peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/io
/matlab
/_mio4.py
''' Classes for read / write of matlab (TM) 4 files | |
''' | |
import sys | |
import warnings | |
import numpy as np | |
import scipy.sparse | |
from ._miobase import (MatFileReader, docfiller, matdims, read_dtype, | |
convert_dtypes, arr_to_chars, arr_dtype_number) | |
from ._mio_utils import squeeze_element, chars_to_strings | |
from functools import reduce | |
__all__ = [ | |
'MatFile4Reader', 'MatFile4Writer', 'SYS_LITTLE_ENDIAN', | |
'VarHeader4', 'VarReader4', 'VarWriter4', 'arr_to_2d', 'mclass_info', | |
'mdtypes_template', 'miDOUBLE', 'miINT16', 'miINT32', 'miSINGLE', | |
'miUINT16', 'miUINT8', 'mxCHAR_CLASS', 'mxFULL_CLASS', 'mxSPARSE_CLASS', | |
'np_to_mtypes', 'order_codes' | |
] | |
SYS_LITTLE_ENDIAN = sys.byteorder == 'little' | |
miDOUBLE = 0 | |
miSINGLE = 1 | |
miINT32 = 2 | |
miINT16 = 3 | |
miUINT16 = 4 | |
miUINT8 = 5 | |
mdtypes_template = { | |
miDOUBLE: 'f8', | |
miSINGLE: 'f4', | |
miINT32: 'i4', | |
miINT16: 'i2', | |
miUINT16: 'u2', | |
miUINT8: 'u1', | |
'header': [('mopt', 'i4'), | |
('mrows', 'i4'), | |
('ncols', 'i4'), | |
('imagf', 'i4'), | |
('namlen', 'i4')], | |
'U1': 'U1', | |
} | |
np_to_mtypes = { | |
'f8': miDOUBLE, | |
'c32': miDOUBLE, | |
'c24': miDOUBLE, | |
'c16': miDOUBLE, | |
'f4': miSINGLE, | |
'c8': miSINGLE, | |
'i4': miINT32, | |
'i2': miINT16, | |
'u2': miUINT16, | |
'u1': miUINT8, | |
'S1': miUINT8, | |
} | |
# matrix classes | |
mxFULL_CLASS = 0 | |
mxCHAR_CLASS = 1 | |
mxSPARSE_CLASS = 2 | |
order_codes = { | |
0: '<', | |
1: '>', | |
2: 'VAX D-float', # ! | |
3: 'VAX G-float', | |
4: 'Cray', # !! | |
} | |
mclass_info = { | |
mxFULL_CLASS: 'double', | |
mxCHAR_CLASS: 'char', | |
mxSPARSE_CLASS: 'sparse', | |
} | |
class VarHeader4: | |
# Mat4 variables never logical or global | |
is_logical = False | |
is_global = False | |
def __init__(self, | |
name, | |
dtype, | |
mclass, | |
dims, | |
is_complex): | |
self.name = name | |
self.dtype = dtype | |
self.mclass = mclass | |
self.dims = dims | |
self.is_complex = is_complex | |
class VarReader4: | |
''' Class to read matlab 4 variables ''' | |
def __init__(self, file_reader): | |
self.file_reader = file_reader | |
self.mat_stream = file_reader.mat_stream | |
self.dtypes = file_reader.dtypes | |
self.chars_as_strings = file_reader.chars_as_strings | |
self.squeeze_me = file_reader.squeeze_me | |
def read_header(self): | |
''' Read and return header for variable ''' | |
data = read_dtype(self.mat_stream, self.dtypes['header']) | |
name = self.mat_stream.read(int(data['namlen'])).strip(b'\x00') | |
if data['mopt'] < 0 or data['mopt'] > 5000: | |
raise ValueError('Mat 4 mopt wrong format, byteswapping problem?') | |
M, rest = divmod(data['mopt'], 1000) # order code | |
if M not in (0, 1): | |
warnings.warn("We do not support byte ordering '%s'; returned " | |
"data may be corrupt" % order_codes[M], | |
UserWarning, stacklevel=3) | |
O, rest = divmod(rest, 100) # unused, should be 0 | |
if O != 0: | |
raise ValueError('O in MOPT integer should be 0, wrong format?') | |
P, rest = divmod(rest, 10) # data type code e.g miDOUBLE (see above) | |
T = rest # matrix type code e.g., mxFULL_CLASS (see above) | |
dims = (data['mrows'], data['ncols']) | |
is_complex = data['imagf'] == 1 | |
dtype = self.dtypes[P] | |
return VarHeader4( | |
name, | |
dtype, | |
T, | |
dims, | |
is_complex) | |
def array_from_header(self, hdr, process=True): | |
mclass = hdr.mclass | |
if mclass == mxFULL_CLASS: | |
arr = self.read_full_array(hdr) | |
elif mclass == mxCHAR_CLASS: | |
arr = self.read_char_array(hdr) | |
if process and self.chars_as_strings: | |
arr = chars_to_strings(arr) | |
elif mclass == mxSPARSE_CLASS: | |
# no current processing (below) makes sense for sparse | |
return self.read_sparse_array(hdr) | |
else: | |
raise TypeError('No reader for class code %s' % mclass) | |
if process and self.squeeze_me: | |
return squeeze_element(arr) | |
return arr | |
def read_sub_array(self, hdr, copy=True): | |
''' Mat4 read using header `hdr` dtype and dims | |
Parameters | |
---------- | |
hdr : object | |
object with attributes ``dtype``, ``dims``. dtype is assumed to be | |
the correct endianness | |
copy : bool, optional | |
copies array before return if True (default True) | |
(buffer is usually read only) | |
Returns | |
------- | |
arr : ndarray | |
of dtype given by `hdr` ``dtype`` and shape given by `hdr` ``dims`` | |
''' | |
dt = hdr.dtype | |
dims = hdr.dims | |
num_bytes = dt.itemsize | |
for d in dims: | |
num_bytes *= d | |
buffer = self.mat_stream.read(int(num_bytes)) | |
if len(buffer) != num_bytes: | |
raise ValueError("Not enough bytes to read matrix '%s'; is this " | |
"a badly-formed file? Consider listing matrices " | |
"with `whosmat` and loading named matrices with " | |
"`variable_names` kwarg to `loadmat`" % hdr.name) | |
arr = np.ndarray(shape=dims, | |
dtype=dt, | |
buffer=buffer, | |
order='F') | |
if copy: | |
arr = arr.copy() | |
return arr | |
def read_full_array(self, hdr): | |
''' Full (rather than sparse) matrix getter | |
Read matrix (array) can be real or complex | |
Parameters | |
---------- | |
hdr : ``VarHeader4`` instance | |
Returns | |
------- | |
arr : ndarray | |
complex array if ``hdr.is_complex`` is True, otherwise a real | |
numeric array | |
''' | |
if hdr.is_complex: | |
# avoid array copy to save memory | |
res = self.read_sub_array(hdr, copy=False) | |
res_j = self.read_sub_array(hdr, copy=False) | |
return res + (res_j * 1j) | |
return self.read_sub_array(hdr) | |
def read_char_array(self, hdr): | |
''' latin-1 text matrix (char matrix) reader | |
Parameters | |
---------- | |
hdr : ``VarHeader4`` instance | |
Returns | |
------- | |
arr : ndarray | |
with dtype 'U1', shape given by `hdr` ``dims`` | |
''' | |
arr = self.read_sub_array(hdr).astype(np.uint8) | |
S = arr.tobytes().decode('latin-1') | |
return np.ndarray(shape=hdr.dims, | |
dtype=np.dtype('U1'), | |
buffer=np.array(S)).copy() | |
def read_sparse_array(self, hdr): | |
''' Read and return sparse matrix type | |
Parameters | |
---------- | |
hdr : ``VarHeader4`` instance | |
Returns | |
------- | |
arr : ``scipy.sparse.coo_matrix`` | |
with dtype ``float`` and shape read from the sparse matrix data | |
Notes | |
----- | |
MATLAB 4 real sparse arrays are saved in a N+1 by 3 array format, where | |
N is the number of non-zero values. Column 1 values [0:N] are the | |
(1-based) row indices of the each non-zero value, column 2 [0:N] are the | |
column indices, column 3 [0:N] are the (real) values. The last values | |
[-1,0:2] of the rows, column indices are shape[0] and shape[1] | |
respectively of the output matrix. The last value for the values column | |
is a padding 0. mrows and ncols values from the header give the shape of | |
the stored matrix, here [N+1, 3]. Complex data are saved as a 4 column | |
matrix, where the fourth column contains the imaginary component; the | |
last value is again 0. Complex sparse data do *not* have the header | |
``imagf`` field set to True; the fact that the data are complex is only | |
detectable because there are 4 storage columns. | |
''' | |
res = self.read_sub_array(hdr) | |
tmp = res[:-1,:] | |
# All numbers are float64 in Matlab, but SciPy sparse expects int shape | |
dims = (int(res[-1,0]), int(res[-1,1])) | |
I = np.ascontiguousarray(tmp[:,0],dtype='intc') # fixes byte order also | |
J = np.ascontiguousarray(tmp[:,1],dtype='intc') | |
I -= 1 # for 1-based indexing | |
J -= 1 | |
if res.shape[1] == 3: | |
V = np.ascontiguousarray(tmp[:,2],dtype='float') | |
else: | |
V = np.ascontiguousarray(tmp[:,2],dtype='complex') | |
V.imag = tmp[:,3] | |
return scipy.sparse.coo_matrix((V,(I,J)), dims) | |
def shape_from_header(self, hdr): | |
'''Read the shape of the array described by the header. | |
The file position after this call is unspecified. | |
''' | |
mclass = hdr.mclass | |
if mclass == mxFULL_CLASS: | |
shape = tuple(map(int, hdr.dims)) | |
elif mclass == mxCHAR_CLASS: | |
shape = tuple(map(int, hdr.dims)) | |
if self.chars_as_strings: | |
shape = shape[:-1] | |
elif mclass == mxSPARSE_CLASS: | |
dt = hdr.dtype | |
dims = hdr.dims | |
if not (len(dims) == 2 and dims[0] >= 1 and dims[1] >= 1): | |
return () | |
# Read only the row and column counts | |
self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1) | |
rows = np.ndarray(shape=(), dtype=dt, | |
buffer=self.mat_stream.read(dt.itemsize)) | |
self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1) | |
cols = np.ndarray(shape=(), dtype=dt, | |
buffer=self.mat_stream.read(dt.itemsize)) | |
shape = (int(rows), int(cols)) | |
else: | |
raise TypeError('No reader for class code %s' % mclass) | |
if self.squeeze_me: | |
shape = tuple([x for x in shape if x != 1]) | |
return shape | |
class MatFile4Reader(MatFileReader): | |
''' Reader for Mat4 files ''' | |
def __init__(self, mat_stream, *args, **kwargs): | |
''' Initialize matlab 4 file reader | |
%(matstream_arg)s | |
%(load_args)s | |
''' | |
super().__init__(mat_stream, *args, **kwargs) | |
self._matrix_reader = None | |
def guess_byte_order(self): | |
self.mat_stream.seek(0) | |
mopt = read_dtype(self.mat_stream, np.dtype('i4')) | |
self.mat_stream.seek(0) | |
if mopt == 0: | |
return '<' | |
if mopt < 0 or mopt > 5000: | |
# Number must have been byteswapped | |
return SYS_LITTLE_ENDIAN and '>' or '<' | |
# Not byteswapped | |
return SYS_LITTLE_ENDIAN and '<' or '>' | |
def initialize_read(self): | |
''' Run when beginning read of variables | |
Sets up readers from parameters in `self` | |
''' | |
self.dtypes = convert_dtypes(mdtypes_template, self.byte_order) | |
self._matrix_reader = VarReader4(self) | |
def read_var_header(self): | |
''' Read and return header, next position | |
Parameters | |
---------- | |
None | |
Returns | |
------- | |
header : object | |
object that can be passed to self.read_var_array, and that | |
has attributes ``name`` and ``is_global`` | |
next_position : int | |
position in stream of next variable | |
''' | |
hdr = self._matrix_reader.read_header() | |
n = reduce(lambda x, y: x*y, hdr.dims, 1) # fast product | |
remaining_bytes = hdr.dtype.itemsize * n | |
if hdr.is_complex and not hdr.mclass == mxSPARSE_CLASS: | |
remaining_bytes *= 2 | |
next_position = self.mat_stream.tell() + remaining_bytes | |
return hdr, next_position | |
def read_var_array(self, header, process=True): | |
''' Read array, given `header` | |
Parameters | |
---------- | |
header : header object | |
object with fields defining variable header | |
process : {True, False}, optional | |
If True, apply recursive post-processing during loading of array. | |
Returns | |
------- | |
arr : array | |
array with post-processing applied or not according to | |
`process`. | |
''' | |
return self._matrix_reader.array_from_header(header, process) | |
def get_variables(self, variable_names=None): | |
''' get variables from stream as dictionary | |
Parameters | |
---------- | |
variable_names : None or str or sequence of str, optional | |
variable name, or sequence of variable names to get from Mat file / | |
file stream. If None, then get all variables in file. | |
''' | |
if isinstance(variable_names, str): | |
variable_names = [variable_names] | |
elif variable_names is not None: | |
variable_names = list(variable_names) | |
self.mat_stream.seek(0) | |
# set up variable reader | |
self.initialize_read() | |
mdict = {} | |
while not self.end_of_stream(): | |
hdr, next_position = self.read_var_header() | |
name = 'None' if hdr.name is None else hdr.name.decode('latin1') | |
if variable_names is not None and name not in variable_names: | |
self.mat_stream.seek(next_position) | |
continue | |
mdict[name] = self.read_var_array(hdr) | |
self.mat_stream.seek(next_position) | |
if variable_names is not None: | |
variable_names.remove(name) | |
if len(variable_names) == 0: | |
break | |
return mdict | |
def list_variables(self): | |
''' list variables from stream ''' | |
self.mat_stream.seek(0) | |
# set up variable reader | |
self.initialize_read() | |
vars = [] | |
while not self.end_of_stream(): | |
hdr, next_position = self.read_var_header() | |
name = 'None' if hdr.name is None else hdr.name.decode('latin1') | |
shape = self._matrix_reader.shape_from_header(hdr) | |
info = mclass_info.get(hdr.mclass, 'unknown') | |
vars.append((name, shape, info)) | |
self.mat_stream.seek(next_position) | |
return vars | |
def arr_to_2d(arr, oned_as='row'): | |
''' Make ``arr`` exactly two dimensional | |
If `arr` has more than 2 dimensions, raise a ValueError | |
Parameters | |
---------- | |
arr : array | |
oned_as : {'row', 'column'}, optional | |
Whether to reshape 1-D vectors as row vectors or column vectors. | |
See documentation for ``matdims`` for more detail | |
Returns | |
------- | |
arr2d : array | |
2-D version of the array | |
''' | |
dims = matdims(arr, oned_as) | |
if len(dims) > 2: | |
raise ValueError('Matlab 4 files cannot save arrays with more than ' | |
'2 dimensions') | |
return arr.reshape(dims) | |
class VarWriter4: | |
def __init__(self, file_writer): | |
self.file_stream = file_writer.file_stream | |
self.oned_as = file_writer.oned_as | |
def write_bytes(self, arr): | |
self.file_stream.write(arr.tobytes(order='F')) | |
def write_string(self, s): | |
self.file_stream.write(s) | |
def write_header(self, name, shape, P=miDOUBLE, T=mxFULL_CLASS, imagf=0): | |
''' Write header for given data options | |
Parameters | |
---------- | |
name : str | |
name of variable | |
shape : sequence | |
Shape of array as it will be read in matlab | |
P : int, optional | |
code for mat4 data type, one of ``miDOUBLE, miSINGLE, miINT32, | |
miINT16, miUINT16, miUINT8`` | |
T : int, optional | |
code for mat4 matrix class, one of ``mxFULL_CLASS, mxCHAR_CLASS, | |
mxSPARSE_CLASS`` | |
imagf : int, optional | |
flag indicating complex | |
''' | |
header = np.empty((), mdtypes_template['header']) | |
M = not SYS_LITTLE_ENDIAN | |
O = 0 | |
header['mopt'] = (M * 1000 + | |
O * 100 + | |
P * 10 + | |
T) | |
header['mrows'] = shape[0] | |
header['ncols'] = shape[1] | |
header['imagf'] = imagf | |
header['namlen'] = len(name) + 1 | |
self.write_bytes(header) | |
data = name + '\0' | |
self.write_string(data.encode('latin1')) | |
def write(self, arr, name): | |
''' Write matrix `arr`, with name `name` | |
Parameters | |
---------- | |
arr : array_like | |
array to write | |
name : str | |
name in matlab workspace | |
''' | |
# we need to catch sparse first, because np.asarray returns an | |
# an object array for scipy.sparse | |
if scipy.sparse.issparse(arr): | |
self.write_sparse(arr, name) | |
return | |
arr = np.asarray(arr) | |
dt = arr.dtype | |
if not dt.isnative: | |
arr = arr.astype(dt.newbyteorder('=')) | |
dtt = dt.type | |
if dtt is np.object_: | |
raise TypeError('Cannot save object arrays in Mat4') | |
elif dtt is np.void: | |
raise TypeError('Cannot save void type arrays') | |
elif dtt in (np.str_, np.bytes_): | |
self.write_char(arr, name) | |
return | |
self.write_numeric(arr, name) | |
def write_numeric(self, arr, name): | |
arr = arr_to_2d(arr, self.oned_as) | |
imagf = arr.dtype.kind == 'c' | |
try: | |
P = np_to_mtypes[arr.dtype.str[1:]] | |
except KeyError: | |
if imagf: | |
arr = arr.astype('c128') | |
else: | |
arr = arr.astype('f8') | |
P = miDOUBLE | |
self.write_header(name, | |
arr.shape, | |
P=P, | |
T=mxFULL_CLASS, | |
imagf=imagf) | |
if imagf: | |
self.write_bytes(arr.real) | |
self.write_bytes(arr.imag) | |
else: | |
self.write_bytes(arr) | |
def write_char(self, arr, name): | |
if arr.dtype.type == np.str_ and arr.dtype.itemsize != np.dtype('U1').itemsize: | |
arr = arr_to_chars(arr) | |
arr = arr_to_2d(arr, self.oned_as) | |
dims = arr.shape | |
self.write_header( | |
name, | |
dims, | |
P=miUINT8, | |
T=mxCHAR_CLASS) | |
if arr.dtype.kind == 'U': | |
# Recode unicode to latin1 | |
n_chars = np.prod(dims) | |
st_arr = np.ndarray(shape=(), | |
dtype=arr_dtype_number(arr, n_chars), | |
buffer=arr) | |
st = st_arr.item().encode('latin-1') | |
arr = np.ndarray(shape=dims, dtype='S1', buffer=st) | |
self.write_bytes(arr) | |
def write_sparse(self, arr, name): | |
''' Sparse matrices are 2-D | |
See docstring for VarReader4.read_sparse_array | |
''' | |
A = arr.tocoo() # convert to sparse COO format (ijv) | |
imagf = A.dtype.kind == 'c' | |
ijv = np.zeros((A.nnz + 1, 3+imagf), dtype='f8') | |
ijv[:-1,0] = A.row | |
ijv[:-1,1] = A.col | |
ijv[:-1,0:2] += 1 # 1 based indexing | |
if imagf: | |
ijv[:-1,2] = A.data.real | |
ijv[:-1,3] = A.data.imag | |
else: | |
ijv[:-1,2] = A.data | |
ijv[-1,0:2] = A.shape | |
self.write_header( | |
name, | |
ijv.shape, | |
P=miDOUBLE, | |
T=mxSPARSE_CLASS) | |
self.write_bytes(ijv) | |
class MatFile4Writer: | |
''' Class for writing matlab 4 format files ''' | |
def __init__(self, file_stream, oned_as=None): | |
self.file_stream = file_stream | |
if oned_as is None: | |
oned_as = 'row' | |
self.oned_as = oned_as | |
self._matrix_writer = None | |
def put_variables(self, mdict, write_header=None): | |
''' Write variables in `mdict` to stream | |
Parameters | |
---------- | |
mdict : mapping | |
mapping with method ``items`` return name, contents pairs | |
where ``name`` which will appeak in the matlab workspace in | |
file load, and ``contents`` is something writeable to a | |
matlab file, such as a NumPy array. | |
write_header : {None, True, False} | |
If True, then write the matlab file header before writing the | |
variables. If None (the default) then write the file header | |
if we are at position 0 in the stream. By setting False | |
here, and setting the stream position to the end of the file, | |
you can append variables to a matlab file | |
''' | |
# there is no header for a matlab 4 mat file, so we ignore the | |
# ``write_header`` input argument. It's there for compatibility | |
# with the matlab 5 version of this method | |
self._matrix_writer = VarWriter4(self) | |
for name, var in mdict.items(): | |
self._matrix_writer.write(var, name) | |