| binomial = _rand.binomial | |
| bytes = _rand.bytes | |
| chisquare = _rand.chisquare | |
| choice = _rand.choice | |
| dirichlet = _rand.dirichlet | |
| exponential = _rand.exponential | |
| f = _rand.f | |
| gamma = _rand.gamma | |
| get_state = _rand.get_state | |
| geometric = _rand.geometric | |
| gumbel = _rand.gumbel | |
| hypergeometric = _rand.hypergeometric | |
| laplace = _rand.laplace | |
| logistic = _rand.logistic | |
| lognormal = _rand.lognormal | |
| logseries = _rand.logseries | |
| multinomial = _rand.multinomial | |
| multivariate_normal = _rand.multivariate_normal | |
| negative_binomial = _rand.negative_binomial | |
| noncentral_chisquare = _rand.noncentral_chisquare | |
| noncentral_f = _rand.noncentral_f | |
| normal = _rand.normal | |
| pareto = _rand.pareto | |
| permutation = _rand.permutation | |
| poisson = _rand.poisson | |
| power = _rand.power | |
| rand = _rand.rand | |
| randint = _rand.randint | |
| randn = _rand.randn | |
| random = _rand.random | |
| random_integers = _rand.random_integers | |
| random_sample = _rand.random_sample | |
| rayleigh = _rand.rayleigh | |
| seed = _rand.seed | |
| set_state = _rand.set_state | |
| shuffle = _rand.shuffle | |
| standard_cauchy = _rand.standard_cauchy | |
| standard_exponential = _rand.standard_exponential | |
| standard_gamma = _rand.standard_gamma | |
| standard_normal = _rand.standard_normal | |
| standard_t = _rand.standard_t | |
| triangular = _rand.triangular | |
| uniform = _rand.uniform | |
| vonmises = _rand.vonmises | |
| wald = _rand.wald | |
| weibull = _rand.weibull | |
| zipf = _rand.zipf | |
| # Two legacy that are trivial wrappers around random_sample | |
| sample = _rand.random_sample | |
| ranf = _rand.random_sample | |
| def set_bit_generator(bitgen: BitGenerator) -> None: | |
| ... | |
| def get_bit_generator() -> BitGenerator: | |
| ... | |