peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/numpy
/testing
/_private
/utils.py
| """ | |
| Utility function to facilitate testing. | |
| """ | |
| import os | |
| import sys | |
| import platform | |
| import re | |
| import gc | |
| import operator | |
| import warnings | |
| from functools import partial, wraps | |
| import shutil | |
| import contextlib | |
| from tempfile import mkdtemp, mkstemp | |
| from unittest.case import SkipTest | |
| from warnings import WarningMessage | |
| import pprint | |
| import sysconfig | |
| import numpy as np | |
| from numpy.core import ( | |
| intp, float32, empty, arange, array_repr, ndarray, isnat, array) | |
| from numpy import isfinite, isnan, isinf | |
| import numpy.linalg._umath_linalg | |
| from io import StringIO | |
| __all__ = [ | |
| 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', | |
| 'assert_array_equal', 'assert_array_less', 'assert_string_equal', | |
| 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', | |
| 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', | |
| 'rundocs', 'runstring', 'verbose', 'measure', | |
| 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', | |
| 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', | |
| 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', | |
| 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', | |
| 'HAS_REFCOUNT', "IS_WASM", 'suppress_warnings', 'assert_array_compare', | |
| 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON', | |
| '_OLD_PROMOTION', 'IS_MUSL', '_SUPPORTS_SVE' | |
| ] | |
| class KnownFailureException(Exception): | |
| '''Raise this exception to mark a test as a known failing test.''' | |
| pass | |
| KnownFailureTest = KnownFailureException # backwards compat | |
| verbose = 0 | |
| IS_WASM = platform.machine() in ["wasm32", "wasm64"] | |
| IS_PYPY = sys.implementation.name == 'pypy' | |
| IS_PYSTON = hasattr(sys, "pyston_version_info") | |
| HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON | |
| HAS_LAPACK64 = numpy.linalg._umath_linalg._ilp64 | |
| _OLD_PROMOTION = lambda: np._get_promotion_state() == 'legacy' | |
| IS_MUSL = False | |
| # alternate way is | |
| # from packaging.tags import sys_tags | |
| # _tags = list(sys_tags()) | |
| # if 'musllinux' in _tags[0].platform: | |
| _v = sysconfig.get_config_var('HOST_GNU_TYPE') or '' | |
| if 'musl' in _v: | |
| IS_MUSL = True | |
| def assert_(val, msg=''): | |
| """ | |
| Assert that works in release mode. | |
| Accepts callable msg to allow deferring evaluation until failure. | |
| The Python built-in ``assert`` does not work when executing code in | |
| optimized mode (the ``-O`` flag) - no byte-code is generated for it. | |
| For documentation on usage, refer to the Python documentation. | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| if not val: | |
| try: | |
| smsg = msg() | |
| except TypeError: | |
| smsg = msg | |
| raise AssertionError(smsg) | |
| if os.name == 'nt': | |
| # Code "stolen" from enthought/debug/memusage.py | |
| def GetPerformanceAttributes(object, counter, instance=None, | |
| inum=-1, format=None, machine=None): | |
| # NOTE: Many counters require 2 samples to give accurate results, | |
| # including "% Processor Time" (as by definition, at any instant, a | |
| # thread's CPU usage is either 0 or 100). To read counters like this, | |
| # you should copy this function, but keep the counter open, and call | |
| # CollectQueryData() each time you need to know. | |
| # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link) | |
| # My older explanation for this was that the "AddCounter" process | |
| # forced the CPU to 100%, but the above makes more sense :) | |
| import win32pdh | |
| if format is None: | |
| format = win32pdh.PDH_FMT_LONG | |
| path = win32pdh.MakeCounterPath( (machine, object, instance, None, | |
| inum, counter)) | |
| hq = win32pdh.OpenQuery() | |
| try: | |
| hc = win32pdh.AddCounter(hq, path) | |
| try: | |
| win32pdh.CollectQueryData(hq) | |
| type, val = win32pdh.GetFormattedCounterValue(hc, format) | |
| return val | |
| finally: | |
| win32pdh.RemoveCounter(hc) | |
| finally: | |
| win32pdh.CloseQuery(hq) | |
| def memusage(processName="python", instance=0): | |
| # from win32pdhutil, part of the win32all package | |
| import win32pdh | |
| return GetPerformanceAttributes("Process", "Virtual Bytes", | |
| processName, instance, | |
| win32pdh.PDH_FMT_LONG, None) | |
| elif sys.platform[:5] == 'linux': | |
| def memusage(_proc_pid_stat=f'/proc/{os.getpid()}/stat'): | |
| """ | |
| Return virtual memory size in bytes of the running python. | |
| """ | |
| try: | |
| with open(_proc_pid_stat) as f: | |
| l = f.readline().split(' ') | |
| return int(l[22]) | |
| except Exception: | |
| return | |
| else: | |
| def memusage(): | |
| """ | |
| Return memory usage of running python. [Not implemented] | |
| """ | |
| raise NotImplementedError | |
| if sys.platform[:5] == 'linux': | |
| def jiffies(_proc_pid_stat=f'/proc/{os.getpid()}/stat', _load_time=[]): | |
| """ | |
| Return number of jiffies elapsed. | |
| Return number of jiffies (1/100ths of a second) that this | |
| process has been scheduled in user mode. See man 5 proc. | |
| """ | |
| import time | |
| if not _load_time: | |
| _load_time.append(time.time()) | |
| try: | |
| with open(_proc_pid_stat) as f: | |
| l = f.readline().split(' ') | |
| return int(l[13]) | |
| except Exception: | |
| return int(100*(time.time()-_load_time[0])) | |
| else: | |
| # os.getpid is not in all platforms available. | |
| # Using time is safe but inaccurate, especially when process | |
| # was suspended or sleeping. | |
| def jiffies(_load_time=[]): | |
| """ | |
| Return number of jiffies elapsed. | |
| Return number of jiffies (1/100ths of a second) that this | |
| process has been scheduled in user mode. See man 5 proc. | |
| """ | |
| import time | |
| if not _load_time: | |
| _load_time.append(time.time()) | |
| return int(100*(time.time()-_load_time[0])) | |
| def build_err_msg(arrays, err_msg, header='Items are not equal:', | |
| verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): | |
| msg = ['\n' + header] | |
| if err_msg: | |
| if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): | |
| msg = [msg[0] + ' ' + err_msg] | |
| else: | |
| msg.append(err_msg) | |
| if verbose: | |
| for i, a in enumerate(arrays): | |
| if isinstance(a, ndarray): | |
| # precision argument is only needed if the objects are ndarrays | |
| r_func = partial(array_repr, precision=precision) | |
| else: | |
| r_func = repr | |
| try: | |
| r = r_func(a) | |
| except Exception as exc: | |
| r = f'[repr failed for <{type(a).__name__}>: {exc}]' | |
| if r.count('\n') > 3: | |
| r = '\n'.join(r.splitlines()[:3]) | |
| r += '...' | |
| msg.append(f' {names[i]}: {r}') | |
| return '\n'.join(msg) | |
| def assert_equal(actual, desired, err_msg='', verbose=True): | |
| """ | |
| Raises an AssertionError if two objects are not equal. | |
| Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), | |
| check that all elements of these objects are equal. An exception is raised | |
| at the first conflicting values. | |
| When one of `actual` and `desired` is a scalar and the other is array_like, | |
| the function checks that each element of the array_like object is equal to | |
| the scalar. | |
| This function handles NaN comparisons as if NaN was a "normal" number. | |
| That is, AssertionError is not raised if both objects have NaNs in the same | |
| positions. This is in contrast to the IEEE standard on NaNs, which says | |
| that NaN compared to anything must return False. | |
| Parameters | |
| ---------- | |
| actual : array_like | |
| The object to check. | |
| desired : array_like | |
| The expected object. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired are not equal. | |
| Examples | |
| -------- | |
| >>> np.testing.assert_equal([4,5], [4,6]) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Items are not equal: | |
| item=1 | |
| ACTUAL: 5 | |
| DESIRED: 6 | |
| The following comparison does not raise an exception. There are NaNs | |
| in the inputs, but they are in the same positions. | |
| >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan]) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| if isinstance(desired, dict): | |
| if not isinstance(actual, dict): | |
| raise AssertionError(repr(type(actual))) | |
| assert_equal(len(actual), len(desired), err_msg, verbose) | |
| for k, i in desired.items(): | |
| if k not in actual: | |
| raise AssertionError(repr(k)) | |
| assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}', | |
| verbose) | |
| return | |
| if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): | |
| assert_equal(len(actual), len(desired), err_msg, verbose) | |
| for k in range(len(desired)): | |
| assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}', | |
| verbose) | |
| return | |
| from numpy.core import ndarray, isscalar, signbit | |
| from numpy.lib import iscomplexobj, real, imag | |
| if isinstance(actual, ndarray) or isinstance(desired, ndarray): | |
| return assert_array_equal(actual, desired, err_msg, verbose) | |
| msg = build_err_msg([actual, desired], err_msg, verbose=verbose) | |
| # Handle complex numbers: separate into real/imag to handle | |
| # nan/inf/negative zero correctly | |
| # XXX: catch ValueError for subclasses of ndarray where iscomplex fail | |
| try: | |
| usecomplex = iscomplexobj(actual) or iscomplexobj(desired) | |
| except (ValueError, TypeError): | |
| usecomplex = False | |
| if usecomplex: | |
| if iscomplexobj(actual): | |
| actualr = real(actual) | |
| actuali = imag(actual) | |
| else: | |
| actualr = actual | |
| actuali = 0 | |
| if iscomplexobj(desired): | |
| desiredr = real(desired) | |
| desiredi = imag(desired) | |
| else: | |
| desiredr = desired | |
| desiredi = 0 | |
| try: | |
| assert_equal(actualr, desiredr) | |
| assert_equal(actuali, desiredi) | |
| except AssertionError: | |
| raise AssertionError(msg) | |
| # isscalar test to check cases such as [np.nan] != np.nan | |
| if isscalar(desired) != isscalar(actual): | |
| raise AssertionError(msg) | |
| try: | |
| isdesnat = isnat(desired) | |
| isactnat = isnat(actual) | |
| dtypes_match = (np.asarray(desired).dtype.type == | |
| np.asarray(actual).dtype.type) | |
| if isdesnat and isactnat: | |
| # If both are NaT (and have the same dtype -- datetime or | |
| # timedelta) they are considered equal. | |
| if dtypes_match: | |
| return | |
| else: | |
| raise AssertionError(msg) | |
| except (TypeError, ValueError, NotImplementedError): | |
| pass | |
| # Inf/nan/negative zero handling | |
| try: | |
| isdesnan = isnan(desired) | |
| isactnan = isnan(actual) | |
| if isdesnan and isactnan: | |
| return # both nan, so equal | |
| # handle signed zero specially for floats | |
| array_actual = np.asarray(actual) | |
| array_desired = np.asarray(desired) | |
| if (array_actual.dtype.char in 'Mm' or | |
| array_desired.dtype.char in 'Mm'): | |
| # version 1.18 | |
| # until this version, isnan failed for datetime64 and timedelta64. | |
| # Now it succeeds but comparison to scalar with a different type | |
| # emits a DeprecationWarning. | |
| # Avoid that by skipping the next check | |
| raise NotImplementedError('cannot compare to a scalar ' | |
| 'with a different type') | |
| if desired == 0 and actual == 0: | |
| if not signbit(desired) == signbit(actual): | |
| raise AssertionError(msg) | |
| except (TypeError, ValueError, NotImplementedError): | |
| pass | |
| try: | |
| # Explicitly use __eq__ for comparison, gh-2552 | |
| if not (desired == actual): | |
| raise AssertionError(msg) | |
| except (DeprecationWarning, FutureWarning) as e: | |
| # this handles the case when the two types are not even comparable | |
| if 'elementwise == comparison' in e.args[0]: | |
| raise AssertionError(msg) | |
| else: | |
| raise | |
| def print_assert_equal(test_string, actual, desired): | |
| """ | |
| Test if two objects are equal, and print an error message if test fails. | |
| The test is performed with ``actual == desired``. | |
| Parameters | |
| ---------- | |
| test_string : str | |
| The message supplied to AssertionError. | |
| actual : object | |
| The object to test for equality against `desired`. | |
| desired : object | |
| The expected result. | |
| Examples | |
| -------- | |
| >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) | |
| >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: Test XYZ of func xyz failed | |
| ACTUAL: | |
| [0, 1] | |
| DESIRED: | |
| [0, 2] | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import pprint | |
| if not (actual == desired): | |
| msg = StringIO() | |
| msg.write(test_string) | |
| msg.write(' failed\nACTUAL: \n') | |
| pprint.pprint(actual, msg) | |
| msg.write('DESIRED: \n') | |
| pprint.pprint(desired, msg) | |
| raise AssertionError(msg.getvalue()) | |
| def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): | |
| """ | |
| Raises an AssertionError if two items are not equal up to desired | |
| precision. | |
| .. note:: It is recommended to use one of `assert_allclose`, | |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` | |
| instead of this function for more consistent floating point | |
| comparisons. | |
| The test verifies that the elements of `actual` and `desired` satisfy. | |
| ``abs(desired-actual) < float64(1.5 * 10**(-decimal))`` | |
| That is a looser test than originally documented, but agrees with what the | |
| actual implementation in `assert_array_almost_equal` did up to rounding | |
| vagaries. An exception is raised at conflicting values. For ndarrays this | |
| delegates to assert_array_almost_equal | |
| Parameters | |
| ---------- | |
| actual : array_like | |
| The object to check. | |
| desired : array_like | |
| The expected object. | |
| decimal : int, optional | |
| Desired precision, default is 7. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired are not equal up to specified precision. | |
| See Also | |
| -------- | |
| assert_allclose: Compare two array_like objects for equality with desired | |
| relative and/or absolute precision. | |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal | |
| Examples | |
| -------- | |
| >>> from numpy.testing import assert_almost_equal | |
| >>> assert_almost_equal(2.3333333333333, 2.33333334) | |
| >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not almost equal to 10 decimals | |
| ACTUAL: 2.3333333333333 | |
| DESIRED: 2.33333334 | |
| >>> assert_almost_equal(np.array([1.0,2.3333333333333]), | |
| ... np.array([1.0,2.33333334]), decimal=9) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not almost equal to 9 decimals | |
| <BLANKLINE> | |
| Mismatched elements: 1 / 2 (50%) | |
| Max absolute difference: 6.66669964e-09 | |
| Max relative difference: 2.85715698e-09 | |
| x: array([1. , 2.333333333]) | |
| y: array([1. , 2.33333334]) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| from numpy.core import ndarray | |
| from numpy.lib import iscomplexobj, real, imag | |
| # Handle complex numbers: separate into real/imag to handle | |
| # nan/inf/negative zero correctly | |
| # XXX: catch ValueError for subclasses of ndarray where iscomplex fail | |
| try: | |
| usecomplex = iscomplexobj(actual) or iscomplexobj(desired) | |
| except ValueError: | |
| usecomplex = False | |
| def _build_err_msg(): | |
| header = ('Arrays are not almost equal to %d decimals' % decimal) | |
| return build_err_msg([actual, desired], err_msg, verbose=verbose, | |
| header=header) | |
| if usecomplex: | |
| if iscomplexobj(actual): | |
| actualr = real(actual) | |
| actuali = imag(actual) | |
| else: | |
| actualr = actual | |
| actuali = 0 | |
| if iscomplexobj(desired): | |
| desiredr = real(desired) | |
| desiredi = imag(desired) | |
| else: | |
| desiredr = desired | |
| desiredi = 0 | |
| try: | |
| assert_almost_equal(actualr, desiredr, decimal=decimal) | |
| assert_almost_equal(actuali, desiredi, decimal=decimal) | |
| except AssertionError: | |
| raise AssertionError(_build_err_msg()) | |
| if isinstance(actual, (ndarray, tuple, list)) \ | |
| or isinstance(desired, (ndarray, tuple, list)): | |
| return assert_array_almost_equal(actual, desired, decimal, err_msg) | |
| try: | |
| # If one of desired/actual is not finite, handle it specially here: | |
| # check that both are nan if any is a nan, and test for equality | |
| # otherwise | |
| if not (isfinite(desired) and isfinite(actual)): | |
| if isnan(desired) or isnan(actual): | |
| if not (isnan(desired) and isnan(actual)): | |
| raise AssertionError(_build_err_msg()) | |
| else: | |
| if not desired == actual: | |
| raise AssertionError(_build_err_msg()) | |
| return | |
| except (NotImplementedError, TypeError): | |
| pass | |
| if abs(desired - actual) >= np.float64(1.5 * 10.0**(-decimal)): | |
| raise AssertionError(_build_err_msg()) | |
| def assert_approx_equal(actual, desired, significant=7, err_msg='', | |
| verbose=True): | |
| """ | |
| Raises an AssertionError if two items are not equal up to significant | |
| digits. | |
| .. note:: It is recommended to use one of `assert_allclose`, | |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` | |
| instead of this function for more consistent floating point | |
| comparisons. | |
| Given two numbers, check that they are approximately equal. | |
| Approximately equal is defined as the number of significant digits | |
| that agree. | |
| Parameters | |
| ---------- | |
| actual : scalar | |
| The object to check. | |
| desired : scalar | |
| The expected object. | |
| significant : int, optional | |
| Desired precision, default is 7. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired are not equal up to specified precision. | |
| See Also | |
| -------- | |
| assert_allclose: Compare two array_like objects for equality with desired | |
| relative and/or absolute precision. | |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal | |
| Examples | |
| -------- | |
| >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) | |
| >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, | |
| ... significant=8) | |
| >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, | |
| ... significant=8) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Items are not equal to 8 significant digits: | |
| ACTUAL: 1.234567e-21 | |
| DESIRED: 1.2345672e-21 | |
| the evaluated condition that raises the exception is | |
| >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) | |
| True | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import numpy as np | |
| (actual, desired) = map(float, (actual, desired)) | |
| if desired == actual: | |
| return | |
| # Normalized the numbers to be in range (-10.0,10.0) | |
| # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) | |
| with np.errstate(invalid='ignore'): | |
| scale = 0.5*(np.abs(desired) + np.abs(actual)) | |
| scale = np.power(10, np.floor(np.log10(scale))) | |
| try: | |
| sc_desired = desired/scale | |
| except ZeroDivisionError: | |
| sc_desired = 0.0 | |
| try: | |
| sc_actual = actual/scale | |
| except ZeroDivisionError: | |
| sc_actual = 0.0 | |
| msg = build_err_msg( | |
| [actual, desired], err_msg, | |
| header='Items are not equal to %d significant digits:' % significant, | |
| verbose=verbose) | |
| try: | |
| # If one of desired/actual is not finite, handle it specially here: | |
| # check that both are nan if any is a nan, and test for equality | |
| # otherwise | |
| if not (isfinite(desired) and isfinite(actual)): | |
| if isnan(desired) or isnan(actual): | |
| if not (isnan(desired) and isnan(actual)): | |
| raise AssertionError(msg) | |
| else: | |
| if not desired == actual: | |
| raise AssertionError(msg) | |
| return | |
| except (TypeError, NotImplementedError): | |
| pass | |
| if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)): | |
| raise AssertionError(msg) | |
| def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', | |
| precision=6, equal_nan=True, equal_inf=True, | |
| *, strict=False): | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| from numpy.core import (array2string, isnan, inf, bool_, errstate, | |
| all, max, object_) | |
| x = np.asanyarray(x) | |
| y = np.asanyarray(y) | |
| # original array for output formatting | |
| ox, oy = x, y | |
| def isnumber(x): | |
| return x.dtype.char in '?bhilqpBHILQPefdgFDG' | |
| def istime(x): | |
| return x.dtype.char in "Mm" | |
| def func_assert_same_pos(x, y, func=isnan, hasval='nan'): | |
| """Handling nan/inf. | |
| Combine results of running func on x and y, checking that they are True | |
| at the same locations. | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| x_id = func(x) | |
| y_id = func(y) | |
| # We include work-arounds here to handle three types of slightly | |
| # pathological ndarray subclasses: | |
| # (1) all() on `masked` array scalars can return masked arrays, so we | |
| # use != True | |
| # (2) __eq__ on some ndarray subclasses returns Python booleans | |
| # instead of element-wise comparisons, so we cast to bool_() and | |
| # use isinstance(..., bool) checks | |
| # (3) subclasses with bare-bones __array_function__ implementations may | |
| # not implement np.all(), so favor using the .all() method | |
| # We are not committed to supporting such subclasses, but it's nice to | |
| # support them if possible. | |
| if bool_(x_id == y_id).all() != True: | |
| msg = build_err_msg([x, y], | |
| err_msg + '\nx and y %s location mismatch:' | |
| % (hasval), verbose=verbose, header=header, | |
| names=('x', 'y'), precision=precision) | |
| raise AssertionError(msg) | |
| # If there is a scalar, then here we know the array has the same | |
| # flag as it everywhere, so we should return the scalar flag. | |
| if isinstance(x_id, bool) or x_id.ndim == 0: | |
| return bool_(x_id) | |
| elif isinstance(y_id, bool) or y_id.ndim == 0: | |
| return bool_(y_id) | |
| else: | |
| return y_id | |
| try: | |
| if strict: | |
| cond = x.shape == y.shape and x.dtype == y.dtype | |
| else: | |
| cond = (x.shape == () or y.shape == ()) or x.shape == y.shape | |
| if not cond: | |
| if x.shape != y.shape: | |
| reason = f'\n(shapes {x.shape}, {y.shape} mismatch)' | |
| else: | |
| reason = f'\n(dtypes {x.dtype}, {y.dtype} mismatch)' | |
| msg = build_err_msg([x, y], | |
| err_msg | |
| + reason, | |
| verbose=verbose, header=header, | |
| names=('x', 'y'), precision=precision) | |
| raise AssertionError(msg) | |
| flagged = bool_(False) | |
| if isnumber(x) and isnumber(y): | |
| if equal_nan: | |
| flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') | |
| if equal_inf: | |
| flagged |= func_assert_same_pos(x, y, | |
| func=lambda xy: xy == +inf, | |
| hasval='+inf') | |
| flagged |= func_assert_same_pos(x, y, | |
| func=lambda xy: xy == -inf, | |
| hasval='-inf') | |
| elif istime(x) and istime(y): | |
| # If one is datetime64 and the other timedelta64 there is no point | |
| if equal_nan and x.dtype.type == y.dtype.type: | |
| flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") | |
| if flagged.ndim > 0: | |
| x, y = x[~flagged], y[~flagged] | |
| # Only do the comparison if actual values are left | |
| if x.size == 0: | |
| return | |
| elif flagged: | |
| # no sense doing comparison if everything is flagged. | |
| return | |
| val = comparison(x, y) | |
| if isinstance(val, bool): | |
| cond = val | |
| reduced = array([val]) | |
| else: | |
| reduced = val.ravel() | |
| cond = reduced.all() | |
| # The below comparison is a hack to ensure that fully masked | |
| # results, for which val.ravel().all() returns np.ma.masked, | |
| # do not trigger a failure (np.ma.masked != True evaluates as | |
| # np.ma.masked, which is falsy). | |
| if cond != True: | |
| n_mismatch = reduced.size - reduced.sum(dtype=intp) | |
| n_elements = flagged.size if flagged.ndim != 0 else reduced.size | |
| percent_mismatch = 100 * n_mismatch / n_elements | |
| remarks = [ | |
| 'Mismatched elements: {} / {} ({:.3g}%)'.format( | |
| n_mismatch, n_elements, percent_mismatch)] | |
| with errstate(all='ignore'): | |
| # ignore errors for non-numeric types | |
| with contextlib.suppress(TypeError): | |
| error = abs(x - y) | |
| if np.issubdtype(x.dtype, np.unsignedinteger): | |
| error2 = abs(y - x) | |
| np.minimum(error, error2, out=error) | |
| max_abs_error = max(error) | |
| if getattr(error, 'dtype', object_) == object_: | |
| remarks.append('Max absolute difference: ' | |
| + str(max_abs_error)) | |
| else: | |
| remarks.append('Max absolute difference: ' | |
| + array2string(max_abs_error)) | |
| # note: this definition of relative error matches that one | |
| # used by assert_allclose (found in np.isclose) | |
| # Filter values where the divisor would be zero | |
| nonzero = bool_(y != 0) | |
| if all(~nonzero): | |
| max_rel_error = array(inf) | |
| else: | |
| max_rel_error = max(error[nonzero] / abs(y[nonzero])) | |
| if getattr(error, 'dtype', object_) == object_: | |
| remarks.append('Max relative difference: ' | |
| + str(max_rel_error)) | |
| else: | |
| remarks.append('Max relative difference: ' | |
| + array2string(max_rel_error)) | |
| err_msg += '\n' + '\n'.join(remarks) | |
| msg = build_err_msg([ox, oy], err_msg, | |
| verbose=verbose, header=header, | |
| names=('x', 'y'), precision=precision) | |
| raise AssertionError(msg) | |
| except ValueError: | |
| import traceback | |
| efmt = traceback.format_exc() | |
| header = f'error during assertion:\n\n{efmt}\n\n{header}' | |
| msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, | |
| names=('x', 'y'), precision=precision) | |
| raise ValueError(msg) | |
| def assert_array_equal(x, y, err_msg='', verbose=True, *, strict=False): | |
| """ | |
| Raises an AssertionError if two array_like objects are not equal. | |
| Given two array_like objects, check that the shape is equal and all | |
| elements of these objects are equal (but see the Notes for the special | |
| handling of a scalar). An exception is raised at shape mismatch or | |
| conflicting values. In contrast to the standard usage in numpy, NaNs | |
| are compared like numbers, no assertion is raised if both objects have | |
| NaNs in the same positions. | |
| The usual caution for verifying equality with floating point numbers is | |
| advised. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| The actual object to check. | |
| y : array_like | |
| The desired, expected object. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| strict : bool, optional | |
| If True, raise an AssertionError when either the shape or the data | |
| type of the array_like objects does not match. The special | |
| handling for scalars mentioned in the Notes section is disabled. | |
| .. versionadded:: 1.24.0 | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired objects are not equal. | |
| See Also | |
| -------- | |
| assert_allclose: Compare two array_like objects for equality with desired | |
| relative and/or absolute precision. | |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal | |
| Notes | |
| ----- | |
| When one of `x` and `y` is a scalar and the other is array_like, the | |
| function checks that each element of the array_like object is equal to | |
| the scalar. This behaviour can be disabled with the `strict` parameter. | |
| Examples | |
| -------- | |
| The first assert does not raise an exception: | |
| >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], | |
| ... [np.exp(0),2.33333, np.nan]) | |
| Assert fails with numerical imprecision with floats: | |
| >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], | |
| ... [1, np.sqrt(np.pi)**2, np.nan]) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not equal | |
| <BLANKLINE> | |
| Mismatched elements: 1 / 3 (33.3%) | |
| Max absolute difference: 4.4408921e-16 | |
| Max relative difference: 1.41357986e-16 | |
| x: array([1. , 3.141593, nan]) | |
| y: array([1. , 3.141593, nan]) | |
| Use `assert_allclose` or one of the nulp (number of floating point values) | |
| functions for these cases instead: | |
| >>> np.testing.assert_allclose([1.0,np.pi,np.nan], | |
| ... [1, np.sqrt(np.pi)**2, np.nan], | |
| ... rtol=1e-10, atol=0) | |
| As mentioned in the Notes section, `assert_array_equal` has special | |
| handling for scalars. Here the test checks that each value in `x` is 3: | |
| >>> x = np.full((2, 5), fill_value=3) | |
| >>> np.testing.assert_array_equal(x, 3) | |
| Use `strict` to raise an AssertionError when comparing a scalar with an | |
| array: | |
| >>> np.testing.assert_array_equal(x, 3, strict=True) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not equal | |
| <BLANKLINE> | |
| (shapes (2, 5), () mismatch) | |
| x: array([[3, 3, 3, 3, 3], | |
| [3, 3, 3, 3, 3]]) | |
| y: array(3) | |
| The `strict` parameter also ensures that the array data types match: | |
| >>> x = np.array([2, 2, 2]) | |
| >>> y = np.array([2., 2., 2.], dtype=np.float32) | |
| >>> np.testing.assert_array_equal(x, y, strict=True) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not equal | |
| <BLANKLINE> | |
| (dtypes int64, float32 mismatch) | |
| x: array([2, 2, 2]) | |
| y: array([2., 2., 2.], dtype=float32) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, | |
| verbose=verbose, header='Arrays are not equal', | |
| strict=strict) | |
| def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): | |
| """ | |
| Raises an AssertionError if two objects are not equal up to desired | |
| precision. | |
| .. note:: It is recommended to use one of `assert_allclose`, | |
| `assert_array_almost_equal_nulp` or `assert_array_max_ulp` | |
| instead of this function for more consistent floating point | |
| comparisons. | |
| The test verifies identical shapes and that the elements of ``actual`` and | |
| ``desired`` satisfy. | |
| ``abs(desired-actual) < 1.5 * 10**(-decimal)`` | |
| That is a looser test than originally documented, but agrees with what the | |
| actual implementation did up to rounding vagaries. An exception is raised | |
| at shape mismatch or conflicting values. In contrast to the standard usage | |
| in numpy, NaNs are compared like numbers, no assertion is raised if both | |
| objects have NaNs in the same positions. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| The actual object to check. | |
| y : array_like | |
| The desired, expected object. | |
| decimal : int, optional | |
| Desired precision, default is 6. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired are not equal up to specified precision. | |
| See Also | |
| -------- | |
| assert_allclose: Compare two array_like objects for equality with desired | |
| relative and/or absolute precision. | |
| assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal | |
| Examples | |
| -------- | |
| the first assert does not raise an exception | |
| >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], | |
| ... [1.0,2.333,np.nan]) | |
| >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], | |
| ... [1.0,2.33339,np.nan], decimal=5) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not almost equal to 5 decimals | |
| <BLANKLINE> | |
| Mismatched elements: 1 / 3 (33.3%) | |
| Max absolute difference: 6.e-05 | |
| Max relative difference: 2.57136612e-05 | |
| x: array([1. , 2.33333, nan]) | |
| y: array([1. , 2.33339, nan]) | |
| >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], | |
| ... [1.0,2.33333, 5], decimal=5) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not almost equal to 5 decimals | |
| <BLANKLINE> | |
| x and y nan location mismatch: | |
| x: array([1. , 2.33333, nan]) | |
| y: array([1. , 2.33333, 5. ]) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| from numpy.core import number, float_, result_type | |
| from numpy.core.numerictypes import issubdtype | |
| from numpy.core.fromnumeric import any as npany | |
| def compare(x, y): | |
| try: | |
| if npany(isinf(x)) or npany(isinf(y)): | |
| xinfid = isinf(x) | |
| yinfid = isinf(y) | |
| if not (xinfid == yinfid).all(): | |
| return False | |
| # if one item, x and y is +- inf | |
| if x.size == y.size == 1: | |
| return x == y | |
| x = x[~xinfid] | |
| y = y[~yinfid] | |
| except (TypeError, NotImplementedError): | |
| pass | |
| # make sure y is an inexact type to avoid abs(MIN_INT); will cause | |
| # casting of x later. | |
| dtype = result_type(y, 1.) | |
| y = np.asanyarray(y, dtype) | |
| z = abs(x - y) | |
| if not issubdtype(z.dtype, number): | |
| z = z.astype(float_) # handle object arrays | |
| return z < 1.5 * 10.0**(-decimal) | |
| assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, | |
| header=('Arrays are not almost equal to %d decimals' % decimal), | |
| precision=decimal) | |
| def assert_array_less(x, y, err_msg='', verbose=True): | |
| """ | |
| Raises an AssertionError if two array_like objects are not ordered by less | |
| than. | |
| Given two array_like objects, check that the shape is equal and all | |
| elements of the first object are strictly smaller than those of the | |
| second object. An exception is raised at shape mismatch or incorrectly | |
| ordered values. Shape mismatch does not raise if an object has zero | |
| dimension. In contrast to the standard usage in numpy, NaNs are | |
| compared, no assertion is raised if both objects have NaNs in the same | |
| positions. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| The smaller object to check. | |
| y : array_like | |
| The larger object to compare. | |
| err_msg : string | |
| The error message to be printed in case of failure. | |
| verbose : bool | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If x is not strictly smaller than y, element-wise. | |
| See Also | |
| -------- | |
| assert_array_equal: tests objects for equality | |
| assert_array_almost_equal: test objects for equality up to precision | |
| Examples | |
| -------- | |
| >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) | |
| >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not less-ordered | |
| <BLANKLINE> | |
| Mismatched elements: 1 / 3 (33.3%) | |
| Max absolute difference: 1. | |
| Max relative difference: 0.5 | |
| x: array([ 1., 1., nan]) | |
| y: array([ 1., 2., nan]) | |
| >>> np.testing.assert_array_less([1.0, 4.0], 3) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not less-ordered | |
| <BLANKLINE> | |
| Mismatched elements: 1 / 2 (50%) | |
| Max absolute difference: 2. | |
| Max relative difference: 0.66666667 | |
| x: array([1., 4.]) | |
| y: array(3) | |
| >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: | |
| Arrays are not less-ordered | |
| <BLANKLINE> | |
| (shapes (3,), (1,) mismatch) | |
| x: array([1., 2., 3.]) | |
| y: array([4]) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, | |
| verbose=verbose, | |
| header='Arrays are not less-ordered', | |
| equal_inf=False) | |
| def runstring(astr, dict): | |
| exec(astr, dict) | |
| def assert_string_equal(actual, desired): | |
| """ | |
| Test if two strings are equal. | |
| If the given strings are equal, `assert_string_equal` does nothing. | |
| If they are not equal, an AssertionError is raised, and the diff | |
| between the strings is shown. | |
| Parameters | |
| ---------- | |
| actual : str | |
| The string to test for equality against the expected string. | |
| desired : str | |
| The expected string. | |
| Examples | |
| -------- | |
| >>> np.testing.assert_string_equal('abc', 'abc') | |
| >>> np.testing.assert_string_equal('abc', 'abcd') | |
| Traceback (most recent call last): | |
| File "<stdin>", line 1, in <module> | |
| ... | |
| AssertionError: Differences in strings: | |
| - abc+ abcd? + | |
| """ | |
| # delay import of difflib to reduce startup time | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import difflib | |
| if not isinstance(actual, str): | |
| raise AssertionError(repr(type(actual))) | |
| if not isinstance(desired, str): | |
| raise AssertionError(repr(type(desired))) | |
| if desired == actual: | |
| return | |
| diff = list(difflib.Differ().compare(actual.splitlines(True), | |
| desired.splitlines(True))) | |
| diff_list = [] | |
| while diff: | |
| d1 = diff.pop(0) | |
| if d1.startswith(' '): | |
| continue | |
| if d1.startswith('- '): | |
| l = [d1] | |
| d2 = diff.pop(0) | |
| if d2.startswith('? '): | |
| l.append(d2) | |
| d2 = diff.pop(0) | |
| if not d2.startswith('+ '): | |
| raise AssertionError(repr(d2)) | |
| l.append(d2) | |
| if diff: | |
| d3 = diff.pop(0) | |
| if d3.startswith('? '): | |
| l.append(d3) | |
| else: | |
| diff.insert(0, d3) | |
| if d2[2:] == d1[2:]: | |
| continue | |
| diff_list.extend(l) | |
| continue | |
| raise AssertionError(repr(d1)) | |
| if not diff_list: | |
| return | |
| msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}" | |
| if actual != desired: | |
| raise AssertionError(msg) | |
| def rundocs(filename=None, raise_on_error=True): | |
| """ | |
| Run doctests found in the given file. | |
| By default `rundocs` raises an AssertionError on failure. | |
| Parameters | |
| ---------- | |
| filename : str | |
| The path to the file for which the doctests are run. | |
| raise_on_error : bool | |
| Whether to raise an AssertionError when a doctest fails. Default is | |
| True. | |
| Notes | |
| ----- | |
| The doctests can be run by the user/developer by adding the ``doctests`` | |
| argument to the ``test()`` call. For example, to run all tests (including | |
| doctests) for `numpy.lib`: | |
| >>> np.lib.test(doctests=True) # doctest: +SKIP | |
| """ | |
| from numpy.distutils.misc_util import exec_mod_from_location | |
| import doctest | |
| if filename is None: | |
| f = sys._getframe(1) | |
| filename = f.f_globals['__file__'] | |
| name = os.path.splitext(os.path.basename(filename))[0] | |
| m = exec_mod_from_location(name, filename) | |
| tests = doctest.DocTestFinder().find(m) | |
| runner = doctest.DocTestRunner(verbose=False) | |
| msg = [] | |
| if raise_on_error: | |
| out = lambda s: msg.append(s) | |
| else: | |
| out = None | |
| for test in tests: | |
| runner.run(test, out=out) | |
| if runner.failures > 0 and raise_on_error: | |
| raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) | |
| def check_support_sve(): | |
| """ | |
| gh-22982 | |
| """ | |
| import subprocess | |
| cmd = 'lscpu' | |
| try: | |
| output = subprocess.run(cmd, capture_output=True, text=True) | |
| return 'sve' in output.stdout | |
| except OSError: | |
| return False | |
| _SUPPORTS_SVE = check_support_sve() | |
| # | |
| # assert_raises and assert_raises_regex are taken from unittest. | |
| # | |
| import unittest | |
| class _Dummy(unittest.TestCase): | |
| def nop(self): | |
| pass | |
| _d = _Dummy('nop') | |
| def assert_raises(*args, **kwargs): | |
| """ | |
| assert_raises(exception_class, callable, *args, **kwargs) | |
| assert_raises(exception_class) | |
| Fail unless an exception of class exception_class is thrown | |
| by callable when invoked with arguments args and keyword | |
| arguments kwargs. If a different type of exception is | |
| thrown, it will not be caught, and the test case will be | |
| deemed to have suffered an error, exactly as for an | |
| unexpected exception. | |
| Alternatively, `assert_raises` can be used as a context manager: | |
| >>> from numpy.testing import assert_raises | |
| >>> with assert_raises(ZeroDivisionError): | |
| ... 1 / 0 | |
| is equivalent to | |
| >>> def div(x, y): | |
| ... return x / y | |
| >>> assert_raises(ZeroDivisionError, div, 1, 0) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| return _d.assertRaises(*args, **kwargs) | |
| def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): | |
| """ | |
| assert_raises_regex(exception_class, expected_regexp, callable, *args, | |
| **kwargs) | |
| assert_raises_regex(exception_class, expected_regexp) | |
| Fail unless an exception of class exception_class and with message that | |
| matches expected_regexp is thrown by callable when invoked with arguments | |
| args and keyword arguments kwargs. | |
| Alternatively, can be used as a context manager like `assert_raises`. | |
| Notes | |
| ----- | |
| .. versionadded:: 1.9.0 | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs) | |
| def decorate_methods(cls, decorator, testmatch=None): | |
| """ | |
| Apply a decorator to all methods in a class matching a regular expression. | |
| The given decorator is applied to all public methods of `cls` that are | |
| matched by the regular expression `testmatch` | |
| (``testmatch.search(methodname)``). Methods that are private, i.e. start | |
| with an underscore, are ignored. | |
| Parameters | |
| ---------- | |
| cls : class | |
| Class whose methods to decorate. | |
| decorator : function | |
| Decorator to apply to methods | |
| testmatch : compiled regexp or str, optional | |
| The regular expression. Default value is None, in which case the | |
| nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) | |
| is used. | |
| If `testmatch` is a string, it is compiled to a regular expression | |
| first. | |
| """ | |
| if testmatch is None: | |
| testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) | |
| else: | |
| testmatch = re.compile(testmatch) | |
| cls_attr = cls.__dict__ | |
| # delayed import to reduce startup time | |
| from inspect import isfunction | |
| methods = [_m for _m in cls_attr.values() if isfunction(_m)] | |
| for function in methods: | |
| try: | |
| if hasattr(function, 'compat_func_name'): | |
| funcname = function.compat_func_name | |
| else: | |
| funcname = function.__name__ | |
| except AttributeError: | |
| # not a function | |
| continue | |
| if testmatch.search(funcname) and not funcname.startswith('_'): | |
| setattr(cls, funcname, decorator(function)) | |
| return | |
| def measure(code_str, times=1, label=None): | |
| """ | |
| Return elapsed time for executing code in the namespace of the caller. | |
| The supplied code string is compiled with the Python builtin ``compile``. | |
| The precision of the timing is 10 milli-seconds. If the code will execute | |
| fast on this timescale, it can be executed many times to get reasonable | |
| timing accuracy. | |
| Parameters | |
| ---------- | |
| code_str : str | |
| The code to be timed. | |
| times : int, optional | |
| The number of times the code is executed. Default is 1. The code is | |
| only compiled once. | |
| label : str, optional | |
| A label to identify `code_str` with. This is passed into ``compile`` | |
| as the second argument (for run-time error messages). | |
| Returns | |
| ------- | |
| elapsed : float | |
| Total elapsed time in seconds for executing `code_str` `times` times. | |
| Examples | |
| -------- | |
| >>> times = 10 | |
| >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) | |
| >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP | |
| Time for a single execution : 0.005 s | |
| """ | |
| frame = sys._getframe(1) | |
| locs, globs = frame.f_locals, frame.f_globals | |
| code = compile(code_str, f'Test name: {label} ', 'exec') | |
| i = 0 | |
| elapsed = jiffies() | |
| while i < times: | |
| i += 1 | |
| exec(code, globs, locs) | |
| elapsed = jiffies() - elapsed | |
| return 0.01*elapsed | |
| def _assert_valid_refcount(op): | |
| """ | |
| Check that ufuncs don't mishandle refcount of object `1`. | |
| Used in a few regression tests. | |
| """ | |
| if not HAS_REFCOUNT: | |
| return True | |
| import gc | |
| import numpy as np | |
| b = np.arange(100*100).reshape(100, 100) | |
| c = b | |
| i = 1 | |
| gc.disable() | |
| try: | |
| rc = sys.getrefcount(i) | |
| for j in range(15): | |
| d = op(b, c) | |
| assert_(sys.getrefcount(i) >= rc) | |
| finally: | |
| gc.enable() | |
| del d # for pyflakes | |
| def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, | |
| err_msg='', verbose=True): | |
| """ | |
| Raises an AssertionError if two objects are not equal up to desired | |
| tolerance. | |
| Given two array_like objects, check that their shapes and all elements | |
| are equal (but see the Notes for the special handling of a scalar). An | |
| exception is raised if the shapes mismatch or any values conflict. In | |
| contrast to the standard usage in numpy, NaNs are compared like numbers, | |
| no assertion is raised if both objects have NaNs in the same positions. | |
| The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note | |
| that ``allclose`` has different default values). It compares the difference | |
| between `actual` and `desired` to ``atol + rtol * abs(desired)``. | |
| .. versionadded:: 1.5.0 | |
| Parameters | |
| ---------- | |
| actual : array_like | |
| Array obtained. | |
| desired : array_like | |
| Array desired. | |
| rtol : float, optional | |
| Relative tolerance. | |
| atol : float, optional | |
| Absolute tolerance. | |
| equal_nan : bool, optional. | |
| If True, NaNs will compare equal. | |
| err_msg : str, optional | |
| The error message to be printed in case of failure. | |
| verbose : bool, optional | |
| If True, the conflicting values are appended to the error message. | |
| Raises | |
| ------ | |
| AssertionError | |
| If actual and desired are not equal up to specified precision. | |
| See Also | |
| -------- | |
| assert_array_almost_equal_nulp, assert_array_max_ulp | |
| Notes | |
| ----- | |
| When one of `actual` and `desired` is a scalar and the other is | |
| array_like, the function checks that each element of the array_like | |
| object is equal to the scalar. | |
| Examples | |
| -------- | |
| >>> x = [1e-5, 1e-3, 1e-1] | |
| >>> y = np.arccos(np.cos(x)) | |
| >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import numpy as np | |
| def compare(x, y): | |
| return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol, | |
| equal_nan=equal_nan) | |
| actual, desired = np.asanyarray(actual), np.asanyarray(desired) | |
| header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}' | |
| assert_array_compare(compare, actual, desired, err_msg=str(err_msg), | |
| verbose=verbose, header=header, equal_nan=equal_nan) | |
| def assert_array_almost_equal_nulp(x, y, nulp=1): | |
| """ | |
| Compare two arrays relatively to their spacing. | |
| This is a relatively robust method to compare two arrays whose amplitude | |
| is variable. | |
| Parameters | |
| ---------- | |
| x, y : array_like | |
| Input arrays. | |
| nulp : int, optional | |
| The maximum number of unit in the last place for tolerance (see Notes). | |
| Default is 1. | |
| Returns | |
| ------- | |
| None | |
| Raises | |
| ------ | |
| AssertionError | |
| If the spacing between `x` and `y` for one or more elements is larger | |
| than `nulp`. | |
| See Also | |
| -------- | |
| assert_array_max_ulp : Check that all items of arrays differ in at most | |
| N Units in the Last Place. | |
| spacing : Return the distance between x and the nearest adjacent number. | |
| Notes | |
| ----- | |
| An assertion is raised if the following condition is not met:: | |
| abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y))) | |
| Examples | |
| -------- | |
| >>> x = np.array([1., 1e-10, 1e-20]) | |
| >>> eps = np.finfo(x.dtype).eps | |
| >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) | |
| >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) | |
| Traceback (most recent call last): | |
| ... | |
| AssertionError: X and Y are not equal to 1 ULP (max is 2) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import numpy as np | |
| ax = np.abs(x) | |
| ay = np.abs(y) | |
| ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) | |
| if not np.all(np.abs(x-y) <= ref): | |
| if np.iscomplexobj(x) or np.iscomplexobj(y): | |
| msg = "X and Y are not equal to %d ULP" % nulp | |
| else: | |
| max_nulp = np.max(nulp_diff(x, y)) | |
| msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) | |
| raise AssertionError(msg) | |
| def assert_array_max_ulp(a, b, maxulp=1, dtype=None): | |
| """ | |
| Check that all items of arrays differ in at most N Units in the Last Place. | |
| Parameters | |
| ---------- | |
| a, b : array_like | |
| Input arrays to be compared. | |
| maxulp : int, optional | |
| The maximum number of units in the last place that elements of `a` and | |
| `b` can differ. Default is 1. | |
| dtype : dtype, optional | |
| Data-type to convert `a` and `b` to if given. Default is None. | |
| Returns | |
| ------- | |
| ret : ndarray | |
| Array containing number of representable floating point numbers between | |
| items in `a` and `b`. | |
| Raises | |
| ------ | |
| AssertionError | |
| If one or more elements differ by more than `maxulp`. | |
| Notes | |
| ----- | |
| For computing the ULP difference, this API does not differentiate between | |
| various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 | |
| is zero). | |
| See Also | |
| -------- | |
| assert_array_almost_equal_nulp : Compare two arrays relatively to their | |
| spacing. | |
| Examples | |
| -------- | |
| >>> a = np.linspace(0., 1., 100) | |
| >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) | |
| """ | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| import numpy as np | |
| ret = nulp_diff(a, b, dtype) | |
| if not np.all(ret <= maxulp): | |
| raise AssertionError("Arrays are not almost equal up to %g " | |
| "ULP (max difference is %g ULP)" % | |
| (maxulp, np.max(ret))) | |
| return ret | |
| def nulp_diff(x, y, dtype=None): | |
| """For each item in x and y, return the number of representable floating | |
| points between them. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| first input array | |
| y : array_like | |
| second input array | |
| dtype : dtype, optional | |
| Data-type to convert `x` and `y` to if given. Default is None. | |
| Returns | |
| ------- | |
| nulp : array_like | |
| number of representable floating point numbers between each item in x | |
| and y. | |
| Notes | |
| ----- | |
| For computing the ULP difference, this API does not differentiate between | |
| various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 | |
| is zero). | |
| Examples | |
| -------- | |
| # By definition, epsilon is the smallest number such as 1 + eps != 1, so | |
| # there should be exactly one ULP between 1 and 1 + eps | |
| >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) | |
| 1.0 | |
| """ | |
| import numpy as np | |
| if dtype: | |
| x = np.asarray(x, dtype=dtype) | |
| y = np.asarray(y, dtype=dtype) | |
| else: | |
| x = np.asarray(x) | |
| y = np.asarray(y) | |
| t = np.common_type(x, y) | |
| if np.iscomplexobj(x) or np.iscomplexobj(y): | |
| raise NotImplementedError("_nulp not implemented for complex array") | |
| x = np.array([x], dtype=t) | |
| y = np.array([y], dtype=t) | |
| x[np.isnan(x)] = np.nan | |
| y[np.isnan(y)] = np.nan | |
| if not x.shape == y.shape: | |
| raise ValueError("x and y do not have the same shape: %s - %s" % | |
| (x.shape, y.shape)) | |
| def _diff(rx, ry, vdt): | |
| diff = np.asarray(rx-ry, dtype=vdt) | |
| return np.abs(diff) | |
| rx = integer_repr(x) | |
| ry = integer_repr(y) | |
| return _diff(rx, ry, t) | |
| def _integer_repr(x, vdt, comp): | |
| # Reinterpret binary representation of the float as sign-magnitude: | |
| # take into account two-complement representation | |
| # See also | |
| # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ | |
| rx = x.view(vdt) | |
| if not (rx.size == 1): | |
| rx[rx < 0] = comp - rx[rx < 0] | |
| else: | |
| if rx < 0: | |
| rx = comp - rx | |
| return rx | |
| def integer_repr(x): | |
| """Return the signed-magnitude interpretation of the binary representation | |
| of x.""" | |
| import numpy as np | |
| if x.dtype == np.float16: | |
| return _integer_repr(x, np.int16, np.int16(-2**15)) | |
| elif x.dtype == np.float32: | |
| return _integer_repr(x, np.int32, np.int32(-2**31)) | |
| elif x.dtype == np.float64: | |
| return _integer_repr(x, np.int64, np.int64(-2**63)) | |
| else: | |
| raise ValueError(f'Unsupported dtype {x.dtype}') | |
| def _assert_warns_context(warning_class, name=None): | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| with suppress_warnings() as sup: | |
| l = sup.record(warning_class) | |
| yield | |
| if not len(l) > 0: | |
| name_str = f' when calling {name}' if name is not None else '' | |
| raise AssertionError("No warning raised" + name_str) | |
| def assert_warns(warning_class, *args, **kwargs): | |
| """ | |
| Fail unless the given callable throws the specified warning. | |
| A warning of class warning_class should be thrown by the callable when | |
| invoked with arguments args and keyword arguments kwargs. | |
| If a different type of warning is thrown, it will not be caught. | |
| If called with all arguments other than the warning class omitted, may be | |
| used as a context manager: | |
| with assert_warns(SomeWarning): | |
| do_something() | |
| The ability to be used as a context manager is new in NumPy v1.11.0. | |
| .. versionadded:: 1.4.0 | |
| Parameters | |
| ---------- | |
| warning_class : class | |
| The class defining the warning that `func` is expected to throw. | |
| func : callable, optional | |
| Callable to test | |
| *args : Arguments | |
| Arguments for `func`. | |
| **kwargs : Kwargs | |
| Keyword arguments for `func`. | |
| Returns | |
| ------- | |
| The value returned by `func`. | |
| Examples | |
| -------- | |
| >>> import warnings | |
| >>> def deprecated_func(num): | |
| ... warnings.warn("Please upgrade", DeprecationWarning) | |
| ... return num*num | |
| >>> with np.testing.assert_warns(DeprecationWarning): | |
| ... assert deprecated_func(4) == 16 | |
| >>> # or passing a func | |
| >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4) | |
| >>> assert ret == 16 | |
| """ | |
| if not args: | |
| return _assert_warns_context(warning_class) | |
| func = args[0] | |
| args = args[1:] | |
| with _assert_warns_context(warning_class, name=func.__name__): | |
| return func(*args, **kwargs) | |
| def _assert_no_warnings_context(name=None): | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| with warnings.catch_warnings(record=True) as l: | |
| warnings.simplefilter('always') | |
| yield | |
| if len(l) > 0: | |
| name_str = f' when calling {name}' if name is not None else '' | |
| raise AssertionError(f'Got warnings{name_str}: {l}') | |
| def assert_no_warnings(*args, **kwargs): | |
| """ | |
| Fail if the given callable produces any warnings. | |
| If called with all arguments omitted, may be used as a context manager: | |
| with assert_no_warnings(): | |
| do_something() | |
| The ability to be used as a context manager is new in NumPy v1.11.0. | |
| .. versionadded:: 1.7.0 | |
| Parameters | |
| ---------- | |
| func : callable | |
| The callable to test. | |
| \\*args : Arguments | |
| Arguments passed to `func`. | |
| \\*\\*kwargs : Kwargs | |
| Keyword arguments passed to `func`. | |
| Returns | |
| ------- | |
| The value returned by `func`. | |
| """ | |
| if not args: | |
| return _assert_no_warnings_context() | |
| func = args[0] | |
| args = args[1:] | |
| with _assert_no_warnings_context(name=func.__name__): | |
| return func(*args, **kwargs) | |
| def _gen_alignment_data(dtype=float32, type='binary', max_size=24): | |
| """ | |
| generator producing data with different alignment and offsets | |
| to test simd vectorization | |
| Parameters | |
| ---------- | |
| dtype : dtype | |
| data type to produce | |
| type : string | |
| 'unary': create data for unary operations, creates one input | |
| and output array | |
| 'binary': create data for unary operations, creates two input | |
| and output array | |
| max_size : integer | |
| maximum size of data to produce | |
| Returns | |
| ------- | |
| if type is 'unary' yields one output, one input array and a message | |
| containing information on the data | |
| if type is 'binary' yields one output array, two input array and a message | |
| containing information on the data | |
| """ | |
| ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' | |
| bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' | |
| for o in range(3): | |
| for s in range(o + 2, max(o + 3, max_size)): | |
| if type == 'unary': | |
| inp = lambda: arange(s, dtype=dtype)[o:] | |
| out = empty((s,), dtype=dtype)[o:] | |
| yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') | |
| d = inp() | |
| yield d, d, ufmt % (o, o, s, dtype, 'in place') | |
| yield out[1:], inp()[:-1], ufmt % \ | |
| (o + 1, o, s - 1, dtype, 'out of place') | |
| yield out[:-1], inp()[1:], ufmt % \ | |
| (o, o + 1, s - 1, dtype, 'out of place') | |
| yield inp()[:-1], inp()[1:], ufmt % \ | |
| (o, o + 1, s - 1, dtype, 'aliased') | |
| yield inp()[1:], inp()[:-1], ufmt % \ | |
| (o + 1, o, s - 1, dtype, 'aliased') | |
| if type == 'binary': | |
| inp1 = lambda: arange(s, dtype=dtype)[o:] | |
| inp2 = lambda: arange(s, dtype=dtype)[o:] | |
| out = empty((s,), dtype=dtype)[o:] | |
| yield out, inp1(), inp2(), bfmt % \ | |
| (o, o, o, s, dtype, 'out of place') | |
| d = inp1() | |
| yield d, d, inp2(), bfmt % \ | |
| (o, o, o, s, dtype, 'in place1') | |
| d = inp2() | |
| yield d, inp1(), d, bfmt % \ | |
| (o, o, o, s, dtype, 'in place2') | |
| yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ | |
| (o + 1, o, o, s - 1, dtype, 'out of place') | |
| yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ | |
| (o, o + 1, o, s - 1, dtype, 'out of place') | |
| yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ | |
| (o, o, o + 1, s - 1, dtype, 'out of place') | |
| yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ | |
| (o + 1, o, o, s - 1, dtype, 'aliased') | |
| yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ | |
| (o, o + 1, o, s - 1, dtype, 'aliased') | |
| yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ | |
| (o, o, o + 1, s - 1, dtype, 'aliased') | |
| class IgnoreException(Exception): | |
| "Ignoring this exception due to disabled feature" | |
| pass | |
| def tempdir(*args, **kwargs): | |
| """Context manager to provide a temporary test folder. | |
| All arguments are passed as this to the underlying tempfile.mkdtemp | |
| function. | |
| """ | |
| tmpdir = mkdtemp(*args, **kwargs) | |
| try: | |
| yield tmpdir | |
| finally: | |
| shutil.rmtree(tmpdir) | |
| def temppath(*args, **kwargs): | |
| """Context manager for temporary files. | |
| Context manager that returns the path to a closed temporary file. Its | |
| parameters are the same as for tempfile.mkstemp and are passed directly | |
| to that function. The underlying file is removed when the context is | |
| exited, so it should be closed at that time. | |
| Windows does not allow a temporary file to be opened if it is already | |
| open, so the underlying file must be closed after opening before it | |
| can be opened again. | |
| """ | |
| fd, path = mkstemp(*args, **kwargs) | |
| os.close(fd) | |
| try: | |
| yield path | |
| finally: | |
| os.remove(path) | |
| class clear_and_catch_warnings(warnings.catch_warnings): | |
| """ Context manager that resets warning registry for catching warnings | |
| Warnings can be slippery, because, whenever a warning is triggered, Python | |
| adds a ``__warningregistry__`` member to the *calling* module. This makes | |
| it impossible to retrigger the warning in this module, whatever you put in | |
| the warnings filters. This context manager accepts a sequence of `modules` | |
| as a keyword argument to its constructor and: | |
| * stores and removes any ``__warningregistry__`` entries in given `modules` | |
| on entry; | |
| * resets ``__warningregistry__`` to its previous state on exit. | |
| This makes it possible to trigger any warning afresh inside the context | |
| manager without disturbing the state of warnings outside. | |
| For compatibility with Python 3.0, please consider all arguments to be | |
| keyword-only. | |
| Parameters | |
| ---------- | |
| record : bool, optional | |
| Specifies whether warnings should be captured by a custom | |
| implementation of ``warnings.showwarning()`` and be appended to a list | |
| returned by the context manager. Otherwise None is returned by the | |
| context manager. The objects appended to the list are arguments whose | |
| attributes mirror the arguments to ``showwarning()``. | |
| modules : sequence, optional | |
| Sequence of modules for which to reset warnings registry on entry and | |
| restore on exit. To work correctly, all 'ignore' filters should | |
| filter by one of these modules. | |
| Examples | |
| -------- | |
| >>> import warnings | |
| >>> with np.testing.clear_and_catch_warnings( | |
| ... modules=[np.core.fromnumeric]): | |
| ... warnings.simplefilter('always') | |
| ... warnings.filterwarnings('ignore', module='np.core.fromnumeric') | |
| ... # do something that raises a warning but ignore those in | |
| ... # np.core.fromnumeric | |
| """ | |
| class_modules = () | |
| def __init__(self, record=False, modules=()): | |
| self.modules = set(modules).union(self.class_modules) | |
| self._warnreg_copies = {} | |
| super().__init__(record=record) | |
| def __enter__(self): | |
| for mod in self.modules: | |
| if hasattr(mod, '__warningregistry__'): | |
| mod_reg = mod.__warningregistry__ | |
| self._warnreg_copies[mod] = mod_reg.copy() | |
| mod_reg.clear() | |
| return super().__enter__() | |
| def __exit__(self, *exc_info): | |
| super().__exit__(*exc_info) | |
| for mod in self.modules: | |
| if hasattr(mod, '__warningregistry__'): | |
| mod.__warningregistry__.clear() | |
| if mod in self._warnreg_copies: | |
| mod.__warningregistry__.update(self._warnreg_copies[mod]) | |
| class suppress_warnings: | |
| """ | |
| Context manager and decorator doing much the same as | |
| ``warnings.catch_warnings``. | |
| However, it also provides a filter mechanism to work around | |
| https://bugs.python.org/issue4180. | |
| This bug causes Python before 3.4 to not reliably show warnings again | |
| after they have been ignored once (even within catch_warnings). It | |
| means that no "ignore" filter can be used easily, since following | |
| tests might need to see the warning. Additionally it allows easier | |
| specificity for testing warnings and can be nested. | |
| Parameters | |
| ---------- | |
| forwarding_rule : str, optional | |
| One of "always", "once", "module", or "location". Analogous to | |
| the usual warnings module filter mode, it is useful to reduce | |
| noise mostly on the outmost level. Unsuppressed and unrecorded | |
| warnings will be forwarded based on this rule. Defaults to "always". | |
| "location" is equivalent to the warnings "default", match by exact | |
| location the warning warning originated from. | |
| Notes | |
| ----- | |
| Filters added inside the context manager will be discarded again | |
| when leaving it. Upon entering all filters defined outside a | |
| context will be applied automatically. | |
| When a recording filter is added, matching warnings are stored in the | |
| ``log`` attribute as well as in the list returned by ``record``. | |
| If filters are added and the ``module`` keyword is given, the | |
| warning registry of this module will additionally be cleared when | |
| applying it, entering the context, or exiting it. This could cause | |
| warnings to appear a second time after leaving the context if they | |
| were configured to be printed once (default) and were already | |
| printed before the context was entered. | |
| Nesting this context manager will work as expected when the | |
| forwarding rule is "always" (default). Unfiltered and unrecorded | |
| warnings will be passed out and be matched by the outer level. | |
| On the outmost level they will be printed (or caught by another | |
| warnings context). The forwarding rule argument can modify this | |
| behaviour. | |
| Like ``catch_warnings`` this context manager is not threadsafe. | |
| Examples | |
| -------- | |
| With a context manager:: | |
| with np.testing.suppress_warnings() as sup: | |
| sup.filter(DeprecationWarning, "Some text") | |
| sup.filter(module=np.ma.core) | |
| log = sup.record(FutureWarning, "Does this occur?") | |
| command_giving_warnings() | |
| # The FutureWarning was given once, the filtered warnings were | |
| # ignored. All other warnings abide outside settings (may be | |
| # printed/error) | |
| assert_(len(log) == 1) | |
| assert_(len(sup.log) == 1) # also stored in log attribute | |
| Or as a decorator:: | |
| sup = np.testing.suppress_warnings() | |
| sup.filter(module=np.ma.core) # module must match exactly | |
| @sup | |
| def some_function(): | |
| # do something which causes a warning in np.ma.core | |
| pass | |
| """ | |
| def __init__(self, forwarding_rule="always"): | |
| self._entered = False | |
| # Suppressions are either instance or defined inside one with block: | |
| self._suppressions = [] | |
| if forwarding_rule not in {"always", "module", "once", "location"}: | |
| raise ValueError("unsupported forwarding rule.") | |
| self._forwarding_rule = forwarding_rule | |
| def _clear_registries(self): | |
| if hasattr(warnings, "_filters_mutated"): | |
| # clearing the registry should not be necessary on new pythons, | |
| # instead the filters should be mutated. | |
| warnings._filters_mutated() | |
| return | |
| # Simply clear the registry, this should normally be harmless, | |
| # note that on new pythons it would be invalidated anyway. | |
| for module in self._tmp_modules: | |
| if hasattr(module, "__warningregistry__"): | |
| module.__warningregistry__.clear() | |
| def _filter(self, category=Warning, message="", module=None, record=False): | |
| if record: | |
| record = [] # The log where to store warnings | |
| else: | |
| record = None | |
| if self._entered: | |
| if module is None: | |
| warnings.filterwarnings( | |
| "always", category=category, message=message) | |
| else: | |
| module_regex = module.__name__.replace('.', r'\.') + '$' | |
| warnings.filterwarnings( | |
| "always", category=category, message=message, | |
| module=module_regex) | |
| self._tmp_modules.add(module) | |
| self._clear_registries() | |
| self._tmp_suppressions.append( | |
| (category, message, re.compile(message, re.I), module, record)) | |
| else: | |
| self._suppressions.append( | |
| (category, message, re.compile(message, re.I), module, record)) | |
| return record | |
| def filter(self, category=Warning, message="", module=None): | |
| """ | |
| Add a new suppressing filter or apply it if the state is entered. | |
| Parameters | |
| ---------- | |
| category : class, optional | |
| Warning class to filter | |
| message : string, optional | |
| Regular expression matching the warning message. | |
| module : module, optional | |
| Module to filter for. Note that the module (and its file) | |
| must match exactly and cannot be a submodule. This may make | |
| it unreliable for external modules. | |
| Notes | |
| ----- | |
| When added within a context, filters are only added inside | |
| the context and will be forgotten when the context is exited. | |
| """ | |
| self._filter(category=category, message=message, module=module, | |
| record=False) | |
| def record(self, category=Warning, message="", module=None): | |
| """ | |
| Append a new recording filter or apply it if the state is entered. | |
| All warnings matching will be appended to the ``log`` attribute. | |
| Parameters | |
| ---------- | |
| category : class, optional | |
| Warning class to filter | |
| message : string, optional | |
| Regular expression matching the warning message. | |
| module : module, optional | |
| Module to filter for. Note that the module (and its file) | |
| must match exactly and cannot be a submodule. This may make | |
| it unreliable for external modules. | |
| Returns | |
| ------- | |
| log : list | |
| A list which will be filled with all matched warnings. | |
| Notes | |
| ----- | |
| When added within a context, filters are only added inside | |
| the context and will be forgotten when the context is exited. | |
| """ | |
| return self._filter(category=category, message=message, module=module, | |
| record=True) | |
| def __enter__(self): | |
| if self._entered: | |
| raise RuntimeError("cannot enter suppress_warnings twice.") | |
| self._orig_show = warnings.showwarning | |
| self._filters = warnings.filters | |
| warnings.filters = self._filters[:] | |
| self._entered = True | |
| self._tmp_suppressions = [] | |
| self._tmp_modules = set() | |
| self._forwarded = set() | |
| self.log = [] # reset global log (no need to keep same list) | |
| for cat, mess, _, mod, log in self._suppressions: | |
| if log is not None: | |
| del log[:] # clear the log | |
| if mod is None: | |
| warnings.filterwarnings( | |
| "always", category=cat, message=mess) | |
| else: | |
| module_regex = mod.__name__.replace('.', r'\.') + '$' | |
| warnings.filterwarnings( | |
| "always", category=cat, message=mess, | |
| module=module_regex) | |
| self._tmp_modules.add(mod) | |
| warnings.showwarning = self._showwarning | |
| self._clear_registries() | |
| return self | |
| def __exit__(self, *exc_info): | |
| warnings.showwarning = self._orig_show | |
| warnings.filters = self._filters | |
| self._clear_registries() | |
| self._entered = False | |
| del self._orig_show | |
| del self._filters | |
| def _showwarning(self, message, category, filename, lineno, | |
| *args, use_warnmsg=None, **kwargs): | |
| for cat, _, pattern, mod, rec in ( | |
| self._suppressions + self._tmp_suppressions)[::-1]: | |
| if (issubclass(category, cat) and | |
| pattern.match(message.args[0]) is not None): | |
| if mod is None: | |
| # Message and category match, either recorded or ignored | |
| if rec is not None: | |
| msg = WarningMessage(message, category, filename, | |
| lineno, **kwargs) | |
| self.log.append(msg) | |
| rec.append(msg) | |
| return | |
| # Use startswith, because warnings strips the c or o from | |
| # .pyc/.pyo files. | |
| elif mod.__file__.startswith(filename): | |
| # The message and module (filename) match | |
| if rec is not None: | |
| msg = WarningMessage(message, category, filename, | |
| lineno, **kwargs) | |
| self.log.append(msg) | |
| rec.append(msg) | |
| return | |
| # There is no filter in place, so pass to the outside handler | |
| # unless we should only pass it once | |
| if self._forwarding_rule == "always": | |
| if use_warnmsg is None: | |
| self._orig_show(message, category, filename, lineno, | |
| *args, **kwargs) | |
| else: | |
| self._orig_showmsg(use_warnmsg) | |
| return | |
| if self._forwarding_rule == "once": | |
| signature = (message.args, category) | |
| elif self._forwarding_rule == "module": | |
| signature = (message.args, category, filename) | |
| elif self._forwarding_rule == "location": | |
| signature = (message.args, category, filename, lineno) | |
| if signature in self._forwarded: | |
| return | |
| self._forwarded.add(signature) | |
| if use_warnmsg is None: | |
| self._orig_show(message, category, filename, lineno, *args, | |
| **kwargs) | |
| else: | |
| self._orig_showmsg(use_warnmsg) | |
| def __call__(self, func): | |
| """ | |
| Function decorator to apply certain suppressions to a whole | |
| function. | |
| """ | |
| def new_func(*args, **kwargs): | |
| with self: | |
| return func(*args, **kwargs) | |
| return new_func | |
| def _assert_no_gc_cycles_context(name=None): | |
| __tracebackhide__ = True # Hide traceback for py.test | |
| # not meaningful to test if there is no refcounting | |
| if not HAS_REFCOUNT: | |
| yield | |
| return | |
| assert_(gc.isenabled()) | |
| gc.disable() | |
| gc_debug = gc.get_debug() | |
| try: | |
| for i in range(100): | |
| if gc.collect() == 0: | |
| break | |
| else: | |
| raise RuntimeError( | |
| "Unable to fully collect garbage - perhaps a __del__ method " | |
| "is creating more reference cycles?") | |
| gc.set_debug(gc.DEBUG_SAVEALL) | |
| yield | |
| # gc.collect returns the number of unreachable objects in cycles that | |
| # were found -- we are checking that no cycles were created in the context | |
| n_objects_in_cycles = gc.collect() | |
| objects_in_cycles = gc.garbage[:] | |
| finally: | |
| del gc.garbage[:] | |
| gc.set_debug(gc_debug) | |
| gc.enable() | |
| if n_objects_in_cycles: | |
| name_str = f' when calling {name}' if name is not None else '' | |
| raise AssertionError( | |
| "Reference cycles were found{}: {} objects were collected, " | |
| "of which {} are shown below:{}" | |
| .format( | |
| name_str, | |
| n_objects_in_cycles, | |
| len(objects_in_cycles), | |
| ''.join( | |
| "\n {} object with id={}:\n {}".format( | |
| type(o).__name__, | |
| id(o), | |
| pprint.pformat(o).replace('\n', '\n ') | |
| ) for o in objects_in_cycles | |
| ) | |
| ) | |
| ) | |
| def assert_no_gc_cycles(*args, **kwargs): | |
| """ | |
| Fail if the given callable produces any reference cycles. | |
| If called with all arguments omitted, may be used as a context manager: | |
| with assert_no_gc_cycles(): | |
| do_something() | |
| .. versionadded:: 1.15.0 | |
| Parameters | |
| ---------- | |
| func : callable | |
| The callable to test. | |
| \\*args : Arguments | |
| Arguments passed to `func`. | |
| \\*\\*kwargs : Kwargs | |
| Keyword arguments passed to `func`. | |
| Returns | |
| ------- | |
| Nothing. The result is deliberately discarded to ensure that all cycles | |
| are found. | |
| """ | |
| if not args: | |
| return _assert_no_gc_cycles_context() | |
| func = args[0] | |
| args = args[1:] | |
| with _assert_no_gc_cycles_context(name=func.__name__): | |
| func(*args, **kwargs) | |
| def break_cycles(): | |
| """ | |
| Break reference cycles by calling gc.collect | |
| Objects can call other objects' methods (for instance, another object's | |
| __del__) inside their own __del__. On PyPy, the interpreter only runs | |
| between calls to gc.collect, so multiple calls are needed to completely | |
| release all cycles. | |
| """ | |
| gc.collect() | |
| if IS_PYPY: | |
| # a few more, just to make sure all the finalizers are called | |
| gc.collect() | |
| gc.collect() | |
| gc.collect() | |
| gc.collect() | |
| def requires_memory(free_bytes): | |
| """Decorator to skip a test if not enough memory is available""" | |
| import pytest | |
| def decorator(func): | |
| def wrapper(*a, **kw): | |
| msg = check_free_memory(free_bytes) | |
| if msg is not None: | |
| pytest.skip(msg) | |
| try: | |
| return func(*a, **kw) | |
| except MemoryError: | |
| # Probably ran out of memory regardless: don't regard as failure | |
| pytest.xfail("MemoryError raised") | |
| return wrapper | |
| return decorator | |
| def check_free_memory(free_bytes): | |
| """ | |
| Check whether `free_bytes` amount of memory is currently free. | |
| Returns: None if enough memory available, otherwise error message | |
| """ | |
| env_var = 'NPY_AVAILABLE_MEM' | |
| env_value = os.environ.get(env_var) | |
| if env_value is not None: | |
| try: | |
| mem_free = _parse_size(env_value) | |
| except ValueError as exc: | |
| raise ValueError(f'Invalid environment variable {env_var}: {exc}') | |
| msg = (f'{free_bytes/1e9} GB memory required, but environment variable ' | |
| f'NPY_AVAILABLE_MEM={env_value} set') | |
| else: | |
| mem_free = _get_mem_available() | |
| if mem_free is None: | |
| msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM " | |
| "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " | |
| "the test.") | |
| mem_free = -1 | |
| else: | |
| msg = f'{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available' | |
| return msg if mem_free < free_bytes else None | |
| def _parse_size(size_str): | |
| """Convert memory size strings ('12 GB' etc.) to float""" | |
| suffixes = {'': 1, 'b': 1, | |
| 'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4, | |
| 'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4, | |
| 'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4} | |
| size_re = re.compile(r'^\s*(\d+|\d+\.\d+)\s*({0})\s*$'.format( | |
| '|'.join(suffixes.keys())), re.I) | |
| m = size_re.match(size_str.lower()) | |
| if not m or m.group(2) not in suffixes: | |
| raise ValueError(f'value {size_str!r} not a valid size') | |
| return int(float(m.group(1)) * suffixes[m.group(2)]) | |
| def _get_mem_available(): | |
| """Return available memory in bytes, or None if unknown.""" | |
| try: | |
| import psutil | |
| return psutil.virtual_memory().available | |
| except (ImportError, AttributeError): | |
| pass | |
| if sys.platform.startswith('linux'): | |
| info = {} | |
| with open('/proc/meminfo') as f: | |
| for line in f: | |
| p = line.split() | |
| info[p[0].strip(':').lower()] = int(p[1]) * 1024 | |
| if 'memavailable' in info: | |
| # Linux >= 3.14 | |
| return info['memavailable'] | |
| else: | |
| return info['memfree'] + info['cached'] | |
| return None | |
| def _no_tracing(func): | |
| """ | |
| Decorator to temporarily turn off tracing for the duration of a test. | |
| Needed in tests that check refcounting, otherwise the tracing itself | |
| influences the refcounts | |
| """ | |
| if not hasattr(sys, 'gettrace'): | |
| return func | |
| else: | |
| def wrapper(*args, **kwargs): | |
| original_trace = sys.gettrace() | |
| try: | |
| sys.settrace(None) | |
| return func(*args, **kwargs) | |
| finally: | |
| sys.settrace(original_trace) | |
| return wrapper | |
| def _get_glibc_version(): | |
| try: | |
| ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1] | |
| except Exception: | |
| ver = '0.0' | |
| return ver | |
| _glibcver = _get_glibc_version() | |
| _glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x) | |