peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/_plotutils.py
import numpy as np | |
from scipy._lib.decorator import decorator as _decorator | |
__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] | |
def _held_figure(func, obj, ax=None, **kw): | |
import matplotlib.pyplot as plt | |
if ax is None: | |
fig = plt.figure() | |
ax = fig.gca() | |
return func(obj, ax=ax, **kw) | |
# As of matplotlib 2.0, the "hold" mechanism is deprecated. | |
# When matplotlib 1.x is no longer supported, this check can be removed. | |
was_held = getattr(ax, 'ishold', lambda: True)() | |
if was_held: | |
return func(obj, ax=ax, **kw) | |
try: | |
ax.hold(True) | |
return func(obj, ax=ax, **kw) | |
finally: | |
ax.hold(was_held) | |
def _adjust_bounds(ax, points): | |
margin = 0.1 * np.ptp(points, axis=0) | |
xy_min = points.min(axis=0) - margin | |
xy_max = points.max(axis=0) + margin | |
ax.set_xlim(xy_min[0], xy_max[0]) | |
ax.set_ylim(xy_min[1], xy_max[1]) | |
def delaunay_plot_2d(tri, ax=None): | |
""" | |
Plot the given Delaunay triangulation in 2-D | |
Parameters | |
---------- | |
tri : scipy.spatial.Delaunay instance | |
Triangulation to plot | |
ax : matplotlib.axes.Axes instance, optional | |
Axes to plot on | |
Returns | |
------- | |
fig : matplotlib.figure.Figure instance | |
Figure for the plot | |
See Also | |
-------- | |
Delaunay | |
matplotlib.pyplot.triplot | |
Notes | |
----- | |
Requires Matplotlib. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.spatial import Delaunay, delaunay_plot_2d | |
The Delaunay triangulation of a set of random points: | |
>>> rng = np.random.default_rng() | |
>>> points = rng.random((30, 2)) | |
>>> tri = Delaunay(points) | |
Plot it: | |
>>> _ = delaunay_plot_2d(tri) | |
>>> plt.show() | |
""" | |
if tri.points.shape[1] != 2: | |
raise ValueError("Delaunay triangulation is not 2-D") | |
x, y = tri.points.T | |
ax.plot(x, y, 'o') | |
ax.triplot(x, y, tri.simplices.copy()) | |
_adjust_bounds(ax, tri.points) | |
return ax.figure | |
def convex_hull_plot_2d(hull, ax=None): | |
""" | |
Plot the given convex hull diagram in 2-D | |
Parameters | |
---------- | |
hull : scipy.spatial.ConvexHull instance | |
Convex hull to plot | |
ax : matplotlib.axes.Axes instance, optional | |
Axes to plot on | |
Returns | |
------- | |
fig : matplotlib.figure.Figure instance | |
Figure for the plot | |
See Also | |
-------- | |
ConvexHull | |
Notes | |
----- | |
Requires Matplotlib. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d | |
The convex hull of a random set of points: | |
>>> rng = np.random.default_rng() | |
>>> points = rng.random((30, 2)) | |
>>> hull = ConvexHull(points) | |
Plot it: | |
>>> _ = convex_hull_plot_2d(hull) | |
>>> plt.show() | |
""" | |
from matplotlib.collections import LineCollection | |
if hull.points.shape[1] != 2: | |
raise ValueError("Convex hull is not 2-D") | |
ax.plot(hull.points[:, 0], hull.points[:, 1], 'o') | |
line_segments = [hull.points[simplex] for simplex in hull.simplices] | |
ax.add_collection(LineCollection(line_segments, | |
colors='k', | |
linestyle='solid')) | |
_adjust_bounds(ax, hull.points) | |
return ax.figure | |
def voronoi_plot_2d(vor, ax=None, **kw): | |
""" | |
Plot the given Voronoi diagram in 2-D | |
Parameters | |
---------- | |
vor : scipy.spatial.Voronoi instance | |
Diagram to plot | |
ax : matplotlib.axes.Axes instance, optional | |
Axes to plot on | |
show_points : bool, optional | |
Add the Voronoi points to the plot. | |
show_vertices : bool, optional | |
Add the Voronoi vertices to the plot. | |
line_colors : string, optional | |
Specifies the line color for polygon boundaries | |
line_width : float, optional | |
Specifies the line width for polygon boundaries | |
line_alpha : float, optional | |
Specifies the line alpha for polygon boundaries | |
point_size : float, optional | |
Specifies the size of points | |
Returns | |
------- | |
fig : matplotlib.figure.Figure instance | |
Figure for the plot | |
See Also | |
-------- | |
Voronoi | |
Notes | |
----- | |
Requires Matplotlib. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy.spatial import Voronoi, voronoi_plot_2d | |
Create a set of points for the example: | |
>>> rng = np.random.default_rng() | |
>>> points = rng.random((10,2)) | |
Generate the Voronoi diagram for the points: | |
>>> vor = Voronoi(points) | |
Use `voronoi_plot_2d` to plot the diagram: | |
>>> fig = voronoi_plot_2d(vor) | |
Use `voronoi_plot_2d` to plot the diagram again, with some settings | |
customized: | |
>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange', | |
... line_width=2, line_alpha=0.6, point_size=2) | |
>>> plt.show() | |
""" | |
from matplotlib.collections import LineCollection | |
if vor.points.shape[1] != 2: | |
raise ValueError("Voronoi diagram is not 2-D") | |
if kw.get('show_points', True): | |
point_size = kw.get('point_size', None) | |
ax.plot(vor.points[:, 0], vor.points[:, 1], '.', markersize=point_size) | |
if kw.get('show_vertices', True): | |
ax.plot(vor.vertices[:, 0], vor.vertices[:, 1], 'o') | |
line_colors = kw.get('line_colors', 'k') | |
line_width = kw.get('line_width', 1.0) | |
line_alpha = kw.get('line_alpha', 1.0) | |
center = vor.points.mean(axis=0) | |
ptp_bound = np.ptp(vor.points, axis=0) | |
finite_segments = [] | |
infinite_segments = [] | |
for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): | |
simplex = np.asarray(simplex) | |
if np.all(simplex >= 0): | |
finite_segments.append(vor.vertices[simplex]) | |
else: | |
i = simplex[simplex >= 0][0] # finite end Voronoi vertex | |
t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent | |
t /= np.linalg.norm(t) | |
n = np.array([-t[1], t[0]]) # normal | |
midpoint = vor.points[pointidx].mean(axis=0) | |
direction = np.sign(np.dot(midpoint - center, n)) * n | |
if (vor.furthest_site): | |
direction = -direction | |
aspect_factor = abs(ptp_bound.max() / ptp_bound.min()) | |
far_point = vor.vertices[i] + direction * ptp_bound.max() * aspect_factor | |
infinite_segments.append([vor.vertices[i], far_point]) | |
ax.add_collection(LineCollection(finite_segments, | |
colors=line_colors, | |
lw=line_width, | |
alpha=line_alpha, | |
linestyle='solid')) | |
ax.add_collection(LineCollection(infinite_segments, | |
colors=line_colors, | |
lw=line_width, | |
alpha=line_alpha, | |
linestyle='dashed')) | |
_adjust_bounds(ax, vor.points) | |
return ax.figure | |