peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fftpack
/tests
/test_basic.py
# Created by Pearu Peterson, September 2002 | |
from numpy.testing import (assert_, assert_equal, assert_array_almost_equal, | |
assert_array_almost_equal_nulp, assert_array_less) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2 | |
from numpy import (arange, array, asarray, zeros, dot, exp, pi, | |
swapaxes, double, cdouble) | |
import numpy as np | |
import numpy.fft | |
from numpy.random import rand | |
# "large" composite numbers supported by FFTPACK | |
LARGE_COMPOSITE_SIZES = [ | |
2**13, | |
2**5 * 3**5, | |
2**3 * 3**3 * 5**2, | |
] | |
SMALL_COMPOSITE_SIZES = [ | |
2, | |
2*3*5, | |
2*2*3*3, | |
] | |
# prime | |
LARGE_PRIME_SIZES = [ | |
2011 | |
] | |
SMALL_PRIME_SIZES = [ | |
29 | |
] | |
def _assert_close_in_norm(x, y, rtol, size, rdt): | |
# helper function for testing | |
err_msg = f"size: {size} rdt: {rdt}" | |
assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg) | |
def random(size): | |
return rand(*size) | |
def direct_dft(x): | |
x = asarray(x) | |
n = len(x) | |
y = zeros(n, dtype=cdouble) | |
w = -arange(n)*(2j*pi/n) | |
for i in range(n): | |
y[i] = dot(exp(i*w), x) | |
return y | |
def direct_idft(x): | |
x = asarray(x) | |
n = len(x) | |
y = zeros(n, dtype=cdouble) | |
w = arange(n)*(2j*pi/n) | |
for i in range(n): | |
y[i] = dot(exp(i*w), x)/n | |
return y | |
def direct_dftn(x): | |
x = asarray(x) | |
for axis in range(len(x.shape)): | |
x = fft(x, axis=axis) | |
return x | |
def direct_idftn(x): | |
x = asarray(x) | |
for axis in range(len(x.shape)): | |
x = ifft(x, axis=axis) | |
return x | |
def direct_rdft(x): | |
x = asarray(x) | |
n = len(x) | |
w = -arange(n)*(2j*pi/n) | |
r = zeros(n, dtype=double) | |
for i in range(n//2+1): | |
y = dot(exp(i*w), x) | |
if i: | |
r[2*i-1] = y.real | |
if 2*i < n: | |
r[2*i] = y.imag | |
else: | |
r[0] = y.real | |
return r | |
def direct_irdft(x): | |
x = asarray(x) | |
n = len(x) | |
x1 = zeros(n, dtype=cdouble) | |
for i in range(n//2+1): | |
if i: | |
if 2*i < n: | |
x1[i] = x[2*i-1] + 1j*x[2*i] | |
x1[n-i] = x[2*i-1] - 1j*x[2*i] | |
else: | |
x1[i] = x[2*i-1] | |
else: | |
x1[0] = x[0] | |
return direct_idft(x1).real | |
class _TestFFTBase: | |
def setup_method(self): | |
self.cdt = None | |
self.rdt = None | |
np.random.seed(1234) | |
def test_definition(self): | |
x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt) | |
y = fft(x) | |
assert_equal(y.dtype, self.cdt) | |
y1 = direct_dft(x) | |
assert_array_almost_equal(y,y1) | |
x = np.array([1,2,3,4+0j,5], dtype=self.cdt) | |
assert_array_almost_equal(fft(x),direct_dft(x)) | |
def test_n_argument_real(self): | |
x1 = np.array([1,2,3,4], dtype=self.rdt) | |
x2 = np.array([1,2,3,4], dtype=self.rdt) | |
y = fft([x1,x2],n=4) | |
assert_equal(y.dtype, self.cdt) | |
assert_equal(y.shape,(2,4)) | |
assert_array_almost_equal(y[0],direct_dft(x1)) | |
assert_array_almost_equal(y[1],direct_dft(x2)) | |
def _test_n_argument_complex(self): | |
x1 = np.array([1,2,3,4+1j], dtype=self.cdt) | |
x2 = np.array([1,2,3,4+1j], dtype=self.cdt) | |
y = fft([x1,x2],n=4) | |
assert_equal(y.dtype, self.cdt) | |
assert_equal(y.shape,(2,4)) | |
assert_array_almost_equal(y[0],direct_dft(x1)) | |
assert_array_almost_equal(y[1],direct_dft(x2)) | |
def test_invalid_sizes(self): | |
assert_raises(ValueError, fft, []) | |
assert_raises(ValueError, fft, [[1,1],[2,2]], -5) | |
class TestDoubleFFT(_TestFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex128 | |
self.rdt = np.float64 | |
class TestSingleFFT(_TestFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex64 | |
self.rdt = np.float32 | |
reason = ("single-precision FFT implementation is partially disabled, " | |
"until accuracy issues with large prime powers are resolved") | |
def test_notice(self): | |
pass | |
class TestFloat16FFT: | |
def test_1_argument_real(self): | |
x1 = np.array([1, 2, 3, 4], dtype=np.float16) | |
y = fft(x1, n=4) | |
assert_equal(y.dtype, np.complex64) | |
assert_equal(y.shape, (4, )) | |
assert_array_almost_equal(y, direct_dft(x1.astype(np.float32))) | |
def test_n_argument_real(self): | |
x1 = np.array([1, 2, 3, 4], dtype=np.float16) | |
x2 = np.array([1, 2, 3, 4], dtype=np.float16) | |
y = fft([x1, x2], n=4) | |
assert_equal(y.dtype, np.complex64) | |
assert_equal(y.shape, (2, 4)) | |
assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32))) | |
assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32))) | |
class _TestIFFTBase: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self): | |
x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt) | |
y = ifft(x) | |
y1 = direct_idft(x) | |
assert_equal(y.dtype, self.cdt) | |
assert_array_almost_equal(y,y1) | |
x = np.array([1,2,3,4+0j,5], self.cdt) | |
assert_array_almost_equal(ifft(x),direct_idft(x)) | |
def test_definition_real(self): | |
x = np.array([1,2,3,4,1,2,3,4], self.rdt) | |
y = ifft(x) | |
assert_equal(y.dtype, self.cdt) | |
y1 = direct_idft(x) | |
assert_array_almost_equal(y,y1) | |
x = np.array([1,2,3,4,5], dtype=self.rdt) | |
assert_equal(y.dtype, self.cdt) | |
assert_array_almost_equal(ifft(x),direct_idft(x)) | |
def test_random_complex(self): | |
for size in [1,51,111,100,200,64,128,256,1024]: | |
x = random([size]).astype(self.cdt) | |
x = random([size]).astype(self.cdt) + 1j*x | |
y1 = ifft(fft(x)) | |
y2 = fft(ifft(x)) | |
assert_equal(y1.dtype, self.cdt) | |
assert_equal(y2.dtype, self.cdt) | |
assert_array_almost_equal(y1, x) | |
assert_array_almost_equal(y2, x) | |
def test_random_real(self): | |
for size in [1,51,111,100,200,64,128,256,1024]: | |
x = random([size]).astype(self.rdt) | |
y1 = ifft(fft(x)) | |
y2 = fft(ifft(x)) | |
assert_equal(y1.dtype, self.cdt) | |
assert_equal(y2.dtype, self.cdt) | |
assert_array_almost_equal(y1, x) | |
assert_array_almost_equal(y2, x) | |
def test_size_accuracy(self): | |
# Sanity check for the accuracy for prime and non-prime sized inputs | |
if self.rdt == np.float32: | |
rtol = 1e-5 | |
elif self.rdt == np.float64: | |
rtol = 1e-10 | |
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: | |
np.random.seed(1234) | |
x = np.random.rand(size).astype(self.rdt) | |
y = ifft(fft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
y = fft(ifft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
x = (x + 1j*np.random.rand(size)).astype(self.cdt) | |
y = ifft(fft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
y = fft(ifft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
def test_invalid_sizes(self): | |
assert_raises(ValueError, ifft, []) | |
assert_raises(ValueError, ifft, [[1,1],[2,2]], -5) | |
class TestDoubleIFFT(_TestIFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex128 | |
self.rdt = np.float64 | |
class TestSingleIFFT(_TestIFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex64 | |
self.rdt = np.float32 | |
class _TestRFFTBase: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self): | |
for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]: | |
x = np.array(t, dtype=self.rdt) | |
y = rfft(x) | |
y1 = direct_rdft(x) | |
assert_array_almost_equal(y,y1) | |
assert_equal(y.dtype, self.rdt) | |
def test_invalid_sizes(self): | |
assert_raises(ValueError, rfft, []) | |
assert_raises(ValueError, rfft, [[1,1],[2,2]], -5) | |
# See gh-5790 | |
class MockSeries: | |
def __init__(self, data): | |
self.data = np.asarray(data) | |
def __getattr__(self, item): | |
try: | |
return getattr(self.data, item) | |
except AttributeError as e: | |
raise AttributeError("'MockSeries' object " | |
f"has no attribute '{item}'") from e | |
def test_non_ndarray_with_dtype(self): | |
x = np.array([1., 2., 3., 4., 5.]) | |
xs = _TestRFFTBase.MockSeries(x) | |
expected = [1, 2, 3, 4, 5] | |
rfft(xs) | |
# Data should not have been overwritten | |
assert_equal(x, expected) | |
assert_equal(xs.data, expected) | |
def test_complex_input(self): | |
assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64)) | |
class TestRFFTDouble(_TestRFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex128 | |
self.rdt = np.float64 | |
class TestRFFTSingle(_TestRFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex64 | |
self.rdt = np.float32 | |
class _TestIRFFTBase: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self): | |
x1 = [1,2,3,4,1,2,3,4] | |
x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j] | |
x2 = [1,2,3,4,1,2,3,4,5] | |
x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j] | |
def _test(x, xr): | |
y = irfft(np.array(x, dtype=self.rdt)) | |
y1 = direct_irdft(x) | |
assert_equal(y.dtype, self.rdt) | |
assert_array_almost_equal(y,y1, decimal=self.ndec) | |
assert_array_almost_equal(y,ifft(xr), decimal=self.ndec) | |
_test(x1, x1_1) | |
_test(x2, x2_1) | |
def test_random_real(self): | |
for size in [1,51,111,100,200,64,128,256,1024]: | |
x = random([size]).astype(self.rdt) | |
y1 = irfft(rfft(x)) | |
y2 = rfft(irfft(x)) | |
assert_equal(y1.dtype, self.rdt) | |
assert_equal(y2.dtype, self.rdt) | |
assert_array_almost_equal(y1, x, decimal=self.ndec, | |
err_msg="size=%d" % size) | |
assert_array_almost_equal(y2, x, decimal=self.ndec, | |
err_msg="size=%d" % size) | |
def test_size_accuracy(self): | |
# Sanity check for the accuracy for prime and non-prime sized inputs | |
if self.rdt == np.float32: | |
rtol = 1e-5 | |
elif self.rdt == np.float64: | |
rtol = 1e-10 | |
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: | |
np.random.seed(1234) | |
x = np.random.rand(size).astype(self.rdt) | |
y = irfft(rfft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
y = rfft(irfft(x)) | |
_assert_close_in_norm(x, y, rtol, size, self.rdt) | |
def test_invalid_sizes(self): | |
assert_raises(ValueError, irfft, []) | |
assert_raises(ValueError, irfft, [[1,1],[2,2]], -5) | |
def test_complex_input(self): | |
assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64)) | |
# self.ndec is bogus; we should have a assert_array_approx_equal for number of | |
# significant digits | |
class TestIRFFTDouble(_TestIRFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex128 | |
self.rdt = np.float64 | |
self.ndec = 14 | |
class TestIRFFTSingle(_TestIRFFTBase): | |
def setup_method(self): | |
self.cdt = np.complex64 | |
self.rdt = np.float32 | |
self.ndec = 5 | |
class Testfft2: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_regression_244(self): | |
"""FFT returns wrong result with axes parameter.""" | |
# fftn (and hence fft2) used to break when both axes and shape were | |
# used | |
x = numpy.ones((4, 4, 2)) | |
y = fft2(x, shape=(8, 8), axes=(-3, -2)) | |
y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2)) | |
assert_array_almost_equal(y, y_r) | |
def test_invalid_sizes(self): | |
assert_raises(ValueError, fft2, [[]]) | |
assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3)) | |
class TestFftnSingle: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self): | |
x = [[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]] | |
y = fftn(np.array(x, np.float32)) | |
assert_(y.dtype == np.complex64, | |
msg="double precision output with single precision") | |
y_r = np.array(fftn(x), np.complex64) | |
assert_array_almost_equal_nulp(y, y_r) | |
def test_size_accuracy_small(self, size): | |
x = np.random.rand(size, size) + 1j*np.random.rand(size, size) | |
y1 = fftn(x.real.astype(np.float32)) | |
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) | |
assert_equal(y1.dtype, np.complex64) | |
assert_array_almost_equal_nulp(y1, y2, 2000) | |
def test_size_accuracy_large(self, size): | |
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) | |
y1 = fftn(x.real.astype(np.float32)) | |
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) | |
assert_equal(y1.dtype, np.complex64) | |
assert_array_almost_equal_nulp(y1, y2, 2000) | |
def test_definition_float16(self): | |
x = [[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]] | |
y = fftn(np.array(x, np.float16)) | |
assert_equal(y.dtype, np.complex64) | |
y_r = np.array(fftn(x), np.complex64) | |
assert_array_almost_equal_nulp(y, y_r) | |
def test_float16_input_small(self, size): | |
x = np.random.rand(size, size) + 1j*np.random.rand(size, size) | |
y1 = fftn(x.real.astype(np.float16)) | |
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) | |
assert_equal(y1.dtype, np.complex64) | |
assert_array_almost_equal_nulp(y1, y2, 5e5) | |
def test_float16_input_large(self, size): | |
x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3) | |
y1 = fftn(x.real.astype(np.float16)) | |
y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) | |
assert_equal(y1.dtype, np.complex64) | |
assert_array_almost_equal_nulp(y1, y2, 2e6) | |
class TestFftn: | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self): | |
x = [[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]] | |
y = fftn(x) | |
assert_array_almost_equal(y, direct_dftn(x)) | |
x = random((20, 26)) | |
assert_array_almost_equal(fftn(x), direct_dftn(x)) | |
x = random((5, 4, 3, 20)) | |
assert_array_almost_equal(fftn(x), direct_dftn(x)) | |
def test_axes_argument(self): | |
# plane == ji_plane, x== kji_space | |
plane1 = [[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]] | |
plane2 = [[10, 11, 12], | |
[13, 14, 15], | |
[16, 17, 18]] | |
plane3 = [[19, 20, 21], | |
[22, 23, 24], | |
[25, 26, 27]] | |
ki_plane1 = [[1, 2, 3], | |
[10, 11, 12], | |
[19, 20, 21]] | |
ki_plane2 = [[4, 5, 6], | |
[13, 14, 15], | |
[22, 23, 24]] | |
ki_plane3 = [[7, 8, 9], | |
[16, 17, 18], | |
[25, 26, 27]] | |
jk_plane1 = [[1, 10, 19], | |
[4, 13, 22], | |
[7, 16, 25]] | |
jk_plane2 = [[2, 11, 20], | |
[5, 14, 23], | |
[8, 17, 26]] | |
jk_plane3 = [[3, 12, 21], | |
[6, 15, 24], | |
[9, 18, 27]] | |
kj_plane1 = [[1, 4, 7], | |
[10, 13, 16], [19, 22, 25]] | |
kj_plane2 = [[2, 5, 8], | |
[11, 14, 17], [20, 23, 26]] | |
kj_plane3 = [[3, 6, 9], | |
[12, 15, 18], [21, 24, 27]] | |
ij_plane1 = [[1, 4, 7], | |
[2, 5, 8], | |
[3, 6, 9]] | |
ij_plane2 = [[10, 13, 16], | |
[11, 14, 17], | |
[12, 15, 18]] | |
ij_plane3 = [[19, 22, 25], | |
[20, 23, 26], | |
[21, 24, 27]] | |
ik_plane1 = [[1, 10, 19], | |
[2, 11, 20], | |
[3, 12, 21]] | |
ik_plane2 = [[4, 13, 22], | |
[5, 14, 23], | |
[6, 15, 24]] | |
ik_plane3 = [[7, 16, 25], | |
[8, 17, 26], | |
[9, 18, 27]] | |
ijk_space = [jk_plane1, jk_plane2, jk_plane3] | |
ikj_space = [kj_plane1, kj_plane2, kj_plane3] | |
jik_space = [ik_plane1, ik_plane2, ik_plane3] | |
jki_space = [ki_plane1, ki_plane2, ki_plane3] | |
kij_space = [ij_plane1, ij_plane2, ij_plane3] | |
x = array([plane1, plane2, plane3]) | |
assert_array_almost_equal(fftn(x), | |
fftn(x, axes=(-3, -2, -1))) # kji_space | |
assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2))) | |
assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1))) | |
y = fftn(x, axes=(2, 1, 0)) # ijk_space | |
assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space)) | |
y = fftn(x, axes=(2, 0, 1)) # ikj_space | |
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2), | |
fftn(ikj_space)) | |
y = fftn(x, axes=(1, 2, 0)) # jik_space | |
assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2), | |
fftn(jik_space)) | |
y = fftn(x, axes=(1, 0, 2)) # jki_space | |
assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space)) | |
y = fftn(x, axes=(0, 2, 1)) # kij_space | |
assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space)) | |
y = fftn(x, axes=(-2, -1)) # ji_plane | |
assert_array_almost_equal(fftn(plane1), y[0]) | |
assert_array_almost_equal(fftn(plane2), y[1]) | |
assert_array_almost_equal(fftn(plane3), y[2]) | |
y = fftn(x, axes=(1, 2)) # ji_plane | |
assert_array_almost_equal(fftn(plane1), y[0]) | |
assert_array_almost_equal(fftn(plane2), y[1]) | |
assert_array_almost_equal(fftn(plane3), y[2]) | |
y = fftn(x, axes=(-3, -2)) # kj_plane | |
assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0]) | |
assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1]) | |
assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2]) | |
y = fftn(x, axes=(-3, -1)) # ki_plane | |
assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :]) | |
assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :]) | |
assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :]) | |
y = fftn(x, axes=(-1, -2)) # ij_plane | |
assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1)) | |
assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1)) | |
assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1)) | |
y = fftn(x, axes=(-1, -3)) # ik_plane | |
assert_array_almost_equal(fftn(ik_plane1), | |
swapaxes(y[:, 0, :], -1, -2)) | |
assert_array_almost_equal(fftn(ik_plane2), | |
swapaxes(y[:, 1, :], -1, -2)) | |
assert_array_almost_equal(fftn(ik_plane3), | |
swapaxes(y[:, 2, :], -1, -2)) | |
y = fftn(x, axes=(-2, -3)) # jk_plane | |
assert_array_almost_equal(fftn(jk_plane1), | |
swapaxes(y[:, :, 0], -1, -2)) | |
assert_array_almost_equal(fftn(jk_plane2), | |
swapaxes(y[:, :, 1], -1, -2)) | |
assert_array_almost_equal(fftn(jk_plane3), | |
swapaxes(y[:, :, 2], -1, -2)) | |
y = fftn(x, axes=(-1,)) # i_line | |
for i in range(3): | |
for j in range(3): | |
assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :]) | |
y = fftn(x, axes=(-2,)) # j_line | |
for i in range(3): | |
for j in range(3): | |
assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j]) | |
y = fftn(x, axes=(0,)) # k_line | |
for i in range(3): | |
for j in range(3): | |
assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j]) | |
y = fftn(x, axes=()) # point | |
assert_array_almost_equal(y, x) | |
def test_shape_argument(self): | |
small_x = [[1, 2, 3], | |
[4, 5, 6]] | |
large_x1 = [[1, 2, 3, 0], | |
[4, 5, 6, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 0]] | |
y = fftn(small_x, shape=(4, 4)) | |
assert_array_almost_equal(y, fftn(large_x1)) | |
y = fftn(small_x, shape=(3, 4)) | |
assert_array_almost_equal(y, fftn(large_x1[:-1])) | |
def test_shape_axes_argument(self): | |
small_x = [[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]] | |
large_x1 = array([[1, 2, 3, 0], | |
[4, 5, 6, 0], | |
[7, 8, 9, 0], | |
[0, 0, 0, 0]]) | |
y = fftn(small_x, shape=(4, 4), axes=(-2, -1)) | |
assert_array_almost_equal(y, fftn(large_x1)) | |
y = fftn(small_x, shape=(4, 4), axes=(-1, -2)) | |
assert_array_almost_equal(y, swapaxes( | |
fftn(swapaxes(large_x1, -1, -2)), -1, -2)) | |
def test_shape_axes_argument2(self): | |
# Change shape of the last axis | |
x = numpy.random.random((10, 5, 3, 7)) | |
y = fftn(x, axes=(-1,), shape=(8,)) | |
assert_array_almost_equal(y, fft(x, axis=-1, n=8)) | |
# Change shape of an arbitrary axis which is not the last one | |
x = numpy.random.random((10, 5, 3, 7)) | |
y = fftn(x, axes=(-2,), shape=(8,)) | |
assert_array_almost_equal(y, fft(x, axis=-2, n=8)) | |
# Change shape of axes: cf #244, where shape and axes were mixed up | |
x = numpy.random.random((4, 4, 2)) | |
y = fftn(x, axes=(-3, -2), shape=(8, 8)) | |
assert_array_almost_equal(y, | |
numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8))) | |
def test_shape_argument_more(self): | |
x = zeros((4, 4, 2)) | |
with assert_raises(ValueError, | |
match="when given, axes and shape arguments" | |
" have to be of the same length"): | |
fftn(x, shape=(8, 8, 2, 1)) | |
def test_invalid_sizes(self): | |
with assert_raises(ValueError, | |
match="invalid number of data points" | |
r" \(\[1, 0\]\) specified"): | |
fftn([[]]) | |
with assert_raises(ValueError, | |
match="invalid number of data points" | |
r" \(\[4, -3\]\) specified"): | |
fftn([[1, 1], [2, 2]], (4, -3)) | |
class TestIfftn: | |
dtype = None | |
cdtype = None | |
def setup_method(self): | |
np.random.seed(1234) | |
def test_definition(self, dtype, cdtype, maxnlp): | |
x = np.array([[1, 2, 3], | |
[4, 5, 6], | |
[7, 8, 9]], dtype=dtype) | |
y = ifftn(x) | |
assert_equal(y.dtype, cdtype) | |
assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp) | |
x = random((20, 26)) | |
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) | |
x = random((5, 4, 3, 20)) | |
assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp) | |
def test_random_complex(self, maxnlp, size): | |
x = random([size, size]) + 1j*random([size, size]) | |
assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp) | |
assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp) | |
def test_invalid_sizes(self): | |
with assert_raises(ValueError, | |
match="invalid number of data points" | |
r" \(\[1, 0\]\) specified"): | |
ifftn([[]]) | |
with assert_raises(ValueError, | |
match="invalid number of data points" | |
r" \(\[4, -3\]\) specified"): | |
ifftn([[1, 1], [2, 2]], (4, -3)) | |
class FakeArray: | |
def __init__(self, data): | |
self._data = data | |
self.__array_interface__ = data.__array_interface__ | |
class FakeArray2: | |
def __init__(self, data): | |
self._data = data | |
def __array__(self, dtype=None, copy=None): | |
return self._data | |
class TestOverwrite: | |
"""Check input overwrite behavior of the FFT functions.""" | |
real_dtypes = (np.float32, np.float64) | |
dtypes = real_dtypes + (np.complex64, np.complex128) | |
fftsizes = [8, 16, 32] | |
def _check(self, x, routine, fftsize, axis, overwrite_x): | |
x2 = x.copy() | |
for fake in [lambda x: x, FakeArray, FakeArray2]: | |
routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x) | |
sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format( | |
routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x) | |
if not overwrite_x: | |
assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig) | |
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes, | |
fftsize, overwrite_x): | |
np.random.seed(1234) | |
if np.issubdtype(dtype, np.complexfloating): | |
data = np.random.randn(*shape) + 1j*np.random.randn(*shape) | |
else: | |
data = np.random.randn(*shape) | |
data = data.astype(dtype) | |
self._check(data, routine, fftsize, axis, | |
overwrite_x=overwrite_x) | |
def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes): | |
overwritable = (np.complex128, np.complex64) | |
self._check_1d(fft, dtype, shape, axes, overwritable, | |
fftsize, overwrite_x) | |
self._check_1d(ifft, dtype, shape, axes, overwritable, | |
fftsize, overwrite_x) | |
def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes): | |
overwritable = self.real_dtypes | |
self._check_1d(irfft, dtype, shape, axes, overwritable, | |
fftsize, overwrite_x) | |
self._check_1d(rfft, dtype, shape, axes, overwritable, | |
fftsize, overwrite_x) | |
def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes, | |
overwrite_x): | |
np.random.seed(1234) | |
if np.issubdtype(dtype, np.complexfloating): | |
data = np.random.randn(*shape) + 1j*np.random.randn(*shape) | |
else: | |
data = np.random.randn(*shape) | |
data = data.astype(dtype) | |
def fftshape_iter(shp): | |
if len(shp) <= 0: | |
yield () | |
else: | |
for j in (shp[0]//2, shp[0], shp[0]*2): | |
for rest in fftshape_iter(shp[1:]): | |
yield (j,) + rest | |
if axes is None: | |
part_shape = shape | |
else: | |
part_shape = tuple(np.take(shape, axes)) | |
for fftshape in fftshape_iter(part_shape): | |
self._check(data, routine, fftshape, axes, | |
overwrite_x=overwrite_x) | |
if data.ndim > 1: | |
self._check(data.T, routine, fftshape, axes, | |
overwrite_x=overwrite_x) | |
def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes): | |
overwritable = (np.complex128, np.complex64) | |
self._check_nd_one(fftn, dtype, shape, axes, overwritable, | |
overwrite_x) | |
self._check_nd_one(ifftn, dtype, shape, axes, overwritable, | |
overwrite_x) | |
def test_shape_axes_ndarray(func): | |
# Test fftn and ifftn work with NumPy arrays for shape and axes arguments | |
# Regression test for gh-13342 | |
a = np.random.rand(10, 10) | |
expect = func(a, shape=(5, 5)) | |
actual = func(a, shape=np.array([5, 5])) | |
assert_equal(expect, actual) | |
expect = func(a, axes=(-1,)) | |
actual = func(a, axes=np.array([-1,])) | |
assert_equal(expect, actual) | |
expect = func(a, shape=(4, 7), axes=(1, 0)) | |
actual = func(a, shape=np.array([4, 7]), axes=np.array([1, 0])) | |
assert_equal(expect, actual) | |