peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/integrate
/_ivp
/radau.py
import numpy as np | |
from scipy.linalg import lu_factor, lu_solve | |
from scipy.sparse import csc_matrix, issparse, eye | |
from scipy.sparse.linalg import splu | |
from scipy.optimize._numdiff import group_columns | |
from .common import (validate_max_step, validate_tol, select_initial_step, | |
norm, num_jac, EPS, warn_extraneous, | |
validate_first_step) | |
from .base import OdeSolver, DenseOutput | |
S6 = 6 ** 0.5 | |
# Butcher tableau. A is not used directly, see below. | |
C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1]) | |
E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3 | |
# Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue | |
# and a complex conjugate pair. They are written below. | |
MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3) | |
MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3)) | |
- 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6))) | |
# These are transformation matrices. | |
T = np.array([ | |
[0.09443876248897524, -0.14125529502095421, 0.03002919410514742], | |
[0.25021312296533332, 0.20412935229379994, -0.38294211275726192], | |
[1, 1, 0]]) | |
TI = np.array([ | |
[4.17871859155190428, 0.32768282076106237, 0.52337644549944951], | |
[-4.17871859155190428, -0.32768282076106237, 0.47662355450055044], | |
[0.50287263494578682, -2.57192694985560522, 0.59603920482822492]]) | |
# These linear combinations are used in the algorithm. | |
TI_REAL = TI[0] | |
TI_COMPLEX = TI[1] + 1j * TI[2] | |
# Interpolator coefficients. | |
P = np.array([ | |
[13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6], | |
[13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6], | |
[1/3, -8/3, 10/3]]) | |
NEWTON_MAXITER = 6 # Maximum number of Newton iterations. | |
MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size. | |
MAX_FACTOR = 10 # Maximum allowed increase in a step size. | |
def solve_collocation_system(fun, t, y, h, Z0, scale, tol, | |
LU_real, LU_complex, solve_lu): | |
"""Solve the collocation system. | |
Parameters | |
---------- | |
fun : callable | |
Right-hand side of the system. | |
t : float | |
Current time. | |
y : ndarray, shape (n,) | |
Current state. | |
h : float | |
Step to try. | |
Z0 : ndarray, shape (3, n) | |
Initial guess for the solution. It determines new values of `y` at | |
``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants. | |
scale : ndarray, shape (n) | |
Problem tolerance scale, i.e. ``rtol * abs(y) + atol``. | |
tol : float | |
Tolerance to which solve the system. This value is compared with | |
the normalized by `scale` error. | |
LU_real, LU_complex | |
LU decompositions of the system Jacobians. | |
solve_lu : callable | |
Callable which solves a linear system given a LU decomposition. The | |
signature is ``solve_lu(LU, b)``. | |
Returns | |
------- | |
converged : bool | |
Whether iterations converged. | |
n_iter : int | |
Number of completed iterations. | |
Z : ndarray, shape (3, n) | |
Found solution. | |
rate : float | |
The rate of convergence. | |
""" | |
n = y.shape[0] | |
M_real = MU_REAL / h | |
M_complex = MU_COMPLEX / h | |
W = TI.dot(Z0) | |
Z = Z0 | |
F = np.empty((3, n)) | |
ch = h * C | |
dW_norm_old = None | |
dW = np.empty_like(W) | |
converged = False | |
rate = None | |
for k in range(NEWTON_MAXITER): | |
for i in range(3): | |
F[i] = fun(t + ch[i], y + Z[i]) | |
if not np.all(np.isfinite(F)): | |
break | |
f_real = F.T.dot(TI_REAL) - M_real * W[0] | |
f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2]) | |
dW_real = solve_lu(LU_real, f_real) | |
dW_complex = solve_lu(LU_complex, f_complex) | |
dW[0] = dW_real | |
dW[1] = dW_complex.real | |
dW[2] = dW_complex.imag | |
dW_norm = norm(dW / scale) | |
if dW_norm_old is not None: | |
rate = dW_norm / dW_norm_old | |
if (rate is not None and (rate >= 1 or | |
rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)): | |
break | |
W += dW | |
Z = T.dot(W) | |
if (dW_norm == 0 or | |
rate is not None and rate / (1 - rate) * dW_norm < tol): | |
converged = True | |
break | |
dW_norm_old = dW_norm | |
return converged, k + 1, Z, rate | |
def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old): | |
"""Predict by which factor to increase/decrease the step size. | |
The algorithm is described in [1]_. | |
Parameters | |
---------- | |
h_abs, h_abs_old : float | |
Current and previous values of the step size, `h_abs_old` can be None | |
(see Notes). | |
error_norm, error_norm_old : float | |
Current and previous values of the error norm, `error_norm_old` can | |
be None (see Notes). | |
Returns | |
------- | |
factor : float | |
Predicted factor. | |
Notes | |
----- | |
If `h_abs_old` and `error_norm_old` are both not None then a two-step | |
algorithm is used, otherwise a one-step algorithm is used. | |
References | |
---------- | |
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential | |
Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8. | |
""" | |
if error_norm_old is None or h_abs_old is None or error_norm == 0: | |
multiplier = 1 | |
else: | |
multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25 | |
with np.errstate(divide='ignore'): | |
factor = min(1, multiplier) * error_norm ** -0.25 | |
return factor | |
class Radau(OdeSolver): | |
"""Implicit Runge-Kutta method of Radau IIA family of order 5. | |
The implementation follows [1]_. The error is controlled with a | |
third-order accurate embedded formula. A cubic polynomial which satisfies | |
the collocation conditions is used for the dense output. | |
Parameters | |
---------- | |
fun : callable | |
Right-hand side of the system: the time derivative of the state ``y`` | |
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a | |
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must | |
return an array of the same shape as ``y``. See `vectorized` for more | |
information. | |
t0 : float | |
Initial time. | |
y0 : array_like, shape (n,) | |
Initial state. | |
t_bound : float | |
Boundary time - the integration won't continue beyond it. It also | |
determines the direction of the integration. | |
first_step : float or None, optional | |
Initial step size. Default is ``None`` which means that the algorithm | |
should choose. | |
max_step : float, optional | |
Maximum allowed step size. Default is np.inf, i.e., the step size is not | |
bounded and determined solely by the solver. | |
rtol, atol : float and array_like, optional | |
Relative and absolute tolerances. The solver keeps the local error | |
estimates less than ``atol + rtol * abs(y)``. HHere `rtol` controls a | |
relative accuracy (number of correct digits), while `atol` controls | |
absolute accuracy (number of correct decimal places). To achieve the | |
desired `rtol`, set `atol` to be smaller than the smallest value that | |
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the | |
allowable error. If `atol` is larger than ``rtol * abs(y)`` the | |
number of correct digits is not guaranteed. Conversely, to achieve the | |
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller | |
than `atol`. If components of y have different scales, it might be | |
beneficial to set different `atol` values for different components by | |
passing array_like with shape (n,) for `atol`. Default values are | |
1e-3 for `rtol` and 1e-6 for `atol`. | |
jac : {None, array_like, sparse_matrix, callable}, optional | |
Jacobian matrix of the right-hand side of the system with respect to | |
y, required by this method. The Jacobian matrix has shape (n, n) and | |
its element (i, j) is equal to ``d f_i / d y_j``. | |
There are three ways to define the Jacobian: | |
* If array_like or sparse_matrix, the Jacobian is assumed to | |
be constant. | |
* If callable, the Jacobian is assumed to depend on both | |
t and y; it will be called as ``jac(t, y)`` as necessary. | |
For the 'Radau' and 'BDF' methods, the return value might be a | |
sparse matrix. | |
* If None (default), the Jacobian will be approximated by | |
finite differences. | |
It is generally recommended to provide the Jacobian rather than | |
relying on a finite-difference approximation. | |
jac_sparsity : {None, array_like, sparse matrix}, optional | |
Defines a sparsity structure of the Jacobian matrix for a | |
finite-difference approximation. Its shape must be (n, n). This argument | |
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero | |
elements in *each* row, providing the sparsity structure will greatly | |
speed up the computations [2]_. A zero entry means that a corresponding | |
element in the Jacobian is always zero. If None (default), the Jacobian | |
is assumed to be dense. | |
vectorized : bool, optional | |
Whether `fun` can be called in a vectorized fashion. Default is False. | |
If ``vectorized`` is False, `fun` will always be called with ``y`` of | |
shape ``(n,)``, where ``n = len(y0)``. | |
If ``vectorized`` is True, `fun` may be called with ``y`` of shape | |
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave | |
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of | |
the returned array is the time derivative of the state corresponding | |
with a column of ``y``). | |
Setting ``vectorized=True`` allows for faster finite difference | |
approximation of the Jacobian by this method, but may result in slower | |
execution overall in some circumstances (e.g. small ``len(y0)``). | |
Attributes | |
---------- | |
n : int | |
Number of equations. | |
status : string | |
Current status of the solver: 'running', 'finished' or 'failed'. | |
t_bound : float | |
Boundary time. | |
direction : float | |
Integration direction: +1 or -1. | |
t : float | |
Current time. | |
y : ndarray | |
Current state. | |
t_old : float | |
Previous time. None if no steps were made yet. | |
step_size : float | |
Size of the last successful step. None if no steps were made yet. | |
nfev : int | |
Number of evaluations of the right-hand side. | |
njev : int | |
Number of evaluations of the Jacobian. | |
nlu : int | |
Number of LU decompositions. | |
References | |
---------- | |
.. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II: | |
Stiff and Differential-Algebraic Problems", Sec. IV.8. | |
.. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of | |
sparse Jacobian matrices", Journal of the Institute of Mathematics | |
and its Applications, 13, pp. 117-120, 1974. | |
""" | |
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf, | |
rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None, | |
vectorized=False, first_step=None, **extraneous): | |
warn_extraneous(extraneous) | |
super().__init__(fun, t0, y0, t_bound, vectorized) | |
self.y_old = None | |
self.max_step = validate_max_step(max_step) | |
self.rtol, self.atol = validate_tol(rtol, atol, self.n) | |
self.f = self.fun(self.t, self.y) | |
# Select initial step assuming the same order which is used to control | |
# the error. | |
if first_step is None: | |
self.h_abs = select_initial_step( | |
self.fun, self.t, self.y, self.f, self.direction, | |
3, self.rtol, self.atol) | |
else: | |
self.h_abs = validate_first_step(first_step, t0, t_bound) | |
self.h_abs_old = None | |
self.error_norm_old = None | |
self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5)) | |
self.sol = None | |
self.jac_factor = None | |
self.jac, self.J = self._validate_jac(jac, jac_sparsity) | |
if issparse(self.J): | |
def lu(A): | |
self.nlu += 1 | |
return splu(A) | |
def solve_lu(LU, b): | |
return LU.solve(b) | |
I = eye(self.n, format='csc') | |
else: | |
def lu(A): | |
self.nlu += 1 | |
return lu_factor(A, overwrite_a=True) | |
def solve_lu(LU, b): | |
return lu_solve(LU, b, overwrite_b=True) | |
I = np.identity(self.n) | |
self.lu = lu | |
self.solve_lu = solve_lu | |
self.I = I | |
self.current_jac = True | |
self.LU_real = None | |
self.LU_complex = None | |
self.Z = None | |
def _validate_jac(self, jac, sparsity): | |
t0 = self.t | |
y0 = self.y | |
if jac is None: | |
if sparsity is not None: | |
if issparse(sparsity): | |
sparsity = csc_matrix(sparsity) | |
groups = group_columns(sparsity) | |
sparsity = (sparsity, groups) | |
def jac_wrapped(t, y, f): | |
self.njev += 1 | |
J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f, | |
self.atol, self.jac_factor, | |
sparsity) | |
return J | |
J = jac_wrapped(t0, y0, self.f) | |
elif callable(jac): | |
J = jac(t0, y0) | |
self.njev = 1 | |
if issparse(J): | |
J = csc_matrix(J) | |
def jac_wrapped(t, y, _=None): | |
self.njev += 1 | |
return csc_matrix(jac(t, y), dtype=float) | |
else: | |
J = np.asarray(J, dtype=float) | |
def jac_wrapped(t, y, _=None): | |
self.njev += 1 | |
return np.asarray(jac(t, y), dtype=float) | |
if J.shape != (self.n, self.n): | |
raise ValueError("`jac` is expected to have shape {}, but " | |
"actually has {}." | |
.format((self.n, self.n), J.shape)) | |
else: | |
if issparse(jac): | |
J = csc_matrix(jac) | |
else: | |
J = np.asarray(jac, dtype=float) | |
if J.shape != (self.n, self.n): | |
raise ValueError("`jac` is expected to have shape {}, but " | |
"actually has {}." | |
.format((self.n, self.n), J.shape)) | |
jac_wrapped = None | |
return jac_wrapped, J | |
def _step_impl(self): | |
t = self.t | |
y = self.y | |
f = self.f | |
max_step = self.max_step | |
atol = self.atol | |
rtol = self.rtol | |
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t) | |
if self.h_abs > max_step: | |
h_abs = max_step | |
h_abs_old = None | |
error_norm_old = None | |
elif self.h_abs < min_step: | |
h_abs = min_step | |
h_abs_old = None | |
error_norm_old = None | |
else: | |
h_abs = self.h_abs | |
h_abs_old = self.h_abs_old | |
error_norm_old = self.error_norm_old | |
J = self.J | |
LU_real = self.LU_real | |
LU_complex = self.LU_complex | |
current_jac = self.current_jac | |
jac = self.jac | |
rejected = False | |
step_accepted = False | |
message = None | |
while not step_accepted: | |
if h_abs < min_step: | |
return False, self.TOO_SMALL_STEP | |
h = h_abs * self.direction | |
t_new = t + h | |
if self.direction * (t_new - self.t_bound) > 0: | |
t_new = self.t_bound | |
h = t_new - t | |
h_abs = np.abs(h) | |
if self.sol is None: | |
Z0 = np.zeros((3, y.shape[0])) | |
else: | |
Z0 = self.sol(t + h * C).T - y | |
scale = atol + np.abs(y) * rtol | |
converged = False | |
while not converged: | |
if LU_real is None or LU_complex is None: | |
LU_real = self.lu(MU_REAL / h * self.I - J) | |
LU_complex = self.lu(MU_COMPLEX / h * self.I - J) | |
converged, n_iter, Z, rate = solve_collocation_system( | |
self.fun, t, y, h, Z0, scale, self.newton_tol, | |
LU_real, LU_complex, self.solve_lu) | |
if not converged: | |
if current_jac: | |
break | |
J = self.jac(t, y, f) | |
current_jac = True | |
LU_real = None | |
LU_complex = None | |
if not converged: | |
h_abs *= 0.5 | |
LU_real = None | |
LU_complex = None | |
continue | |
y_new = y + Z[-1] | |
ZE = Z.T.dot(E) / h | |
error = self.solve_lu(LU_real, f + ZE) | |
scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol | |
error_norm = norm(error / scale) | |
safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER | |
+ n_iter) | |
if rejected and error_norm > 1: | |
error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE) | |
error_norm = norm(error / scale) | |
if error_norm > 1: | |
factor = predict_factor(h_abs, h_abs_old, | |
error_norm, error_norm_old) | |
h_abs *= max(MIN_FACTOR, safety * factor) | |
LU_real = None | |
LU_complex = None | |
rejected = True | |
else: | |
step_accepted = True | |
recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3 | |
factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old) | |
factor = min(MAX_FACTOR, safety * factor) | |
if not recompute_jac and factor < 1.2: | |
factor = 1 | |
else: | |
LU_real = None | |
LU_complex = None | |
f_new = self.fun(t_new, y_new) | |
if recompute_jac: | |
J = jac(t_new, y_new, f_new) | |
current_jac = True | |
elif jac is not None: | |
current_jac = False | |
self.h_abs_old = self.h_abs | |
self.error_norm_old = error_norm | |
self.h_abs = h_abs * factor | |
self.y_old = y | |
self.t = t_new | |
self.y = y_new | |
self.f = f_new | |
self.Z = Z | |
self.LU_real = LU_real | |
self.LU_complex = LU_complex | |
self.current_jac = current_jac | |
self.J = J | |
self.t_old = t | |
self.sol = self._compute_dense_output() | |
return step_accepted, message | |
def _compute_dense_output(self): | |
Q = np.dot(self.Z.T, P) | |
return RadauDenseOutput(self.t_old, self.t, self.y_old, Q) | |
def _dense_output_impl(self): | |
return self.sol | |
class RadauDenseOutput(DenseOutput): | |
def __init__(self, t_old, t, y_old, Q): | |
super().__init__(t_old, t) | |
self.h = t - t_old | |
self.Q = Q | |
self.order = Q.shape[1] - 1 | |
self.y_old = y_old | |
def _call_impl(self, t): | |
x = (t - self.t_old) / self.h | |
if t.ndim == 0: | |
p = np.tile(x, self.order + 1) | |
p = np.cumprod(p) | |
else: | |
p = np.tile(x, (self.order + 1, 1)) | |
p = np.cumprod(p, axis=0) | |
# Here we don't multiply by h, not a mistake. | |
y = np.dot(self.Q, p) | |
if y.ndim == 2: | |
y += self.y_old[:, None] | |
else: | |
y += self.y_old | |
return y | |