peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fftpack
/_pseudo_diffs.py
""" | |
Differential and pseudo-differential operators. | |
""" | |
# Created by Pearu Peterson, September 2002 | |
__all__ = ['diff', | |
'tilbert','itilbert','hilbert','ihilbert', | |
'cs_diff','cc_diff','sc_diff','ss_diff', | |
'shift'] | |
from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj | |
from . import convolve | |
from scipy.fft._pocketfft.helper import _datacopied | |
_cache = {} | |
def diff(x,order=1,period=None, _cache=_cache): | |
""" | |
Return kth derivative (or integral) of a periodic sequence x. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j | |
y_0 = 0 if order is not 0. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
order : int, optional | |
The order of differentiation. Default order is 1. If order is | |
negative, then integration is carried out under the assumption | |
that ``x_0 == 0``. | |
period : float, optional | |
The assumed period of the sequence. Default is ``2*pi``. | |
Notes | |
----- | |
If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within | |
numerical accuracy). | |
For odd order and even ``len(x)``, the Nyquist mode is taken zero. | |
""" | |
tmp = asarray(x) | |
if order == 0: | |
return tmp | |
if iscomplexobj(tmp): | |
return diff(tmp.real,order,period)+1j*diff(tmp.imag,order,period) | |
if period is not None: | |
c = 2*pi/period | |
else: | |
c = 1.0 | |
n = len(x) | |
omega = _cache.get((n,order,c)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,order=order,c=c): | |
if k: | |
return pow(c*k,order) | |
return 0 | |
omega = convolve.init_convolution_kernel(n,kernel,d=order, | |
zero_nyquist=1) | |
_cache[(n,order,c)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=order % 2, | |
overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def tilbert(x, h, period=None, _cache=_cache): | |
""" | |
Return h-Tilbert transform of a periodic sequence x. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j | |
y_0 = 0 | |
Parameters | |
---------- | |
x : array_like | |
The input array to transform. | |
h : float | |
Defines the parameter of the Tilbert transform. | |
period : float, optional | |
The assumed period of the sequence. Default period is ``2*pi``. | |
Returns | |
------- | |
tilbert : ndarray | |
The result of the transform. | |
Notes | |
----- | |
If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then | |
``tilbert(itilbert(x)) == x``. | |
If ``2 * pi * h / period`` is approximately 10 or larger, then | |
numerically ``tilbert == hilbert`` | |
(theoretically oo-Tilbert == Hilbert). | |
For even ``len(x)``, the Nyquist mode of ``x`` is taken zero. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return tilbert(tmp.real, h, period) + \ | |
1j * tilbert(tmp.imag, h, period) | |
if period is not None: | |
h = h * 2 * pi / period | |
n = len(x) | |
omega = _cache.get((n, h)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k, h=h): | |
if k: | |
return 1.0/tanh(h*k) | |
return 0 | |
omega = convolve.init_convolution_kernel(n, kernel, d=1) | |
_cache[(n,h)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def itilbert(x,h,period=None, _cache=_cache): | |
""" | |
Return inverse h-Tilbert transform of a periodic sequence x. | |
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j | |
y_0 = 0 | |
For more details, see `tilbert`. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return itilbert(tmp.real,h,period) + \ | |
1j*itilbert(tmp.imag,h,period) | |
if period is not None: | |
h = h*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,h)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,h=h): | |
if k: | |
return -tanh(h*k) | |
return 0 | |
omega = convolve.init_convolution_kernel(n,kernel,d=1) | |
_cache[(n,h)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def hilbert(x, _cache=_cache): | |
""" | |
Return Hilbert transform of a periodic sequence x. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = sqrt(-1)*sign(j) * x_j | |
y_0 = 0 | |
Parameters | |
---------- | |
x : array_like | |
The input array, should be periodic. | |
_cache : dict, optional | |
Dictionary that contains the kernel used to do a convolution with. | |
Returns | |
------- | |
y : ndarray | |
The transformed input. | |
See Also | |
-------- | |
scipy.signal.hilbert : Compute the analytic signal, using the Hilbert | |
transform. | |
Notes | |
----- | |
If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``. | |
For even len(x), the Nyquist mode of x is taken zero. | |
The sign of the returned transform does not have a factor -1 that is more | |
often than not found in the definition of the Hilbert transform. Note also | |
that `scipy.signal.hilbert` does have an extra -1 factor compared to this | |
function. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return hilbert(tmp.real)+1j*hilbert(tmp.imag) | |
n = len(x) | |
omega = _cache.get(n) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k): | |
if k > 0: | |
return 1.0 | |
elif k < 0: | |
return -1.0 | |
return 0.0 | |
omega = convolve.init_convolution_kernel(n,kernel,d=1) | |
_cache[n] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) | |
del _cache | |
def ihilbert(x): | |
""" | |
Return inverse Hilbert transform of a periodic sequence x. | |
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = -sqrt(-1)*sign(j) * x_j | |
y_0 = 0 | |
""" | |
return -hilbert(x) | |
_cache = {} | |
def cs_diff(x, a, b, period=None, _cache=_cache): | |
""" | |
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence. | |
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j | |
y_0 = 0 | |
Parameters | |
---------- | |
x : array_like | |
The array to take the pseudo-derivative from. | |
a, b : float | |
Defines the parameters of the cosh/sinh pseudo-differential | |
operator. | |
period : float, optional | |
The period of the sequence. Default period is ``2*pi``. | |
Returns | |
------- | |
cs_diff : ndarray | |
Pseudo-derivative of periodic sequence `x`. | |
Notes | |
----- | |
For even len(`x`), the Nyquist mode of `x` is taken as zero. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return cs_diff(tmp.real,a,b,period) + \ | |
1j*cs_diff(tmp.imag,a,b,period) | |
if period is not None: | |
a = a*2*pi/period | |
b = b*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,a,b)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,a=a,b=b): | |
if k: | |
return -cosh(a*k)/sinh(b*k) | |
return 0 | |
omega = convolve.init_convolution_kernel(n,kernel,d=1) | |
_cache[(n,a,b)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def sc_diff(x, a, b, period=None, _cache=_cache): | |
""" | |
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j | |
y_0 = 0 | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
a,b : float | |
Defines the parameters of the sinh/cosh pseudo-differential | |
operator. | |
period : float, optional | |
The period of the sequence x. Default is 2*pi. | |
Notes | |
----- | |
``sc_diff(cs_diff(x,a,b),b,a) == x`` | |
For even ``len(x)``, the Nyquist mode of x is taken as zero. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return sc_diff(tmp.real,a,b,period) + \ | |
1j*sc_diff(tmp.imag,a,b,period) | |
if period is not None: | |
a = a*2*pi/period | |
b = b*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,a,b)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,a=a,b=b): | |
if k: | |
return sinh(a*k)/cosh(b*k) | |
return 0 | |
omega = convolve.init_convolution_kernel(n,kernel,d=1) | |
_cache[(n,a,b)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def ss_diff(x, a, b, period=None, _cache=_cache): | |
""" | |
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j | |
y_0 = a/b * x_0 | |
Parameters | |
---------- | |
x : array_like | |
The array to take the pseudo-derivative from. | |
a,b | |
Defines the parameters of the sinh/sinh pseudo-differential | |
operator. | |
period : float, optional | |
The period of the sequence x. Default is ``2*pi``. | |
Notes | |
----- | |
``ss_diff(ss_diff(x,a,b),b,a) == x`` | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return ss_diff(tmp.real,a,b,period) + \ | |
1j*ss_diff(tmp.imag,a,b,period) | |
if period is not None: | |
a = a*2*pi/period | |
b = b*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,a,b)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,a=a,b=b): | |
if k: | |
return sinh(a*k)/sinh(b*k) | |
return float(a)/b | |
omega = convolve.init_convolution_kernel(n,kernel) | |
_cache[(n,a,b)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def cc_diff(x, a, b, period=None, _cache=_cache): | |
""" | |
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence. | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j | |
Parameters | |
---------- | |
x : array_like | |
The array to take the pseudo-derivative from. | |
a,b : float | |
Defines the parameters of the sinh/sinh pseudo-differential | |
operator. | |
period : float, optional | |
The period of the sequence x. Default is ``2*pi``. | |
Returns | |
------- | |
cc_diff : ndarray | |
Pseudo-derivative of periodic sequence `x`. | |
Notes | |
----- | |
``cc_diff(cc_diff(x,a,b),b,a) == x`` | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return cc_diff(tmp.real,a,b,period) + \ | |
1j*cc_diff(tmp.imag,a,b,period) | |
if period is not None: | |
a = a*2*pi/period | |
b = b*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,a,b)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel(k,a=a,b=b): | |
return cosh(a*k)/cosh(b*k) | |
omega = convolve.init_convolution_kernel(n,kernel) | |
_cache[(n,a,b)] = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x) | |
del _cache | |
_cache = {} | |
def shift(x, a, period=None, _cache=_cache): | |
""" | |
Shift periodic sequence x by a: y(u) = x(u+a). | |
If x_j and y_j are Fourier coefficients of periodic functions x | |
and y, respectively, then:: | |
y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f | |
Parameters | |
---------- | |
x : array_like | |
The array to take the pseudo-derivative from. | |
a : float | |
Defines the parameters of the sinh/sinh pseudo-differential | |
period : float, optional | |
The period of the sequences x and y. Default period is ``2*pi``. | |
""" | |
tmp = asarray(x) | |
if iscomplexobj(tmp): | |
return shift(tmp.real,a,period)+1j*shift(tmp.imag,a,period) | |
if period is not None: | |
a = a*2*pi/period | |
n = len(x) | |
omega = _cache.get((n,a)) | |
if omega is None: | |
if len(_cache) > 20: | |
while _cache: | |
_cache.popitem() | |
def kernel_real(k,a=a): | |
return cos(a*k) | |
def kernel_imag(k,a=a): | |
return sin(a*k) | |
omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0, | |
zero_nyquist=0) | |
omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1, | |
zero_nyquist=0) | |
_cache[(n,a)] = omega_real,omega_imag | |
else: | |
omega_real,omega_imag = omega | |
overwrite_x = _datacopied(tmp, x) | |
return convolve.convolve_z(tmp,omega_real,omega_imag, | |
overwrite_x=overwrite_x) | |
del _cache | |