peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/odr
/tests
/test_odr.py
import tempfile | |
import shutil | |
import os | |
import numpy as np | |
from numpy import pi | |
from numpy.testing import (assert_array_almost_equal, | |
assert_equal, assert_warns, | |
assert_allclose) | |
import pytest | |
from pytest import raises as assert_raises | |
from scipy.odr import (Data, Model, ODR, RealData, OdrStop, OdrWarning, | |
multilinear, exponential, unilinear, quadratic, | |
polynomial) | |
class TestODR: | |
# Bad Data for 'x' | |
def test_bad_data(self): | |
assert_raises(ValueError, Data, 2, 1) | |
assert_raises(ValueError, RealData, 2, 1) | |
# Empty Data for 'x' | |
def empty_data_func(self, B, x): | |
return B[0]*x + B[1] | |
def test_empty_data(self): | |
beta0 = [0.02, 0.0] | |
linear = Model(self.empty_data_func) | |
empty_dat = Data([], []) | |
assert_warns(OdrWarning, ODR, | |
empty_dat, linear, beta0=beta0) | |
empty_dat = RealData([], []) | |
assert_warns(OdrWarning, ODR, | |
empty_dat, linear, beta0=beta0) | |
# Explicit Example | |
def explicit_fcn(self, B, x): | |
ret = B[0] + B[1] * np.power(np.exp(B[2]*x) - 1.0, 2) | |
return ret | |
def explicit_fjd(self, B, x): | |
eBx = np.exp(B[2]*x) | |
ret = B[1] * 2.0 * (eBx-1.0) * B[2] * eBx | |
return ret | |
def explicit_fjb(self, B, x): | |
eBx = np.exp(B[2]*x) | |
res = np.vstack([np.ones(x.shape[-1]), | |
np.power(eBx-1.0, 2), | |
B[1]*2.0*(eBx-1.0)*eBx*x]) | |
return res | |
def test_explicit(self): | |
explicit_mod = Model( | |
self.explicit_fcn, | |
fjacb=self.explicit_fjb, | |
fjacd=self.explicit_fjd, | |
meta=dict(name='Sample Explicit Model', | |
ref='ODRPACK UG, pg. 39'), | |
) | |
explicit_dat = Data([0.,0.,5.,7.,7.5,10.,16.,26.,30.,34.,34.5,100.], | |
[1265.,1263.6,1258.,1254.,1253.,1249.8,1237.,1218.,1220.6, | |
1213.8,1215.5,1212.]) | |
explicit_odr = ODR(explicit_dat, explicit_mod, beta0=[1500.0, -50.0, -0.1], | |
ifixx=[0,0,1,1,1,1,1,1,1,1,1,0]) | |
explicit_odr.set_job(deriv=2) | |
explicit_odr.set_iprint(init=0, iter=0, final=0) | |
out = explicit_odr.run() | |
assert_array_almost_equal( | |
out.beta, | |
np.array([1.2646548050648876e+03, -5.4018409956678255e+01, | |
-8.7849712165253724e-02]), | |
) | |
assert_array_almost_equal( | |
out.sd_beta, | |
np.array([1.0349270280543437, 1.583997785262061, 0.0063321988657267]), | |
) | |
assert_array_almost_equal( | |
out.cov_beta, | |
np.array([[4.4949592379003039e-01, -3.7421976890364739e-01, | |
-8.0978217468468912e-04], | |
[-3.7421976890364739e-01, 1.0529686462751804e+00, | |
-1.9453521827942002e-03], | |
[-8.0978217468468912e-04, -1.9453521827942002e-03, | |
1.6827336938454476e-05]]), | |
) | |
# Implicit Example | |
def implicit_fcn(self, B, x): | |
return (B[2]*np.power(x[0]-B[0], 2) + | |
2.0*B[3]*(x[0]-B[0])*(x[1]-B[1]) + | |
B[4]*np.power(x[1]-B[1], 2) - 1.0) | |
def test_implicit(self): | |
implicit_mod = Model( | |
self.implicit_fcn, | |
implicit=1, | |
meta=dict(name='Sample Implicit Model', | |
ref='ODRPACK UG, pg. 49'), | |
) | |
implicit_dat = Data([ | |
[0.5,1.2,1.6,1.86,2.12,2.36,2.44,2.36,2.06,1.74,1.34,0.9,-0.28, | |
-0.78,-1.36,-1.9,-2.5,-2.88,-3.18,-3.44], | |
[-0.12,-0.6,-1.,-1.4,-2.54,-3.36,-4.,-4.75,-5.25,-5.64,-5.97,-6.32, | |
-6.44,-6.44,-6.41,-6.25,-5.88,-5.5,-5.24,-4.86]], | |
1, | |
) | |
implicit_odr = ODR(implicit_dat, implicit_mod, | |
beta0=[-1.0, -3.0, 0.09, 0.02, 0.08]) | |
out = implicit_odr.run() | |
assert_array_almost_equal( | |
out.beta, | |
np.array([-0.9993809167281279, -2.9310484652026476, 0.0875730502693354, | |
0.0162299708984738, 0.0797537982976416]), | |
) | |
assert_array_almost_equal( | |
out.sd_beta, | |
np.array([0.1113840353364371, 0.1097673310686467, 0.0041060738314314, | |
0.0027500347539902, 0.0034962501532468]), | |
) | |
assert_allclose( | |
out.cov_beta, | |
np.array([[2.1089274602333052e+00, -1.9437686411979040e+00, | |
7.0263550868344446e-02, -4.7175267373474862e-02, | |
5.2515575927380355e-02], | |
[-1.9437686411979040e+00, 2.0481509222414456e+00, | |
-6.1600515853057307e-02, 4.6268827806232933e-02, | |
-5.8822307501391467e-02], | |
[7.0263550868344446e-02, -6.1600515853057307e-02, | |
2.8659542561579308e-03, -1.4628662260014491e-03, | |
1.4528860663055824e-03], | |
[-4.7175267373474862e-02, 4.6268827806232933e-02, | |
-1.4628662260014491e-03, 1.2855592885514335e-03, | |
-1.2692942951415293e-03], | |
[5.2515575927380355e-02, -5.8822307501391467e-02, | |
1.4528860663055824e-03, -1.2692942951415293e-03, | |
2.0778813389755596e-03]]), | |
rtol=1e-6, atol=2e-6, | |
) | |
# Multi-variable Example | |
def multi_fcn(self, B, x): | |
if (x < 0.0).any(): | |
raise OdrStop | |
theta = pi*B[3]/2. | |
ctheta = np.cos(theta) | |
stheta = np.sin(theta) | |
omega = np.power(2.*pi*x*np.exp(-B[2]), B[3]) | |
phi = np.arctan2((omega*stheta), (1.0 + omega*ctheta)) | |
r = (B[0] - B[1]) * np.power(np.sqrt(np.power(1.0 + omega*ctheta, 2) + | |
np.power(omega*stheta, 2)), -B[4]) | |
ret = np.vstack([B[1] + r*np.cos(B[4]*phi), | |
r*np.sin(B[4]*phi)]) | |
return ret | |
def test_multi(self): | |
multi_mod = Model( | |
self.multi_fcn, | |
meta=dict(name='Sample Multi-Response Model', | |
ref='ODRPACK UG, pg. 56'), | |
) | |
multi_x = np.array([30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0, | |
700.0, 1000.0, 1500.0, 2000.0, 3000.0, 5000.0, 7000.0, 10000.0, | |
15000.0, 20000.0, 30000.0, 50000.0, 70000.0, 100000.0, 150000.0]) | |
multi_y = np.array([ | |
[4.22, 4.167, 4.132, 4.038, 4.019, 3.956, 3.884, 3.784, 3.713, | |
3.633, 3.54, 3.433, 3.358, 3.258, 3.193, 3.128, 3.059, 2.984, | |
2.934, 2.876, 2.838, 2.798, 2.759], | |
[0.136, 0.167, 0.188, 0.212, 0.236, 0.257, 0.276, 0.297, 0.309, | |
0.311, 0.314, 0.311, 0.305, 0.289, 0.277, 0.255, 0.24, 0.218, | |
0.202, 0.182, 0.168, 0.153, 0.139], | |
]) | |
n = len(multi_x) | |
multi_we = np.zeros((2, 2, n), dtype=float) | |
multi_ifixx = np.ones(n, dtype=int) | |
multi_delta = np.zeros(n, dtype=float) | |
multi_we[0,0,:] = 559.6 | |
multi_we[1,0,:] = multi_we[0,1,:] = -1634.0 | |
multi_we[1,1,:] = 8397.0 | |
for i in range(n): | |
if multi_x[i] < 100.0: | |
multi_ifixx[i] = 0 | |
elif multi_x[i] <= 150.0: | |
pass # defaults are fine | |
elif multi_x[i] <= 1000.0: | |
multi_delta[i] = 25.0 | |
elif multi_x[i] <= 10000.0: | |
multi_delta[i] = 560.0 | |
elif multi_x[i] <= 100000.0: | |
multi_delta[i] = 9500.0 | |
else: | |
multi_delta[i] = 144000.0 | |
if multi_x[i] == 100.0 or multi_x[i] == 150.0: | |
multi_we[:,:,i] = 0.0 | |
multi_dat = Data(multi_x, multi_y, wd=1e-4/np.power(multi_x, 2), | |
we=multi_we) | |
multi_odr = ODR(multi_dat, multi_mod, beta0=[4.,2.,7.,.4,.5], | |
delta0=multi_delta, ifixx=multi_ifixx) | |
multi_odr.set_job(deriv=1, del_init=1) | |
out = multi_odr.run() | |
assert_array_almost_equal( | |
out.beta, | |
np.array([4.3799880305938963, 2.4333057577497703, 8.0028845899503978, | |
0.5101147161764654, 0.5173902330489161]), | |
) | |
assert_array_almost_equal( | |
out.sd_beta, | |
np.array([0.0130625231081944, 0.0130499785273277, 0.1167085962217757, | |
0.0132642749596149, 0.0288529201353984]), | |
) | |
assert_array_almost_equal( | |
out.cov_beta, | |
np.array([[0.0064918418231375, 0.0036159705923791, 0.0438637051470406, | |
-0.0058700836512467, 0.011281212888768], | |
[0.0036159705923791, 0.0064793789429006, 0.0517610978353126, | |
-0.0051181304940204, 0.0130726943624117], | |
[0.0438637051470406, 0.0517610978353126, 0.5182263323095322, | |
-0.0563083340093696, 0.1269490939468611], | |
[-0.0058700836512467, -0.0051181304940204, -0.0563083340093696, | |
0.0066939246261263, -0.0140184391377962], | |
[0.011281212888768, 0.0130726943624117, 0.1269490939468611, | |
-0.0140184391377962, 0.0316733013820852]]), | |
) | |
# Pearson's Data | |
# K. Pearson, Philosophical Magazine, 2, 559 (1901) | |
def pearson_fcn(self, B, x): | |
return B[0] + B[1]*x | |
def test_pearson(self): | |
p_x = np.array([0.,.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]) | |
p_y = np.array([5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]) | |
p_sx = np.array([.03,.03,.04,.035,.07,.11,.13,.22,.74,1.]) | |
p_sy = np.array([1.,.74,.5,.35,.22,.22,.12,.12,.1,.04]) | |
p_dat = RealData(p_x, p_y, sx=p_sx, sy=p_sy) | |
# Reverse the data to test invariance of results | |
pr_dat = RealData(p_y, p_x, sx=p_sy, sy=p_sx) | |
p_mod = Model(self.pearson_fcn, meta=dict(name='Uni-linear Fit')) | |
p_odr = ODR(p_dat, p_mod, beta0=[1.,1.]) | |
pr_odr = ODR(pr_dat, p_mod, beta0=[1.,1.]) | |
out = p_odr.run() | |
assert_array_almost_equal( | |
out.beta, | |
np.array([5.4767400299231674, -0.4796082367610305]), | |
) | |
assert_array_almost_equal( | |
out.sd_beta, | |
np.array([0.3590121690702467, 0.0706291186037444]), | |
) | |
assert_array_almost_equal( | |
out.cov_beta, | |
np.array([[0.0854275622946333, -0.0161807025443155], | |
[-0.0161807025443155, 0.003306337993922]]), | |
) | |
rout = pr_odr.run() | |
assert_array_almost_equal( | |
rout.beta, | |
np.array([11.4192022410781231, -2.0850374506165474]), | |
) | |
assert_array_almost_equal( | |
rout.sd_beta, | |
np.array([0.9820231665657161, 0.3070515616198911]), | |
) | |
assert_array_almost_equal( | |
rout.cov_beta, | |
np.array([[0.6391799462548782, -0.1955657291119177], | |
[-0.1955657291119177, 0.0624888159223392]]), | |
) | |
# Lorentz Peak | |
# The data is taken from one of the undergraduate physics labs I performed. | |
def lorentz(self, beta, x): | |
return (beta[0]*beta[1]*beta[2] / np.sqrt(np.power(x*x - | |
beta[2]*beta[2], 2.0) + np.power(beta[1]*x, 2.0))) | |
def test_lorentz(self): | |
l_sy = np.array([.29]*18) | |
l_sx = np.array([.000972971,.000948268,.000707632,.000706679, | |
.000706074, .000703918,.000698955,.000456856, | |
.000455207,.000662717,.000654619,.000652694, | |
.000000859202,.00106589,.00106378,.00125483, .00140818,.00241839]) | |
l_dat = RealData( | |
[3.9094, 3.85945, 3.84976, 3.84716, 3.84551, 3.83964, 3.82608, | |
3.78847, 3.78163, 3.72558, 3.70274, 3.6973, 3.67373, 3.65982, | |
3.6562, 3.62498, 3.55525, 3.41886], | |
[652, 910.5, 984, 1000, 1007.5, 1053, 1160.5, 1409.5, 1430, 1122, | |
957.5, 920, 777.5, 709.5, 698, 578.5, 418.5, 275.5], | |
sx=l_sx, | |
sy=l_sy, | |
) | |
l_mod = Model(self.lorentz, meta=dict(name='Lorentz Peak')) | |
l_odr = ODR(l_dat, l_mod, beta0=(1000., .1, 3.8)) | |
out = l_odr.run() | |
assert_array_almost_equal( | |
out.beta, | |
np.array([1.4306780846149925e+03, 1.3390509034538309e-01, | |
3.7798193600109009e+00]), | |
) | |
assert_array_almost_equal( | |
out.sd_beta, | |
np.array([7.3621186811330963e-01, 3.5068899941471650e-04, | |
2.4451209281408992e-04]), | |
) | |
assert_array_almost_equal( | |
out.cov_beta, | |
np.array([[2.4714409064597873e-01, -6.9067261911110836e-05, | |
-3.1236953270424990e-05], | |
[-6.9067261911110836e-05, 5.6077531517333009e-08, | |
3.6133261832722601e-08], | |
[-3.1236953270424990e-05, 3.6133261832722601e-08, | |
2.7261220025171730e-08]]), | |
) | |
def test_ticket_1253(self): | |
def linear(c, x): | |
return c[0]*x+c[1] | |
c = [2.0, 3.0] | |
x = np.linspace(0, 10) | |
y = linear(c, x) | |
model = Model(linear) | |
data = Data(x, y, wd=1.0, we=1.0) | |
job = ODR(data, model, beta0=[1.0, 1.0]) | |
result = job.run() | |
assert_equal(result.info, 2) | |
# Verify fix for gh-9140 | |
def test_ifixx(self): | |
x1 = [-2.01, -0.99, -0.001, 1.02, 1.98] | |
x2 = [3.98, 1.01, 0.001, 0.998, 4.01] | |
fix = np.vstack((np.zeros_like(x1, dtype=int), np.ones_like(x2, dtype=int))) | |
data = Data(np.vstack((x1, x2)), y=1, fix=fix) | |
model = Model(lambda beta, x: x[1, :] - beta[0] * x[0, :]**2., implicit=True) | |
odr1 = ODR(data, model, beta0=np.array([1.])) | |
sol1 = odr1.run() | |
odr2 = ODR(data, model, beta0=np.array([1.]), ifixx=fix) | |
sol2 = odr2.run() | |
assert_equal(sol1.beta, sol2.beta) | |
# verify bugfix for #11800 in #11802 | |
def test_ticket_11800(self): | |
# parameters | |
beta_true = np.array([1.0, 2.3, 1.1, -1.0, 1.3, 0.5]) | |
nr_measurements = 10 | |
std_dev_x = 0.01 | |
x_error = np.array([[0.00063445, 0.00515731, 0.00162719, 0.01022866, | |
-0.01624845, 0.00482652, 0.00275988, -0.00714734, -0.00929201, -0.00687301], | |
[-0.00831623, -0.00821211, -0.00203459, 0.00938266, -0.00701829, | |
0.0032169, 0.00259194, -0.00581017, -0.0030283, 0.01014164]]) | |
std_dev_y = 0.05 | |
y_error = np.array([[0.05275304, 0.04519563, -0.07524086, 0.03575642, | |
0.04745194, 0.03806645, 0.07061601, -0.00753604, -0.02592543, -0.02394929], | |
[0.03632366, 0.06642266, 0.08373122, 0.03988822, -0.0092536, | |
-0.03750469, -0.03198903, 0.01642066, 0.01293648, -0.05627085]]) | |
beta_solution = np.array([ | |
2.62920235756665876536e+00, -1.26608484996299608838e+02, | |
1.29703572775403074502e+02, -1.88560985401185465804e+00, | |
7.83834160771274923718e+01, -7.64124076838087091801e+01]) | |
# model's function and Jacobians | |
def func(beta, x): | |
y0 = beta[0] + beta[1] * x[0, :] + beta[2] * x[1, :] | |
y1 = beta[3] + beta[4] * x[0, :] + beta[5] * x[1, :] | |
return np.vstack((y0, y1)) | |
def df_dbeta_odr(beta, x): | |
nr_meas = np.shape(x)[1] | |
zeros = np.zeros(nr_meas) | |
ones = np.ones(nr_meas) | |
dy0 = np.array([ones, x[0, :], x[1, :], zeros, zeros, zeros]) | |
dy1 = np.array([zeros, zeros, zeros, ones, x[0, :], x[1, :]]) | |
return np.stack((dy0, dy1)) | |
def df_dx_odr(beta, x): | |
nr_meas = np.shape(x)[1] | |
ones = np.ones(nr_meas) | |
dy0 = np.array([beta[1] * ones, beta[2] * ones]) | |
dy1 = np.array([beta[4] * ones, beta[5] * ones]) | |
return np.stack((dy0, dy1)) | |
# do measurements with errors in independent and dependent variables | |
x0_true = np.linspace(1, 10, nr_measurements) | |
x1_true = np.linspace(1, 10, nr_measurements) | |
x_true = np.array([x0_true, x1_true]) | |
y_true = func(beta_true, x_true) | |
x_meas = x_true + x_error | |
y_meas = y_true + y_error | |
# estimate model's parameters | |
model_f = Model(func, fjacb=df_dbeta_odr, fjacd=df_dx_odr) | |
data = RealData(x_meas, y_meas, sx=std_dev_x, sy=std_dev_y) | |
odr_obj = ODR(data, model_f, beta0=0.9 * beta_true, maxit=100) | |
#odr_obj.set_iprint(init=2, iter=0, iter_step=1, final=1) | |
odr_obj.set_job(deriv=3) | |
odr_out = odr_obj.run() | |
# check results | |
assert_equal(odr_out.info, 1) | |
assert_array_almost_equal(odr_out.beta, beta_solution) | |
def test_multilinear_model(self): | |
x = np.linspace(0.0, 5.0) | |
y = 10.0 + 5.0 * x | |
data = Data(x, y) | |
odr_obj = ODR(data, multilinear) | |
output = odr_obj.run() | |
assert_array_almost_equal(output.beta, [10.0, 5.0]) | |
def test_exponential_model(self): | |
x = np.linspace(0.0, 5.0) | |
y = -10.0 + np.exp(0.5*x) | |
data = Data(x, y) | |
odr_obj = ODR(data, exponential) | |
output = odr_obj.run() | |
assert_array_almost_equal(output.beta, [-10.0, 0.5]) | |
def test_polynomial_model(self): | |
x = np.linspace(0.0, 5.0) | |
y = 1.0 + 2.0 * x + 3.0 * x ** 2 + 4.0 * x ** 3 | |
poly_model = polynomial(3) | |
data = Data(x, y) | |
odr_obj = ODR(data, poly_model) | |
output = odr_obj.run() | |
assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0, 4.0]) | |
def test_unilinear_model(self): | |
x = np.linspace(0.0, 5.0) | |
y = 1.0 * x + 2.0 | |
data = Data(x, y) | |
odr_obj = ODR(data, unilinear) | |
output = odr_obj.run() | |
assert_array_almost_equal(output.beta, [1.0, 2.0]) | |
def test_quadratic_model(self): | |
x = np.linspace(0.0, 5.0) | |
y = 1.0 * x ** 2 + 2.0 * x + 3.0 | |
data = Data(x, y) | |
odr_obj = ODR(data, quadratic) | |
output = odr_obj.run() | |
assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0]) | |
def test_work_ind(self): | |
def func(par, x): | |
b0, b1 = par | |
return b0 + b1 * x | |
# generate some data | |
n_data = 4 | |
x = np.arange(n_data) | |
y = np.where(x % 2, x + 0.1, x - 0.1) | |
x_err = np.full(n_data, 0.1) | |
y_err = np.full(n_data, 0.1) | |
# do the fitting | |
linear_model = Model(func) | |
real_data = RealData(x, y, sx=x_err, sy=y_err) | |
odr_obj = ODR(real_data, linear_model, beta0=[0.4, 0.4]) | |
odr_obj.set_job(fit_type=0) | |
out = odr_obj.run() | |
sd_ind = out.work_ind['sd'] | |
assert_array_almost_equal(out.sd_beta, | |
out.work[sd_ind:sd_ind + len(out.sd_beta)]) | |
def test_output_file_overwrite(self): | |
""" | |
Verify fix for gh-1892 | |
""" | |
def func(b, x): | |
return b[0] + b[1] * x | |
p = Model(func) | |
data = Data(np.arange(10), 12 * np.arange(10)) | |
tmp_dir = tempfile.mkdtemp() | |
error_file_path = os.path.join(tmp_dir, "error.dat") | |
report_file_path = os.path.join(tmp_dir, "report.dat") | |
try: | |
ODR(data, p, beta0=[0.1, 13], errfile=error_file_path, | |
rptfile=report_file_path).run() | |
ODR(data, p, beta0=[0.1, 13], errfile=error_file_path, | |
rptfile=report_file_path, overwrite=True).run() | |
finally: | |
# remove output files for clean up | |
shutil.rmtree(tmp_dir) | |
def test_odr_model_default_meta(self): | |
def func(b, x): | |
return b[0] + b[1] * x | |
p = Model(func) | |
p.set_meta(name='Sample Model Meta', ref='ODRPACK') | |
assert_equal(p.meta, {'name': 'Sample Model Meta', 'ref': 'ODRPACK'}) | |
def test_work_array_del_init(self): | |
""" | |
Verify fix for gh-18739 where del_init=1 fails. | |
""" | |
def func(b, x): | |
return b[0] + b[1] * x | |
# generate some data | |
n_data = 4 | |
x = np.arange(n_data) | |
y = np.where(x % 2, x + 0.1, x - 0.1) | |
x_err = np.full(n_data, 0.1) | |
y_err = np.full(n_data, 0.1) | |
linear_model = Model(func) | |
# Try various shapes of the `we` array from various `sy` and `covy` | |
rd0 = RealData(x, y, sx=x_err, sy=y_err) | |
rd1 = RealData(x, y, sx=x_err, sy=0.1) | |
rd2 = RealData(x, y, sx=x_err, sy=[0.1]) | |
rd3 = RealData(x, y, sx=x_err, sy=np.full((1, n_data), 0.1)) | |
rd4 = RealData(x, y, sx=x_err, covy=[[0.01]]) | |
rd5 = RealData(x, y, sx=x_err, covy=np.full((1, 1, n_data), 0.01)) | |
for rd in [rd0, rd1, rd2, rd3, rd4, rd5]: | |
odr_obj = ODR(rd, linear_model, beta0=[0.4, 0.4], | |
delta0=np.full(n_data, -0.1)) | |
odr_obj.set_job(fit_type=0, del_init=1) | |
# Just make sure that it runs without raising an exception. | |
odr_obj.run() | |