peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/distance.py
""" | |
Distance computations (:mod:`scipy.spatial.distance`) | |
===================================================== | |
.. sectionauthor:: Damian Eads | |
Function reference | |
------------------ | |
Distance matrix computation from a collection of raw observation vectors | |
stored in a rectangular array. | |
.. autosummary:: | |
:toctree: generated/ | |
pdist -- pairwise distances between observation vectors. | |
cdist -- distances between two collections of observation vectors | |
squareform -- convert distance matrix to a condensed one and vice versa | |
directed_hausdorff -- directed Hausdorff distance between arrays | |
Predicates for checking the validity of distance matrices, both | |
condensed and redundant. Also contained in this module are functions | |
for computing the number of observations in a distance matrix. | |
.. autosummary:: | |
:toctree: generated/ | |
is_valid_dm -- checks for a valid distance matrix | |
is_valid_y -- checks for a valid condensed distance matrix | |
num_obs_dm -- # of observations in a distance matrix | |
num_obs_y -- # of observations in a condensed distance matrix | |
Distance functions between two numeric vectors ``u`` and ``v``. Computing | |
distances over a large collection of vectors is inefficient for these | |
functions. Use ``pdist`` for this purpose. | |
.. autosummary:: | |
:toctree: generated/ | |
braycurtis -- the Bray-Curtis distance. | |
canberra -- the Canberra distance. | |
chebyshev -- the Chebyshev distance. | |
cityblock -- the Manhattan distance. | |
correlation -- the Correlation distance. | |
cosine -- the Cosine distance. | |
euclidean -- the Euclidean distance. | |
jensenshannon -- the Jensen-Shannon distance. | |
mahalanobis -- the Mahalanobis distance. | |
minkowski -- the Minkowski distance. | |
seuclidean -- the normalized Euclidean distance. | |
sqeuclidean -- the squared Euclidean distance. | |
Distance functions between two boolean vectors (representing sets) ``u`` and | |
``v``. As in the case of numerical vectors, ``pdist`` is more efficient for | |
computing the distances between all pairs. | |
.. autosummary:: | |
:toctree: generated/ | |
dice -- the Dice dissimilarity. | |
hamming -- the Hamming distance. | |
jaccard -- the Jaccard distance. | |
kulczynski1 -- the Kulczynski 1 distance. | |
rogerstanimoto -- the Rogers-Tanimoto dissimilarity. | |
russellrao -- the Russell-Rao dissimilarity. | |
sokalmichener -- the Sokal-Michener dissimilarity. | |
sokalsneath -- the Sokal-Sneath dissimilarity. | |
yule -- the Yule dissimilarity. | |
:func:`hamming` also operates over discrete numerical vectors. | |
""" | |
# Copyright (C) Damian Eads, 2007-2008. New BSD License. | |
__all__ = [ | |
'braycurtis', | |
'canberra', | |
'cdist', | |
'chebyshev', | |
'cityblock', | |
'correlation', | |
'cosine', | |
'dice', | |
'directed_hausdorff', | |
'euclidean', | |
'hamming', | |
'is_valid_dm', | |
'is_valid_y', | |
'jaccard', | |
'jensenshannon', | |
'kulczynski1', | |
'mahalanobis', | |
'minkowski', | |
'num_obs_dm', | |
'num_obs_y', | |
'pdist', | |
'rogerstanimoto', | |
'russellrao', | |
'seuclidean', | |
'sokalmichener', | |
'sokalsneath', | |
'sqeuclidean', | |
'squareform', | |
'yule' | |
] | |
import math | |
import warnings | |
import numpy as np | |
import dataclasses | |
from typing import Optional, Callable | |
from functools import partial | |
from scipy._lib._util import _asarray_validated | |
from . import _distance_wrap | |
from . import _hausdorff | |
from ..linalg import norm | |
from ..special import rel_entr | |
from . import _distance_pybind | |
def _copy_array_if_base_present(a): | |
"""Copy the array if its base points to a parent array.""" | |
if a.base is not None: | |
return a.copy() | |
return a | |
def _correlation_cdist_wrap(XA, XB, dm, **kwargs): | |
XA = XA - XA.mean(axis=1, keepdims=True) | |
XB = XB - XB.mean(axis=1, keepdims=True) | |
_distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs) | |
def _correlation_pdist_wrap(X, dm, **kwargs): | |
X2 = X - X.mean(axis=1, keepdims=True) | |
_distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs) | |
def _convert_to_type(X, out_type): | |
return np.ascontiguousarray(X, dtype=out_type) | |
def _nbool_correspond_all(u, v, w=None): | |
if u.dtype == v.dtype == bool and w is None: | |
not_u = ~u | |
not_v = ~v | |
nff = (not_u & not_v).sum() | |
nft = (not_u & v).sum() | |
ntf = (u & not_v).sum() | |
ntt = (u & v).sum() | |
else: | |
dtype = np.result_type(int, u.dtype, v.dtype) | |
u = u.astype(dtype) | |
v = v.astype(dtype) | |
not_u = 1.0 - u | |
not_v = 1.0 - v | |
if w is not None: | |
not_u = w * not_u | |
u = w * u | |
nff = (not_u * not_v).sum() | |
nft = (not_u * v).sum() | |
ntf = (u * not_v).sum() | |
ntt = (u * v).sum() | |
return (nff, nft, ntf, ntt) | |
def _nbool_correspond_ft_tf(u, v, w=None): | |
if u.dtype == v.dtype == bool and w is None: | |
not_u = ~u | |
not_v = ~v | |
nft = (not_u & v).sum() | |
ntf = (u & not_v).sum() | |
else: | |
dtype = np.result_type(int, u.dtype, v.dtype) | |
u = u.astype(dtype) | |
v = v.astype(dtype) | |
not_u = 1.0 - u | |
not_v = 1.0 - v | |
if w is not None: | |
not_u = w * not_u | |
u = w * u | |
nft = (not_u * v).sum() | |
ntf = (u * not_v).sum() | |
return (nft, ntf) | |
def _validate_cdist_input(XA, XB, mA, mB, n, metric_info, **kwargs): | |
# get supported types | |
types = metric_info.types | |
# choose best type | |
typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0] | |
# validate data | |
XA = _convert_to_type(XA, out_type=typ) | |
XB = _convert_to_type(XB, out_type=typ) | |
# validate kwargs | |
_validate_kwargs = metric_info.validator | |
if _validate_kwargs: | |
kwargs = _validate_kwargs((XA, XB), mA + mB, n, **kwargs) | |
return XA, XB, typ, kwargs | |
def _validate_weight_with_size(X, m, n, **kwargs): | |
w = kwargs.pop('w', None) | |
if w is None: | |
return kwargs | |
if w.ndim != 1 or w.shape[0] != n: | |
raise ValueError("Weights must have same size as input vector. " | |
f"{w.shape[0]} vs. {n}") | |
kwargs['w'] = _validate_weights(w) | |
return kwargs | |
def _validate_hamming_kwargs(X, m, n, **kwargs): | |
w = kwargs.get('w', np.ones((n,), dtype='double')) | |
if w.ndim != 1 or w.shape[0] != n: | |
raise ValueError( | |
"Weights must have same size as input vector. %d vs. %d" % (w.shape[0], n) | |
) | |
kwargs['w'] = _validate_weights(w) | |
return kwargs | |
def _validate_mahalanobis_kwargs(X, m, n, **kwargs): | |
VI = kwargs.pop('VI', None) | |
if VI is None: | |
if m <= n: | |
# There are fewer observations than the dimension of | |
# the observations. | |
raise ValueError("The number of observations (%d) is too " | |
"small; the covariance matrix is " | |
"singular. For observations with %d " | |
"dimensions, at least %d observations " | |
"are required." % (m, n, n + 1)) | |
if isinstance(X, tuple): | |
X = np.vstack(X) | |
CV = np.atleast_2d(np.cov(X.astype(np.float64, copy=False).T)) | |
VI = np.linalg.inv(CV).T.copy() | |
kwargs["VI"] = _convert_to_double(VI) | |
return kwargs | |
def _validate_minkowski_kwargs(X, m, n, **kwargs): | |
kwargs = _validate_weight_with_size(X, m, n, **kwargs) | |
if 'p' not in kwargs: | |
kwargs['p'] = 2. | |
else: | |
if kwargs['p'] <= 0: | |
raise ValueError("p must be greater than 0") | |
return kwargs | |
def _validate_pdist_input(X, m, n, metric_info, **kwargs): | |
# get supported types | |
types = metric_info.types | |
# choose best type | |
typ = types[types.index(X.dtype)] if X.dtype in types else types[0] | |
# validate data | |
X = _convert_to_type(X, out_type=typ) | |
# validate kwargs | |
_validate_kwargs = metric_info.validator | |
if _validate_kwargs: | |
kwargs = _validate_kwargs(X, m, n, **kwargs) | |
return X, typ, kwargs | |
def _validate_seuclidean_kwargs(X, m, n, **kwargs): | |
V = kwargs.pop('V', None) | |
if V is None: | |
if isinstance(X, tuple): | |
X = np.vstack(X) | |
V = np.var(X.astype(np.float64, copy=False), axis=0, ddof=1) | |
else: | |
V = np.asarray(V, order='c') | |
if len(V.shape) != 1: | |
raise ValueError('Variance vector V must ' | |
'be one-dimensional.') | |
if V.shape[0] != n: | |
raise ValueError('Variance vector V must be of the same ' | |
'dimension as the vectors on which the distances ' | |
'are computed.') | |
kwargs['V'] = _convert_to_double(V) | |
return kwargs | |
def _validate_vector(u, dtype=None): | |
# XXX Is order='c' really necessary? | |
u = np.asarray(u, dtype=dtype, order='c') | |
if u.ndim == 1: | |
return u | |
raise ValueError("Input vector should be 1-D.") | |
def _validate_weights(w, dtype=np.float64): | |
w = _validate_vector(w, dtype=dtype) | |
if np.any(w < 0): | |
raise ValueError("Input weights should be all non-negative") | |
return w | |
def directed_hausdorff(u, v, seed=0): | |
""" | |
Compute the directed Hausdorff distance between two 2-D arrays. | |
Distances between pairs are calculated using a Euclidean metric. | |
Parameters | |
---------- | |
u : (M,N) array_like | |
Input array with M points in N dimensions. | |
v : (O,N) array_like | |
Input array with O points in N dimensions. | |
seed : int or None, optional | |
Local `numpy.random.RandomState` seed. Default is 0, a random | |
shuffling of u and v that guarantees reproducibility. | |
Returns | |
------- | |
d : double | |
The directed Hausdorff distance between arrays `u` and `v`, | |
index_1 : int | |
index of point contributing to Hausdorff pair in `u` | |
index_2 : int | |
index of point contributing to Hausdorff pair in `v` | |
Raises | |
------ | |
ValueError | |
An exception is thrown if `u` and `v` do not have | |
the same number of columns. | |
See Also | |
-------- | |
scipy.spatial.procrustes : Another similarity test for two data sets | |
Notes | |
----- | |
Uses the early break technique and the random sampling approach | |
described by [1]_. Although worst-case performance is ``O(m * o)`` | |
(as with the brute force algorithm), this is unlikely in practice | |
as the input data would have to require the algorithm to explore | |
every single point interaction, and after the algorithm shuffles | |
the input points at that. The best case performance is O(m), which | |
is satisfied by selecting an inner loop distance that is less than | |
cmax and leads to an early break as often as possible. The authors | |
have formally shown that the average runtime is closer to O(m). | |
.. versionadded:: 0.19.0 | |
References | |
---------- | |
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for | |
calculating the exact Hausdorff distance." IEEE Transactions On | |
Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63, | |
2015. | |
Examples | |
-------- | |
Find the directed Hausdorff distance between two 2-D arrays of | |
coordinates: | |
>>> from scipy.spatial.distance import directed_hausdorff | |
>>> import numpy as np | |
>>> u = np.array([(1.0, 0.0), | |
... (0.0, 1.0), | |
... (-1.0, 0.0), | |
... (0.0, -1.0)]) | |
>>> v = np.array([(2.0, 0.0), | |
... (0.0, 2.0), | |
... (-2.0, 0.0), | |
... (0.0, -4.0)]) | |
>>> directed_hausdorff(u, v)[0] | |
2.23606797749979 | |
>>> directed_hausdorff(v, u)[0] | |
3.0 | |
Find the general (symmetric) Hausdorff distance between two 2-D | |
arrays of coordinates: | |
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0]) | |
3.0 | |
Find the indices of the points that generate the Hausdorff distance | |
(the Hausdorff pair): | |
>>> directed_hausdorff(v, u)[1:] | |
(3, 3) | |
""" | |
u = np.asarray(u, dtype=np.float64, order='c') | |
v = np.asarray(v, dtype=np.float64, order='c') | |
if u.shape[1] != v.shape[1]: | |
raise ValueError('u and v need to have the same ' | |
'number of columns') | |
result = _hausdorff.directed_hausdorff(u, v, seed) | |
return result | |
def minkowski(u, v, p=2, w=None): | |
""" | |
Compute the Minkowski distance between two 1-D arrays. | |
The Minkowski distance between 1-D arrays `u` and `v`, | |
is defined as | |
.. math:: | |
{\\|u-v\\|}_p = (\\sum{|u_i - v_i|^p})^{1/p}. | |
\\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
p : scalar | |
The order of the norm of the difference :math:`{\\|u-v\\|}_p`. Note | |
that for :math:`0 < p < 1`, the triangle inequality only holds with | |
an additional multiplicative factor, i.e. it is only a quasi-metric. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
minkowski : double | |
The Minkowski distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1) | |
2.0 | |
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2) | |
1.4142135623730951 | |
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3) | |
1.2599210498948732 | |
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1) | |
1.0 | |
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2) | |
1.0 | |
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3) | |
1.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if p <= 0: | |
raise ValueError("p must be greater than 0") | |
u_v = u - v | |
if w is not None: | |
w = _validate_weights(w) | |
if p == 1: | |
root_w = w | |
elif p == 2: | |
# better precision and speed | |
root_w = np.sqrt(w) | |
elif p == np.inf: | |
root_w = (w != 0) | |
else: | |
root_w = np.power(w, 1/p) | |
u_v = root_w * u_v | |
dist = norm(u_v, ord=p) | |
return dist | |
def euclidean(u, v, w=None): | |
""" | |
Computes the Euclidean distance between two 1-D arrays. | |
The Euclidean distance between 1-D arrays `u` and `v`, is defined as | |
.. math:: | |
{\\|u-v\\|}_2 | |
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2} | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
euclidean : double | |
The Euclidean distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.euclidean([1, 0, 0], [0, 1, 0]) | |
1.4142135623730951 | |
>>> distance.euclidean([1, 1, 0], [0, 1, 0]) | |
1.0 | |
""" | |
return minkowski(u, v, p=2, w=w) | |
def sqeuclidean(u, v, w=None): | |
""" | |
Compute the squared Euclidean distance between two 1-D arrays. | |
The squared Euclidean distance between `u` and `v` is defined as | |
.. math:: | |
\\sum_i{w_i |u_i - v_i|^2} | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
sqeuclidean : double | |
The squared Euclidean distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0]) | |
2.0 | |
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0]) | |
1.0 | |
""" | |
# Preserve float dtypes, but convert everything else to np.float64 | |
# for stability. | |
utype, vtype = None, None | |
if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)): | |
utype = np.float64 | |
if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)): | |
vtype = np.float64 | |
u = _validate_vector(u, dtype=utype) | |
v = _validate_vector(v, dtype=vtype) | |
u_v = u - v | |
u_v_w = u_v # only want weights applied once | |
if w is not None: | |
w = _validate_weights(w) | |
u_v_w = w * u_v | |
return np.dot(u_v, u_v_w) | |
def correlation(u, v, w=None, centered=True): | |
""" | |
Compute the correlation distance between two 1-D arrays. | |
The correlation distance between `u` and `v`, is | |
defined as | |
.. math:: | |
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} | |
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} | |
where :math:`\\bar{u}` is the mean of the elements of `u` | |
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
centered : bool, optional | |
If True, `u` and `v` will be centered. Default is True. | |
Returns | |
------- | |
correlation : double | |
The correlation distance between 1-D array `u` and `v`. | |
Examples | |
-------- | |
Find the correlation between two arrays. | |
>>> from scipy.spatial.distance import correlation | |
>>> correlation([1, 0, 1], [1, 1, 0]) | |
1.5 | |
Using a weighting array, the correlation can be calculated as: | |
>>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1]) | |
1.1 | |
If centering is not needed, the correlation can be calculated as: | |
>>> correlation([1, 0, 1], [1, 1, 0], centered=False) | |
0.5 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
w = w / w.sum() | |
if centered: | |
if w is not None: | |
umu = np.dot(u, w) | |
vmu = np.dot(v, w) | |
else: | |
umu = np.mean(u) | |
vmu = np.mean(v) | |
u = u - umu | |
v = v - vmu | |
if w is not None: | |
vw = v * w | |
uw = u * w | |
else: | |
vw, uw = v, u | |
uv = np.dot(u, vw) | |
uu = np.dot(u, uw) | |
vv = np.dot(v, vw) | |
dist = 1.0 - uv / math.sqrt(uu * vv) | |
# Clip the result to avoid rounding error | |
return np.clip(dist, 0.0, 2.0) | |
def cosine(u, v, w=None): | |
""" | |
Compute the Cosine distance between 1-D arrays. | |
The Cosine distance between `u` and `v`, is defined as | |
.. math:: | |
1 - \\frac{u \\cdot v} | |
{\\|u\\|_2 \\|v\\|_2}. | |
where :math:`u \\cdot v` is the dot product of :math:`u` and | |
:math:`v`. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
cosine : double | |
The Cosine distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.cosine([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.cosine([100, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.cosine([1, 1, 0], [0, 1, 0]) | |
0.29289321881345254 | |
""" | |
# cosine distance is also referred to as 'uncentered correlation', | |
# or 'reflective correlation' | |
return correlation(u, v, w=w, centered=False) | |
def hamming(u, v, w=None): | |
""" | |
Compute the Hamming distance between two 1-D arrays. | |
The Hamming distance between 1-D arrays `u` and `v`, is simply the | |
proportion of disagreeing components in `u` and `v`. If `u` and `v` are | |
boolean vectors, the Hamming distance is | |
.. math:: | |
\\frac{c_{01} + c_{10}}{n} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n`. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
hamming : double | |
The Hamming distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.hamming([1, 0, 0], [0, 1, 0]) | |
0.66666666666666663 | |
>>> distance.hamming([1, 0, 0], [1, 1, 0]) | |
0.33333333333333331 | |
>>> distance.hamming([1, 0, 0], [2, 0, 0]) | |
0.33333333333333331 | |
>>> distance.hamming([1, 0, 0], [3, 0, 0]) | |
0.33333333333333331 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if u.shape != v.shape: | |
raise ValueError('The 1d arrays must have equal lengths.') | |
u_ne_v = u != v | |
if w is not None: | |
w = _validate_weights(w) | |
if w.shape != u.shape: | |
raise ValueError("'w' should have the same length as 'u' and 'v'.") | |
w = w / w.sum() | |
return np.dot(u_ne_v, w) | |
return np.mean(u_ne_v) | |
def jaccard(u, v, w=None): | |
""" | |
Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays. | |
The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`, | |
is defined as | |
.. math:: | |
\\frac{c_{TF} + c_{FT}} | |
{c_{TT} + c_{FT} + c_{TF}} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
jaccard : double | |
The Jaccard distance between vectors `u` and `v`. | |
Notes | |
----- | |
When both `u` and `v` lead to a `0/0` division i.e. there is no overlap | |
between the items in the vectors the returned distance is 0. See the | |
Wikipedia page on the Jaccard index [1]_, and this paper [2]_. | |
.. versionchanged:: 1.2.0 | |
Previously, when `u` and `v` lead to a `0/0` division, the function | |
would return NaN. This was changed to return 0 instead. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Jaccard_index | |
.. [2] S. Kosub, "A note on the triangle inequality for the Jaccard | |
distance", 2016, :arxiv:`1612.02696` | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.jaccard([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.jaccard([1, 0, 0], [1, 1, 0]) | |
0.5 | |
>>> distance.jaccard([1, 0, 0], [1, 2, 0]) | |
0.5 | |
>>> distance.jaccard([1, 0, 0], [1, 1, 1]) | |
0.66666666666666663 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
nonzero = np.bitwise_or(u != 0, v != 0) | |
unequal_nonzero = np.bitwise_and((u != v), nonzero) | |
if w is not None: | |
w = _validate_weights(w) | |
nonzero = w * nonzero | |
unequal_nonzero = w * unequal_nonzero | |
a = np.float64(unequal_nonzero.sum()) | |
b = np.float64(nonzero.sum()) | |
return (a / b) if b != 0 else 0 | |
def kulczynski1(u, v, *, w=None): | |
""" | |
Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays. | |
The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v` | |
of length ``n``, is defined as | |
.. math:: | |
\\frac{c_{11}} | |
{c_{01} + c_{10}} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k \\in {0, 1, ..., n-1}`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
kulczynski1 : float | |
The Kulczynski 1 distance between vectors `u` and `v`. | |
Notes | |
----- | |
This measure has a minimum value of 0 and no upper limit. | |
It is un-defined when there are no non-matches. | |
.. versionadded:: 1.8.0 | |
References | |
---------- | |
.. [1] Kulczynski S. et al. Bulletin | |
International de l'Academie Polonaise des Sciences | |
et des Lettres, Classe des Sciences Mathematiques | |
et Naturelles, Serie B (Sciences Naturelles). 1927; | |
Supplement II: 57-203. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0]) | |
0.0 | |
>>> distance.kulczynski1([True, False, False], [True, True, False]) | |
1.0 | |
>>> distance.kulczynski1([True, False, False], [True]) | |
0.5 | |
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0]) | |
-3.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
(_, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) | |
return ntt / (ntf + nft) | |
def seuclidean(u, v, V): | |
""" | |
Return the standardized Euclidean distance between two 1-D arrays. | |
The standardized Euclidean distance between two n-vectors `u` and `v` is | |
.. math:: | |
\\sqrt{\\sum\\limits_i \\frac{1}{V_i} \\left(u_i-v_i \\right)^2} | |
``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th | |
components of the points. If not passed, it is automatically computed. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
V : (N,) array_like | |
`V` is an 1-D array of component variances. It is usually computed | |
among a larger collection vectors. | |
Returns | |
------- | |
seuclidean : double | |
The standardized Euclidean distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1]) | |
4.4721359549995796 | |
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1]) | |
3.3166247903553998 | |
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1]) | |
3.1780497164141406 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
V = _validate_vector(V, dtype=np.float64) | |
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]: | |
raise TypeError('V must be a 1-D array of the same dimension ' | |
'as u and v.') | |
return euclidean(u, v, w=1/V) | |
def cityblock(u, v, w=None): | |
""" | |
Compute the City Block (Manhattan) distance. | |
Computes the Manhattan distance between two 1-D arrays `u` and `v`, | |
which is defined as | |
.. math:: | |
\\sum_i {\\left| u_i - v_i \\right|}. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
cityblock : double | |
The City Block (Manhattan) distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.cityblock([1, 0, 0], [0, 1, 0]) | |
2 | |
>>> distance.cityblock([1, 0, 0], [0, 2, 0]) | |
3 | |
>>> distance.cityblock([1, 0, 0], [1, 1, 0]) | |
1 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
l1_diff = abs(u - v) | |
if w is not None: | |
w = _validate_weights(w) | |
l1_diff = w * l1_diff | |
return l1_diff.sum() | |
def mahalanobis(u, v, VI): | |
""" | |
Compute the Mahalanobis distance between two 1-D arrays. | |
The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as | |
.. math:: | |
\\sqrt{ (u-v) V^{-1} (u-v)^T } | |
where ``V`` is the covariance matrix. Note that the argument `VI` | |
is the inverse of ``V``. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
VI : array_like | |
The inverse of the covariance matrix. | |
Returns | |
------- | |
mahalanobis : double | |
The Mahalanobis distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]] | |
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv) | |
1.0 | |
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv) | |
1.0 | |
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv) | |
1.7320508075688772 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
VI = np.atleast_2d(VI) | |
delta = u - v | |
m = np.dot(np.dot(delta, VI), delta) | |
return np.sqrt(m) | |
def chebyshev(u, v, w=None): | |
""" | |
Compute the Chebyshev distance. | |
Computes the Chebyshev distance between two 1-D arrays `u` and `v`, | |
which is defined as | |
.. math:: | |
\\max_i {|u_i-v_i|}. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input vector. | |
v : (N,) array_like | |
Input vector. | |
w : (N,) array_like, optional | |
Unused, as 'max' is a weightless operation. Here for API consistency. | |
Returns | |
------- | |
chebyshev : double | |
The Chebyshev distance between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.chebyshev([1, 0, 0], [0, 1, 0]) | |
1 | |
>>> distance.chebyshev([1, 1, 0], [0, 1, 0]) | |
1 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
has_weight = w > 0 | |
if has_weight.sum() < w.size: | |
u = u[has_weight] | |
v = v[has_weight] | |
return max(abs(u - v)) | |
def braycurtis(u, v, w=None): | |
""" | |
Compute the Bray-Curtis distance between two 1-D arrays. | |
Bray-Curtis distance is defined as | |
.. math:: | |
\\sum{|u_i-v_i|} / \\sum{|u_i+v_i|} | |
The Bray-Curtis distance is in the range [0, 1] if all coordinates are | |
positive, and is undefined if the inputs are of length zero. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
braycurtis : double | |
The Bray-Curtis distance between 1-D arrays `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.braycurtis([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.braycurtis([1, 1, 0], [0, 1, 0]) | |
0.33333333333333331 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v, dtype=np.float64) | |
l1_diff = abs(u - v) | |
l1_sum = abs(u + v) | |
if w is not None: | |
w = _validate_weights(w) | |
l1_diff = w * l1_diff | |
l1_sum = w * l1_sum | |
return l1_diff.sum() / l1_sum.sum() | |
def canberra(u, v, w=None): | |
""" | |
Compute the Canberra distance between two 1-D arrays. | |
The Canberra distance is defined as | |
.. math:: | |
d(u,v) = \\sum_i \\frac{|u_i-v_i|} | |
{|u_i|+|v_i|}. | |
Parameters | |
---------- | |
u : (N,) array_like | |
Input array. | |
v : (N,) array_like | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
canberra : double | |
The Canberra distance between vectors `u` and `v`. | |
Notes | |
----- | |
When `u[i]` and `v[i]` are 0 for given i, then the fraction 0/0 = 0 is | |
used in the calculation. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.canberra([1, 0, 0], [0, 1, 0]) | |
2.0 | |
>>> distance.canberra([1, 1, 0], [0, 1, 0]) | |
1.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v, dtype=np.float64) | |
if w is not None: | |
w = _validate_weights(w) | |
with np.errstate(invalid='ignore'): | |
abs_uv = abs(u - v) | |
abs_u = abs(u) | |
abs_v = abs(v) | |
d = abs_uv / (abs_u + abs_v) | |
if w is not None: | |
d = w * d | |
d = np.nansum(d) | |
return d | |
def jensenshannon(p, q, base=None, *, axis=0, keepdims=False): | |
""" | |
Compute the Jensen-Shannon distance (metric) between | |
two probability arrays. This is the square root | |
of the Jensen-Shannon divergence. | |
The Jensen-Shannon distance between two probability | |
vectors `p` and `q` is defined as, | |
.. math:: | |
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} | |
where :math:`m` is the pointwise mean of :math:`p` and :math:`q` | |
and :math:`D` is the Kullback-Leibler divergence. | |
This routine will normalize `p` and `q` if they don't sum to 1.0. | |
Parameters | |
---------- | |
p : (N,) array_like | |
left probability vector | |
q : (N,) array_like | |
right probability vector | |
base : double, optional | |
the base of the logarithm used to compute the output | |
if not given, then the routine uses the default base of | |
scipy.stats.entropy. | |
axis : int, optional | |
Axis along which the Jensen-Shannon distances are computed. The default | |
is 0. | |
.. versionadded:: 1.7.0 | |
keepdims : bool, optional | |
If this is set to `True`, the reduced axes are left in the | |
result as dimensions with size one. With this option, | |
the result will broadcast correctly against the input array. | |
Default is False. | |
.. versionadded:: 1.7.0 | |
Returns | |
------- | |
js : double or ndarray | |
The Jensen-Shannon distances between `p` and `q` along the `axis`. | |
Notes | |
----- | |
.. versionadded:: 1.2.0 | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> import numpy as np | |
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0) | |
1.0 | |
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5]) | |
0.46450140402245893 | |
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0]) | |
0.0 | |
>>> a = np.array([[1, 2, 3, 4], | |
... [5, 6, 7, 8], | |
... [9, 10, 11, 12]]) | |
>>> b = np.array([[13, 14, 15, 16], | |
... [17, 18, 19, 20], | |
... [21, 22, 23, 24]]) | |
>>> distance.jensenshannon(a, b, axis=0) | |
array([0.1954288, 0.1447697, 0.1138377, 0.0927636]) | |
>>> distance.jensenshannon(a, b, axis=1) | |
array([0.1402339, 0.0399106, 0.0201815]) | |
""" | |
p = np.asarray(p) | |
q = np.asarray(q) | |
p = p / np.sum(p, axis=axis, keepdims=True) | |
q = q / np.sum(q, axis=axis, keepdims=True) | |
m = (p + q) / 2.0 | |
left = rel_entr(p, m) | |
right = rel_entr(q, m) | |
left_sum = np.sum(left, axis=axis, keepdims=keepdims) | |
right_sum = np.sum(right, axis=axis, keepdims=keepdims) | |
js = left_sum + right_sum | |
if base is not None: | |
js /= np.log(base) | |
return np.sqrt(js / 2.0) | |
def yule(u, v, w=None): | |
""" | |
Compute the Yule dissimilarity between two boolean 1-D arrays. | |
The Yule dissimilarity is defined as | |
.. math:: | |
\\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
yule : double | |
The Yule dissimilarity between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.yule([1, 0, 0], [0, 1, 0]) | |
2.0 | |
>>> distance.yule([1, 1, 0], [0, 1, 0]) | |
0.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) | |
half_R = ntf * nft | |
if half_R == 0: | |
return 0.0 | |
else: | |
return float(2.0 * half_R / (ntt * nff + half_R)) | |
def dice(u, v, w=None): | |
""" | |
Compute the Dice dissimilarity between two boolean 1-D arrays. | |
The Dice dissimilarity between `u` and `v`, is | |
.. math:: | |
\\frac{c_{TF} + c_{FT}} | |
{2c_{TT} + c_{FT} + c_{TF}} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input 1-D array. | |
v : (N,) array_like, bool | |
Input 1-D array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
dice : double | |
The Dice dissimilarity between 1-D arrays `u` and `v`. | |
Notes | |
----- | |
This function computes the Dice dissimilarity index. To compute the | |
Dice similarity index, convert one to the other with similarity = | |
1 - dissimilarity. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.dice([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.dice([1, 0, 0], [1, 1, 0]) | |
0.3333333333333333 | |
>>> distance.dice([1, 0, 0], [2, 0, 0]) | |
-0.3333333333333333 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
if u.dtype == v.dtype == bool and w is None: | |
ntt = (u & v).sum() | |
else: | |
dtype = np.result_type(int, u.dtype, v.dtype) | |
u = u.astype(dtype) | |
v = v.astype(dtype) | |
if w is None: | |
ntt = (u * v).sum() | |
else: | |
ntt = (u * v * w).sum() | |
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w) | |
return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft)) | |
def rogerstanimoto(u, v, w=None): | |
""" | |
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays. | |
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays | |
`u` and `v`, is defined as | |
.. math:: | |
\\frac{R} | |
{c_{TT} + c_{FF} + R} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
rogerstanimoto : double | |
The Rogers-Tanimoto dissimilarity between vectors | |
`u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0]) | |
0.8 | |
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0]) | |
0.5 | |
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0]) | |
-1.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) | |
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft))) | |
def russellrao(u, v, w=None): | |
""" | |
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays. | |
The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and | |
`v`, is defined as | |
.. math:: | |
\\frac{n - c_{TT}} | |
{n} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
russellrao : double | |
The Russell-Rao dissimilarity between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.russellrao([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.russellrao([1, 0, 0], [1, 1, 0]) | |
0.6666666666666666 | |
>>> distance.russellrao([1, 0, 0], [2, 0, 0]) | |
0.3333333333333333 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if u.dtype == v.dtype == bool and w is None: | |
ntt = (u & v).sum() | |
n = float(len(u)) | |
elif w is None: | |
ntt = (u * v).sum() | |
n = float(len(u)) | |
else: | |
w = _validate_weights(w) | |
ntt = (u * v * w).sum() | |
n = w.sum() | |
return float(n - ntt) / n | |
def sokalmichener(u, v, w=None): | |
""" | |
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays. | |
The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`, | |
is defined as | |
.. math:: | |
\\frac{R} | |
{S + R} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and | |
:math:`S = c_{FF} + c_{TT}`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
sokalmichener : double | |
The Sokal-Michener dissimilarity between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0]) | |
0.8 | |
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0]) | |
0.5 | |
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0]) | |
-1.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if w is not None: | |
w = _validate_weights(w) | |
nff, nft, ntf, ntt = _nbool_correspond_all(u, v, w=w) | |
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft)) | |
def sokalsneath(u, v, w=None): | |
""" | |
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays. | |
The Sokal-Sneath dissimilarity between `u` and `v`, | |
.. math:: | |
\\frac{R} | |
{c_{TT} + R} | |
where :math:`c_{ij}` is the number of occurrences of | |
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for | |
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`. | |
Parameters | |
---------- | |
u : (N,) array_like, bool | |
Input array. | |
v : (N,) array_like, bool | |
Input array. | |
w : (N,) array_like, optional | |
The weights for each value in `u` and `v`. Default is None, | |
which gives each value a weight of 1.0 | |
Returns | |
------- | |
sokalsneath : double | |
The Sokal-Sneath dissimilarity between vectors `u` and `v`. | |
Examples | |
-------- | |
>>> from scipy.spatial import distance | |
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0]) | |
1.0 | |
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0]) | |
0.66666666666666663 | |
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0]) | |
0.0 | |
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0]) | |
-2.0 | |
""" | |
u = _validate_vector(u) | |
v = _validate_vector(v) | |
if u.dtype == v.dtype == bool and w is None: | |
ntt = (u & v).sum() | |
elif w is None: | |
ntt = (u * v).sum() | |
else: | |
w = _validate_weights(w) | |
ntt = (u * v * w).sum() | |
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w) | |
denom = np.array(ntt + 2.0 * (ntf + nft)) | |
if not denom.any(): | |
raise ValueError('Sokal-Sneath dissimilarity is not defined for ' | |
'vectors that are entirely false.') | |
return float(2.0 * (ntf + nft)) / denom | |
_convert_to_double = partial(_convert_to_type, out_type=np.float64) | |
_convert_to_bool = partial(_convert_to_type, out_type=bool) | |
# adding python-only wrappers to _distance_wrap module | |
_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap | |
_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap | |
class CDistMetricWrapper: | |
metric_name: str | |
def __call__(self, XA, XB, *, out=None, **kwargs): | |
XA = np.ascontiguousarray(XA) | |
XB = np.ascontiguousarray(XB) | |
mA, n = XA.shape | |
mB, _ = XB.shape | |
metric_name = self.metric_name | |
metric_info = _METRICS[metric_name] | |
XA, XB, typ, kwargs = _validate_cdist_input( | |
XA, XB, mA, mB, n, metric_info, **kwargs) | |
w = kwargs.pop('w', None) | |
if w is not None: | |
metric = metric_info.dist_func | |
return _cdist_callable( | |
XA, XB, metric=metric, out=out, w=w, **kwargs) | |
dm = _prepare_out_argument(out, np.float64, (mA, mB)) | |
# get cdist wrapper | |
cdist_fn = getattr(_distance_wrap, f'cdist_{metric_name}_{typ}_wrap') | |
cdist_fn(XA, XB, dm, **kwargs) | |
return dm | |
class PDistMetricWrapper: | |
metric_name: str | |
def __call__(self, X, *, out=None, **kwargs): | |
X = np.ascontiguousarray(X) | |
m, n = X.shape | |
metric_name = self.metric_name | |
metric_info = _METRICS[metric_name] | |
X, typ, kwargs = _validate_pdist_input( | |
X, m, n, metric_info, **kwargs) | |
out_size = (m * (m - 1)) // 2 | |
w = kwargs.pop('w', None) | |
if w is not None: | |
metric = metric_info.dist_func | |
return _pdist_callable( | |
X, metric=metric, out=out, w=w, **kwargs) | |
dm = _prepare_out_argument(out, np.float64, (out_size,)) | |
# get pdist wrapper | |
pdist_fn = getattr(_distance_wrap, f'pdist_{metric_name}_{typ}_wrap') | |
pdist_fn(X, dm, **kwargs) | |
return dm | |
class MetricInfo: | |
# Name of python distance function | |
canonical_name: str | |
# All aliases, including canonical_name | |
aka: set[str] | |
# unvectorized distance function | |
dist_func: Callable | |
# Optimized cdist function | |
cdist_func: Callable | |
# Optimized pdist function | |
pdist_func: Callable | |
# function that checks kwargs and computes default values: | |
# f(X, m, n, **kwargs) | |
validator: Optional[Callable] = None | |
# list of supported types: | |
# X (pdist) and XA (cdist) are used to choose the type. if there is no | |
# match the first type is used. Default double | |
types: list[str] = dataclasses.field(default_factory=lambda: ['double']) | |
# true if out array must be C-contiguous | |
requires_contiguous_out: bool = True | |
# Registry of implemented metrics: | |
_METRIC_INFOS = [ | |
MetricInfo( | |
canonical_name='braycurtis', | |
aka={'braycurtis'}, | |
dist_func=braycurtis, | |
cdist_func=_distance_pybind.cdist_braycurtis, | |
pdist_func=_distance_pybind.pdist_braycurtis, | |
), | |
MetricInfo( | |
canonical_name='canberra', | |
aka={'canberra'}, | |
dist_func=canberra, | |
cdist_func=_distance_pybind.cdist_canberra, | |
pdist_func=_distance_pybind.pdist_canberra, | |
), | |
MetricInfo( | |
canonical_name='chebyshev', | |
aka={'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'}, | |
dist_func=chebyshev, | |
cdist_func=_distance_pybind.cdist_chebyshev, | |
pdist_func=_distance_pybind.pdist_chebyshev, | |
), | |
MetricInfo( | |
canonical_name='cityblock', | |
aka={'cityblock', 'cblock', 'cb', 'c'}, | |
dist_func=cityblock, | |
cdist_func=_distance_pybind.cdist_cityblock, | |
pdist_func=_distance_pybind.pdist_cityblock, | |
), | |
MetricInfo( | |
canonical_name='correlation', | |
aka={'correlation', 'co'}, | |
dist_func=correlation, | |
cdist_func=CDistMetricWrapper('correlation'), | |
pdist_func=PDistMetricWrapper('correlation'), | |
), | |
MetricInfo( | |
canonical_name='cosine', | |
aka={'cosine', 'cos'}, | |
dist_func=cosine, | |
cdist_func=CDistMetricWrapper('cosine'), | |
pdist_func=PDistMetricWrapper('cosine'), | |
), | |
MetricInfo( | |
canonical_name='dice', | |
aka={'dice'}, | |
types=['bool'], | |
dist_func=dice, | |
cdist_func=_distance_pybind.cdist_dice, | |
pdist_func=_distance_pybind.pdist_dice, | |
), | |
MetricInfo( | |
canonical_name='euclidean', | |
aka={'euclidean', 'euclid', 'eu', 'e'}, | |
dist_func=euclidean, | |
cdist_func=_distance_pybind.cdist_euclidean, | |
pdist_func=_distance_pybind.pdist_euclidean, | |
), | |
MetricInfo( | |
canonical_name='hamming', | |
aka={'matching', 'hamming', 'hamm', 'ha', 'h'}, | |
types=['double', 'bool'], | |
validator=_validate_hamming_kwargs, | |
dist_func=hamming, | |
cdist_func=_distance_pybind.cdist_hamming, | |
pdist_func=_distance_pybind.pdist_hamming, | |
), | |
MetricInfo( | |
canonical_name='jaccard', | |
aka={'jaccard', 'jacc', 'ja', 'j'}, | |
types=['double', 'bool'], | |
dist_func=jaccard, | |
cdist_func=_distance_pybind.cdist_jaccard, | |
pdist_func=_distance_pybind.pdist_jaccard, | |
), | |
MetricInfo( | |
canonical_name='jensenshannon', | |
aka={'jensenshannon', 'js'}, | |
dist_func=jensenshannon, | |
cdist_func=CDistMetricWrapper('jensenshannon'), | |
pdist_func=PDistMetricWrapper('jensenshannon'), | |
), | |
MetricInfo( | |
canonical_name='kulczynski1', | |
aka={'kulczynski1'}, | |
types=['bool'], | |
dist_func=kulczynski1, | |
cdist_func=_distance_pybind.cdist_kulczynski1, | |
pdist_func=_distance_pybind.pdist_kulczynski1, | |
), | |
MetricInfo( | |
canonical_name='mahalanobis', | |
aka={'mahalanobis', 'mahal', 'mah'}, | |
validator=_validate_mahalanobis_kwargs, | |
dist_func=mahalanobis, | |
cdist_func=CDistMetricWrapper('mahalanobis'), | |
pdist_func=PDistMetricWrapper('mahalanobis'), | |
), | |
MetricInfo( | |
canonical_name='minkowski', | |
aka={'minkowski', 'mi', 'm', 'pnorm'}, | |
validator=_validate_minkowski_kwargs, | |
dist_func=minkowski, | |
cdist_func=_distance_pybind.cdist_minkowski, | |
pdist_func=_distance_pybind.pdist_minkowski, | |
), | |
MetricInfo( | |
canonical_name='rogerstanimoto', | |
aka={'rogerstanimoto'}, | |
types=['bool'], | |
dist_func=rogerstanimoto, | |
cdist_func=_distance_pybind.cdist_rogerstanimoto, | |
pdist_func=_distance_pybind.pdist_rogerstanimoto, | |
), | |
MetricInfo( | |
canonical_name='russellrao', | |
aka={'russellrao'}, | |
types=['bool'], | |
dist_func=russellrao, | |
cdist_func=_distance_pybind.cdist_russellrao, | |
pdist_func=_distance_pybind.pdist_russellrao, | |
), | |
MetricInfo( | |
canonical_name='seuclidean', | |
aka={'seuclidean', 'se', 's'}, | |
validator=_validate_seuclidean_kwargs, | |
dist_func=seuclidean, | |
cdist_func=CDistMetricWrapper('seuclidean'), | |
pdist_func=PDistMetricWrapper('seuclidean'), | |
), | |
MetricInfo( | |
canonical_name='sokalmichener', | |
aka={'sokalmichener'}, | |
types=['bool'], | |
dist_func=sokalmichener, | |
cdist_func=_distance_pybind.cdist_sokalmichener, | |
pdist_func=_distance_pybind.pdist_sokalmichener, | |
), | |
MetricInfo( | |
canonical_name='sokalsneath', | |
aka={'sokalsneath'}, | |
types=['bool'], | |
dist_func=sokalsneath, | |
cdist_func=_distance_pybind.cdist_sokalsneath, | |
pdist_func=_distance_pybind.pdist_sokalsneath, | |
), | |
MetricInfo( | |
canonical_name='sqeuclidean', | |
aka={'sqeuclidean', 'sqe', 'sqeuclid'}, | |
dist_func=sqeuclidean, | |
cdist_func=_distance_pybind.cdist_sqeuclidean, | |
pdist_func=_distance_pybind.pdist_sqeuclidean, | |
), | |
MetricInfo( | |
canonical_name='yule', | |
aka={'yule'}, | |
types=['bool'], | |
dist_func=yule, | |
cdist_func=_distance_pybind.cdist_yule, | |
pdist_func=_distance_pybind.pdist_yule, | |
), | |
] | |
_METRICS = {info.canonical_name: info for info in _METRIC_INFOS} | |
_METRIC_ALIAS = {alias: info | |
for info in _METRIC_INFOS | |
for alias in info.aka} | |
_METRICS_NAMES = list(_METRICS.keys()) | |
_TEST_METRICS = {'test_' + info.canonical_name: info for info in _METRIC_INFOS} | |
def pdist(X, metric='euclidean', *, out=None, **kwargs): | |
""" | |
Pairwise distances between observations in n-dimensional space. | |
See Notes for common calling conventions. | |
Parameters | |
---------- | |
X : array_like | |
An m by n array of m original observations in an | |
n-dimensional space. | |
metric : str or function, optional | |
The distance metric to use. The distance function can | |
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', | |
'correlation', 'cosine', 'dice', 'euclidean', 'hamming', | |
'jaccard', 'jensenshannon', 'kulczynski1', | |
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', | |
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', | |
'sqeuclidean', 'yule'. | |
out : ndarray, optional | |
The output array. | |
If not None, condensed distance matrix Y is stored in this array. | |
**kwargs : dict, optional | |
Extra arguments to `metric`: refer to each metric documentation for a | |
list of all possible arguments. | |
Some possible arguments: | |
p : scalar | |
The p-norm to apply for Minkowski, weighted and unweighted. | |
Default: 2. | |
w : ndarray | |
The weight vector for metrics that support weights (e.g., Minkowski). | |
V : ndarray | |
The variance vector for standardized Euclidean. | |
Default: var(X, axis=0, ddof=1) | |
VI : ndarray | |
The inverse of the covariance matrix for Mahalanobis. | |
Default: inv(cov(X.T)).T | |
Returns | |
------- | |
Y : ndarray | |
Returns a condensed distance matrix Y. For each :math:`i` and :math:`j` | |
(where :math:`i<j<m`),where m is the number of original observations. | |
The metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``m | |
* i + j - ((i + 2) * (i + 1)) // 2``. | |
See Also | |
-------- | |
squareform : converts between condensed distance matrices and | |
square distance matrices. | |
Notes | |
----- | |
See ``squareform`` for information on how to calculate the index of | |
this entry or to convert the condensed distance matrix to a | |
redundant square matrix. | |
The following are common calling conventions. | |
1. ``Y = pdist(X, 'euclidean')`` | |
Computes the distance between m points using Euclidean distance | |
(2-norm) as the distance metric between the points. The points | |
are arranged as m n-dimensional row vectors in the matrix X. | |
2. ``Y = pdist(X, 'minkowski', p=2.)`` | |
Computes the distances using the Minkowski distance | |
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note | |
that this is only a quasi-metric if :math:`0 < p < 1`). | |
3. ``Y = pdist(X, 'cityblock')`` | |
Computes the city block or Manhattan distance between the | |
points. | |
4. ``Y = pdist(X, 'seuclidean', V=None)`` | |
Computes the standardized Euclidean distance. The standardized | |
Euclidean distance between two n-vectors ``u`` and ``v`` is | |
.. math:: | |
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}} | |
V is the variance vector; V[i] is the variance computed over all | |
the i'th components of the points. If not passed, it is | |
automatically computed. | |
5. ``Y = pdist(X, 'sqeuclidean')`` | |
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between | |
the vectors. | |
6. ``Y = pdist(X, 'cosine')`` | |
Computes the cosine distance between vectors u and v, | |
.. math:: | |
1 - \\frac{u \\cdot v} | |
{{\\|u\\|}_2 {\\|v\\|}_2} | |
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and | |
:math:`u \\cdot v` is the dot product of ``u`` and ``v``. | |
7. ``Y = pdist(X, 'correlation')`` | |
Computes the correlation distance between vectors u and v. This is | |
.. math:: | |
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} | |
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} | |
where :math:`\\bar{v}` is the mean of the elements of vector v, | |
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. | |
8. ``Y = pdist(X, 'hamming')`` | |
Computes the normalized Hamming distance, or the proportion of | |
those vector elements between two n-vectors ``u`` and ``v`` | |
which disagree. To save memory, the matrix ``X`` can be of type | |
boolean. | |
9. ``Y = pdist(X, 'jaccard')`` | |
Computes the Jaccard distance between the points. Given two | |
vectors, ``u`` and ``v``, the Jaccard distance is the | |
proportion of those elements ``u[i]`` and ``v[i]`` that | |
disagree. | |
10. ``Y = pdist(X, 'jensenshannon')`` | |
Computes the Jensen-Shannon distance between two probability arrays. | |
Given two probability vectors, :math:`p` and :math:`q`, the | |
Jensen-Shannon distance is | |
.. math:: | |
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} | |
where :math:`m` is the pointwise mean of :math:`p` and :math:`q` | |
and :math:`D` is the Kullback-Leibler divergence. | |
11. ``Y = pdist(X, 'chebyshev')`` | |
Computes the Chebyshev distance between the points. The | |
Chebyshev distance between two n-vectors ``u`` and ``v`` is the | |
maximum norm-1 distance between their respective elements. More | |
precisely, the distance is given by | |
.. math:: | |
d(u,v) = \\max_i {|u_i-v_i|} | |
12. ``Y = pdist(X, 'canberra')`` | |
Computes the Canberra distance between the points. The | |
Canberra distance between two points ``u`` and ``v`` is | |
.. math:: | |
d(u,v) = \\sum_i \\frac{|u_i-v_i|} | |
{|u_i|+|v_i|} | |
13. ``Y = pdist(X, 'braycurtis')`` | |
Computes the Bray-Curtis distance between the points. The | |
Bray-Curtis distance between two points ``u`` and ``v`` is | |
.. math:: | |
d(u,v) = \\frac{\\sum_i {|u_i-v_i|}} | |
{\\sum_i {|u_i+v_i|}} | |
14. ``Y = pdist(X, 'mahalanobis', VI=None)`` | |
Computes the Mahalanobis distance between the points. The | |
Mahalanobis distance between two points ``u`` and ``v`` is | |
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` | |
variable) is the inverse covariance. If ``VI`` is not None, | |
``VI`` will be used as the inverse covariance matrix. | |
15. ``Y = pdist(X, 'yule')`` | |
Computes the Yule distance between each pair of boolean | |
vectors. (see yule function documentation) | |
16. ``Y = pdist(X, 'matching')`` | |
Synonym for 'hamming'. | |
17. ``Y = pdist(X, 'dice')`` | |
Computes the Dice distance between each pair of boolean | |
vectors. (see dice function documentation) | |
18. ``Y = pdist(X, 'kulczynski1')`` | |
Computes the kulczynski1 distance between each pair of | |
boolean vectors. (see kulczynski1 function documentation) | |
19. ``Y = pdist(X, 'rogerstanimoto')`` | |
Computes the Rogers-Tanimoto distance between each pair of | |
boolean vectors. (see rogerstanimoto function documentation) | |
20. ``Y = pdist(X, 'russellrao')`` | |
Computes the Russell-Rao distance between each pair of | |
boolean vectors. (see russellrao function documentation) | |
21. ``Y = pdist(X, 'sokalmichener')`` | |
Computes the Sokal-Michener distance between each pair of | |
boolean vectors. (see sokalmichener function documentation) | |
22. ``Y = pdist(X, 'sokalsneath')`` | |
Computes the Sokal-Sneath distance between each pair of | |
boolean vectors. (see sokalsneath function documentation) | |
23. ``Y = pdist(X, 'kulczynski1')`` | |
Computes the Kulczynski 1 distance between each pair of | |
boolean vectors. (see kulczynski1 function documentation) | |
24. ``Y = pdist(X, f)`` | |
Computes the distance between all pairs of vectors in X | |
using the user supplied 2-arity function f. For example, | |
Euclidean distance between the vectors could be computed | |
as follows:: | |
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum())) | |
Note that you should avoid passing a reference to one of | |
the distance functions defined in this library. For example,:: | |
dm = pdist(X, sokalsneath) | |
would calculate the pair-wise distances between the vectors in | |
X using the Python function sokalsneath. This would result in | |
sokalsneath being called :math:`{n \\choose 2}` times, which | |
is inefficient. Instead, the optimized C version is more | |
efficient, and we call it using the following syntax.:: | |
dm = pdist(X, 'sokalsneath') | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.spatial.distance import pdist | |
``x`` is an array of five points in three-dimensional space. | |
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]]) | |
``pdist(x)`` with no additional arguments computes the 10 pairwise | |
Euclidean distances: | |
>>> pdist(x) | |
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, | |
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) | |
The following computes the pairwise Minkowski distances with ``p = 3.5``: | |
>>> pdist(x, metric='minkowski', p=3.5) | |
array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714, | |
6.03956994, 1. , 4.45128103, 4.10636143, 5.0619695 ]) | |
The pairwise city block or Manhattan distances: | |
>>> pdist(x, metric='cityblock') | |
array([ 3., 11., 10., 4., 8., 9., 1., 9., 7., 8.]) | |
""" | |
# You can also call this as: | |
# Y = pdist(X, 'test_abc') | |
# where 'abc' is the metric being tested. This computes the distance | |
# between all pairs of vectors in X using the distance metric 'abc' but | |
# with a more succinct, verifiable, but less efficient implementation. | |
X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True, | |
check_finite=False) | |
s = X.shape | |
if len(s) != 2: | |
raise ValueError('A 2-dimensional array must be passed.') | |
m, n = s | |
if callable(metric): | |
mstr = getattr(metric, '__name__', 'UnknownCustomMetric') | |
metric_info = _METRIC_ALIAS.get(mstr, None) | |
if metric_info is not None: | |
X, typ, kwargs = _validate_pdist_input( | |
X, m, n, metric_info, **kwargs) | |
return _pdist_callable(X, metric=metric, out=out, **kwargs) | |
elif isinstance(metric, str): | |
mstr = metric.lower() | |
metric_info = _METRIC_ALIAS.get(mstr, None) | |
if metric_info is not None: | |
pdist_fn = metric_info.pdist_func | |
return pdist_fn(X, out=out, **kwargs) | |
elif mstr.startswith("test_"): | |
metric_info = _TEST_METRICS.get(mstr, None) | |
if metric_info is None: | |
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}') | |
X, typ, kwargs = _validate_pdist_input( | |
X, m, n, metric_info, **kwargs) | |
return _pdist_callable( | |
X, metric=metric_info.dist_func, out=out, **kwargs) | |
else: | |
raise ValueError('Unknown Distance Metric: %s' % mstr) | |
else: | |
raise TypeError('2nd argument metric must be a string identifier ' | |
'or a function.') | |
def squareform(X, force="no", checks=True): | |
""" | |
Convert a vector-form distance vector to a square-form distance | |
matrix, and vice-versa. | |
Parameters | |
---------- | |
X : array_like | |
Either a condensed or redundant distance matrix. | |
force : str, optional | |
As with MATLAB(TM), if force is equal to ``'tovector'`` or | |
``'tomatrix'``, the input will be treated as a distance matrix or | |
distance vector respectively. | |
checks : bool, optional | |
If set to False, no checks will be made for matrix | |
symmetry nor zero diagonals. This is useful if it is known that | |
``X - X.T1`` is small and ``diag(X)`` is close to zero. | |
These values are ignored any way so they do not disrupt the | |
squareform transformation. | |
Returns | |
------- | |
Y : ndarray | |
If a condensed distance matrix is passed, a redundant one is | |
returned, or if a redundant one is passed, a condensed distance | |
matrix is returned. | |
Notes | |
----- | |
1. ``v = squareform(X)`` | |
Given a square n-by-n symmetric distance matrix ``X``, | |
``v = squareform(X)`` returns a ``n * (n-1) / 2`` | |
(i.e. binomial coefficient n choose 2) sized vector `v` | |
where :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]` | |
is the distance between distinct points ``i`` and ``j``. | |
If ``X`` is non-square or asymmetric, an error is raised. | |
2. ``X = squareform(v)`` | |
Given a ``n * (n-1) / 2`` sized vector ``v`` | |
for some integer ``n >= 1`` encoding distances as described, | |
``X = squareform(v)`` returns a n-by-n distance matrix ``X``. | |
The ``X[i, j]`` and ``X[j, i]`` values are set to | |
:math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]` | |
and all diagonal elements are zero. | |
In SciPy 0.19.0, ``squareform`` stopped casting all input types to | |
float64, and started returning arrays of the same dtype as the input. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.spatial.distance import pdist, squareform | |
``x`` is an array of five points in three-dimensional space. | |
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]]) | |
``pdist(x)`` computes the Euclidean distances between each pair of | |
points in ``x``. The distances are returned in a one-dimensional | |
array with length ``5*(5 - 1)/2 = 10``. | |
>>> distvec = pdist(x) | |
>>> distvec | |
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, | |
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) | |
``squareform(distvec)`` returns the 5x5 distance matrix. | |
>>> m = squareform(distvec) | |
>>> m | |
array([[0. , 2.23606798, 6.40312424, 7.34846923, 2.82842712], | |
[2.23606798, 0. , 4.89897949, 6.40312424, 1. ], | |
[6.40312424, 4.89897949, 0. , 5.38516481, 4.58257569], | |
[7.34846923, 6.40312424, 5.38516481, 0. , 5.47722558], | |
[2.82842712, 1. , 4.58257569, 5.47722558, 0. ]]) | |
When given a square distance matrix ``m``, ``squareform(m)`` returns | |
the one-dimensional condensed distance vector associated with the | |
matrix. In this case, we recover ``distvec``. | |
>>> squareform(m) | |
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, | |
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) | |
""" | |
X = np.ascontiguousarray(X) | |
s = X.shape | |
if force.lower() == 'tomatrix': | |
if len(s) != 1: | |
raise ValueError("Forcing 'tomatrix' but input X is not a " | |
"distance vector.") | |
elif force.lower() == 'tovector': | |
if len(s) != 2: | |
raise ValueError("Forcing 'tovector' but input X is not a " | |
"distance matrix.") | |
# X = squareform(v) | |
if len(s) == 1: | |
if s[0] == 0: | |
return np.zeros((1, 1), dtype=X.dtype) | |
# Grab the closest value to the square root of the number | |
# of elements times 2 to see if the number of elements | |
# is indeed a binomial coefficient. | |
d = int(np.ceil(np.sqrt(s[0] * 2))) | |
# Check that v is of valid dimensions. | |
if d * (d - 1) != s[0] * 2: | |
raise ValueError('Incompatible vector size. It must be a binomial ' | |
'coefficient n choose 2 for some integer n >= 2.') | |
# Allocate memory for the distance matrix. | |
M = np.zeros((d, d), dtype=X.dtype) | |
# Since the C code does not support striding using strides. | |
# The dimensions are used instead. | |
X = _copy_array_if_base_present(X) | |
# Fill in the values of the distance matrix. | |
_distance_wrap.to_squareform_from_vector_wrap(M, X) | |
# Return the distance matrix. | |
return M | |
elif len(s) == 2: | |
if s[0] != s[1]: | |
raise ValueError('The matrix argument must be square.') | |
if checks: | |
is_valid_dm(X, throw=True, name='X') | |
# One-side of the dimensions is set here. | |
d = s[0] | |
if d <= 1: | |
return np.array([], dtype=X.dtype) | |
# Create a vector. | |
v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype) | |
# Since the C code does not support striding using strides. | |
# The dimensions are used instead. | |
X = _copy_array_if_base_present(X) | |
# Convert the vector to squareform. | |
_distance_wrap.to_vector_from_squareform_wrap(X, v) | |
return v | |
else: | |
raise ValueError(('The first argument must be one or two dimensional ' | |
'array. A %d-dimensional array is not ' | |
'permitted') % len(s)) | |
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False): | |
""" | |
Return True if input array is a valid distance matrix. | |
Distance matrices must be 2-dimensional numpy arrays. | |
They must have a zero-diagonal, and they must be symmetric. | |
Parameters | |
---------- | |
D : array_like | |
The candidate object to test for validity. | |
tol : float, optional | |
The distance matrix should be symmetric. `tol` is the maximum | |
difference between entries ``ij`` and ``ji`` for the distance | |
metric to be considered symmetric. | |
throw : bool, optional | |
An exception is thrown if the distance matrix passed is not valid. | |
name : str, optional | |
The name of the variable to checked. This is useful if | |
throw is set to True so the offending variable can be identified | |
in the exception message when an exception is thrown. | |
warning : bool, optional | |
Instead of throwing an exception, a warning message is | |
raised. | |
Returns | |
------- | |
valid : bool | |
True if the variable `D` passed is a valid distance matrix. | |
Notes | |
----- | |
Small numerical differences in `D` and `D.T` and non-zeroness of | |
the diagonal are ignored if they are within the tolerance specified | |
by `tol`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.spatial.distance import is_valid_dm | |
This matrix is a valid distance matrix. | |
>>> d = np.array([[0.0, 1.1, 1.2, 1.3], | |
... [1.1, 0.0, 1.0, 1.4], | |
... [1.2, 1.0, 0.0, 1.5], | |
... [1.3, 1.4, 1.5, 0.0]]) | |
>>> is_valid_dm(d) | |
True | |
In the following examples, the input is not a valid distance matrix. | |
Not square: | |
>>> is_valid_dm([[0, 2, 2], [2, 0, 2]]) | |
False | |
Nonzero diagonal element: | |
>>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]]) | |
False | |
Not symmetric: | |
>>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]]) | |
False | |
""" | |
D = np.asarray(D, order='c') | |
valid = True | |
try: | |
s = D.shape | |
if len(D.shape) != 2: | |
if name: | |
raise ValueError(('Distance matrix \'%s\' must have shape=2 ' | |
'(i.e. be two-dimensional).') % name) | |
else: | |
raise ValueError('Distance matrix must have shape=2 (i.e. ' | |
'be two-dimensional).') | |
if tol == 0.0: | |
if not (D == D.T).all(): | |
if name: | |
raise ValueError(('Distance matrix \'%s\' must be ' | |
'symmetric.') % name) | |
else: | |
raise ValueError('Distance matrix must be symmetric.') | |
if not (D[range(0, s[0]), range(0, s[0])] == 0).all(): | |
if name: | |
raise ValueError(('Distance matrix \'%s\' diagonal must ' | |
'be zero.') % name) | |
else: | |
raise ValueError('Distance matrix diagonal must be zero.') | |
else: | |
if not (D - D.T <= tol).all(): | |
if name: | |
raise ValueError(f'Distance matrix \'{name}\' must be ' | |
f'symmetric within tolerance {tol:5.5f}.') | |
else: | |
raise ValueError('Distance matrix must be symmetric within ' | |
'tolerance %5.5f.' % tol) | |
if not (D[range(0, s[0]), range(0, s[0])] <= tol).all(): | |
if name: | |
raise ValueError(f'Distance matrix \'{name}\' diagonal must be ' | |
f'close to zero within tolerance {tol:5.5f}.') | |
else: | |
raise ValueError(('Distance matrix \'{}\' diagonal must be close ' | |
'to zero within tolerance {:5.5f}.').format(*tol)) | |
except Exception as e: | |
if throw: | |
raise | |
if warning: | |
warnings.warn(str(e), stacklevel=2) | |
valid = False | |
return valid | |
def is_valid_y(y, warning=False, throw=False, name=None): | |
""" | |
Return True if the input array is a valid condensed distance matrix. | |
Condensed distance matrices must be 1-dimensional numpy arrays. | |
Their length must be a binomial coefficient :math:`{n \\choose 2}` | |
for some positive integer n. | |
Parameters | |
---------- | |
y : array_like | |
The condensed distance matrix. | |
warning : bool, optional | |
Invokes a warning if the variable passed is not a valid | |
condensed distance matrix. The warning message explains why | |
the distance matrix is not valid. `name` is used when | |
referencing the offending variable. | |
throw : bool, optional | |
Throws an exception if the variable passed is not a valid | |
condensed distance matrix. | |
name : bool, optional | |
Used when referencing the offending variable in the | |
warning or exception message. | |
Returns | |
------- | |
bool | |
True if the input array is a valid condensed distance matrix, | |
False otherwise. | |
Examples | |
-------- | |
>>> from scipy.spatial.distance import is_valid_y | |
This vector is a valid condensed distance matrix. The length is 6, | |
which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6. | |
>>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9] | |
>>> is_valid_y(v) | |
True | |
An input vector with length, say, 7, is not a valid condensed distance | |
matrix. | |
>>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]) | |
False | |
""" | |
y = np.asarray(y, order='c') | |
valid = True | |
try: | |
if len(y.shape) != 1: | |
if name: | |
raise ValueError(('Condensed distance matrix \'%s\' must ' | |
'have shape=1 (i.e. be one-dimensional).') | |
% name) | |
else: | |
raise ValueError('Condensed distance matrix must have shape=1 ' | |
'(i.e. be one-dimensional).') | |
n = y.shape[0] | |
d = int(np.ceil(np.sqrt(n * 2))) | |
if (d * (d - 1) / 2) != n: | |
if name: | |
raise ValueError(('Length n of condensed distance matrix ' | |
'\'%s\' must be a binomial coefficient, i.e.' | |
'there must be a k such that ' | |
'(k \\choose 2)=n)!') % name) | |
else: | |
raise ValueError('Length n of condensed distance matrix must ' | |
'be a binomial coefficient, i.e. there must ' | |
'be a k such that (k \\choose 2)=n)!') | |
except Exception as e: | |
if throw: | |
raise | |
if warning: | |
warnings.warn(str(e), stacklevel=2) | |
valid = False | |
return valid | |
def num_obs_dm(d): | |
""" | |
Return the number of original observations that correspond to a | |
square, redundant distance matrix. | |
Parameters | |
---------- | |
d : array_like | |
The target distance matrix. | |
Returns | |
------- | |
num_obs_dm : int | |
The number of observations in the redundant distance matrix. | |
Examples | |
-------- | |
Find the number of original observations corresponding | |
to a square redundant distance matrix d. | |
>>> from scipy.spatial.distance import num_obs_dm | |
>>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]] | |
>>> num_obs_dm(d) | |
3 | |
""" | |
d = np.asarray(d, order='c') | |
is_valid_dm(d, tol=np.inf, throw=True, name='d') | |
return d.shape[0] | |
def num_obs_y(Y): | |
""" | |
Return the number of original observations that correspond to a | |
condensed distance matrix. | |
Parameters | |
---------- | |
Y : array_like | |
Condensed distance matrix. | |
Returns | |
------- | |
n : int | |
The number of observations in the condensed distance matrix `Y`. | |
Examples | |
-------- | |
Find the number of original observations corresponding to a | |
condensed distance matrix Y. | |
>>> from scipy.spatial.distance import num_obs_y | |
>>> Y = [1, 2, 3.5, 7, 10, 4] | |
>>> num_obs_y(Y) | |
4 | |
""" | |
Y = np.asarray(Y, order='c') | |
is_valid_y(Y, throw=True, name='Y') | |
k = Y.shape[0] | |
if k == 0: | |
raise ValueError("The number of observations cannot be determined on " | |
"an empty distance matrix.") | |
d = int(np.ceil(np.sqrt(k * 2))) | |
if (d * (d - 1) / 2) != k: | |
raise ValueError("Invalid condensed distance matrix passed. Must be " | |
"some k where k=(n choose 2) for some n >= 2.") | |
return d | |
def _prepare_out_argument(out, dtype, expected_shape): | |
if out is None: | |
return np.empty(expected_shape, dtype=dtype) | |
if out.shape != expected_shape: | |
raise ValueError("Output array has incorrect shape.") | |
if not out.flags.c_contiguous: | |
raise ValueError("Output array must be C-contiguous.") | |
if out.dtype != np.float64: | |
raise ValueError("Output array must be double type.") | |
return out | |
def _pdist_callable(X, *, out, metric, **kwargs): | |
n = X.shape[0] | |
out_size = (n * (n - 1)) // 2 | |
dm = _prepare_out_argument(out, np.float64, (out_size,)) | |
k = 0 | |
for i in range(X.shape[0] - 1): | |
for j in range(i + 1, X.shape[0]): | |
dm[k] = metric(X[i], X[j], **kwargs) | |
k += 1 | |
return dm | |
def _cdist_callable(XA, XB, *, out, metric, **kwargs): | |
mA = XA.shape[0] | |
mB = XB.shape[0] | |
dm = _prepare_out_argument(out, np.float64, (mA, mB)) | |
for i in range(mA): | |
for j in range(mB): | |
dm[i, j] = metric(XA[i], XB[j], **kwargs) | |
return dm | |
def cdist(XA, XB, metric='euclidean', *, out=None, **kwargs): | |
""" | |
Compute distance between each pair of the two collections of inputs. | |
See Notes for common calling conventions. | |
Parameters | |
---------- | |
XA : array_like | |
An :math:`m_A` by :math:`n` array of :math:`m_A` | |
original observations in an :math:`n`-dimensional space. | |
Inputs are converted to float type. | |
XB : array_like | |
An :math:`m_B` by :math:`n` array of :math:`m_B` | |
original observations in an :math:`n`-dimensional space. | |
Inputs are converted to float type. | |
metric : str or callable, optional | |
The distance metric to use. If a string, the distance function can be | |
'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', | |
'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', | |
'kulczynski1', 'mahalanobis', 'matching', 'minkowski', | |
'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', | |
'sokalsneath', 'sqeuclidean', 'yule'. | |
**kwargs : dict, optional | |
Extra arguments to `metric`: refer to each metric documentation for a | |
list of all possible arguments. | |
Some possible arguments: | |
p : scalar | |
The p-norm to apply for Minkowski, weighted and unweighted. | |
Default: 2. | |
w : array_like | |
The weight vector for metrics that support weights (e.g., Minkowski). | |
V : array_like | |
The variance vector for standardized Euclidean. | |
Default: var(vstack([XA, XB]), axis=0, ddof=1) | |
VI : array_like | |
The inverse of the covariance matrix for Mahalanobis. | |
Default: inv(cov(vstack([XA, XB].T))).T | |
out : ndarray | |
The output array | |
If not None, the distance matrix Y is stored in this array. | |
Returns | |
------- | |
Y : ndarray | |
A :math:`m_A` by :math:`m_B` distance matrix is returned. | |
For each :math:`i` and :math:`j`, the metric | |
``dist(u=XA[i], v=XB[j])`` is computed and stored in the | |
:math:`ij` th entry. | |
Raises | |
------ | |
ValueError | |
An exception is thrown if `XA` and `XB` do not have | |
the same number of columns. | |
Notes | |
----- | |
The following are common calling conventions: | |
1. ``Y = cdist(XA, XB, 'euclidean')`` | |
Computes the distance between :math:`m` points using | |
Euclidean distance (2-norm) as the distance metric between the | |
points. The points are arranged as :math:`m` | |
:math:`n`-dimensional row vectors in the matrix X. | |
2. ``Y = cdist(XA, XB, 'minkowski', p=2.)`` | |
Computes the distances using the Minkowski distance | |
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note | |
that this is only a quasi-metric if :math:`0 < p < 1`). | |
3. ``Y = cdist(XA, XB, 'cityblock')`` | |
Computes the city block or Manhattan distance between the | |
points. | |
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)`` | |
Computes the standardized Euclidean distance. The standardized | |
Euclidean distance between two n-vectors ``u`` and ``v`` is | |
.. math:: | |
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}. | |
V is the variance vector; V[i] is the variance computed over all | |
the i'th components of the points. If not passed, it is | |
automatically computed. | |
5. ``Y = cdist(XA, XB, 'sqeuclidean')`` | |
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between | |
the vectors. | |
6. ``Y = cdist(XA, XB, 'cosine')`` | |
Computes the cosine distance between vectors u and v, | |
.. math:: | |
1 - \\frac{u \\cdot v} | |
{{\\|u\\|}_2 {\\|v\\|}_2} | |
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and | |
:math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`. | |
7. ``Y = cdist(XA, XB, 'correlation')`` | |
Computes the correlation distance between vectors u and v. This is | |
.. math:: | |
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} | |
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} | |
where :math:`\\bar{v}` is the mean of the elements of vector v, | |
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. | |
8. ``Y = cdist(XA, XB, 'hamming')`` | |
Computes the normalized Hamming distance, or the proportion of | |
those vector elements between two n-vectors ``u`` and ``v`` | |
which disagree. To save memory, the matrix ``X`` can be of type | |
boolean. | |
9. ``Y = cdist(XA, XB, 'jaccard')`` | |
Computes the Jaccard distance between the points. Given two | |
vectors, ``u`` and ``v``, the Jaccard distance is the | |
proportion of those elements ``u[i]`` and ``v[i]`` that | |
disagree where at least one of them is non-zero. | |
10. ``Y = cdist(XA, XB, 'jensenshannon')`` | |
Computes the Jensen-Shannon distance between two probability arrays. | |
Given two probability vectors, :math:`p` and :math:`q`, the | |
Jensen-Shannon distance is | |
.. math:: | |
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} | |
where :math:`m` is the pointwise mean of :math:`p` and :math:`q` | |
and :math:`D` is the Kullback-Leibler divergence. | |
11. ``Y = cdist(XA, XB, 'chebyshev')`` | |
Computes the Chebyshev distance between the points. The | |
Chebyshev distance between two n-vectors ``u`` and ``v`` is the | |
maximum norm-1 distance between their respective elements. More | |
precisely, the distance is given by | |
.. math:: | |
d(u,v) = \\max_i {|u_i-v_i|}. | |
12. ``Y = cdist(XA, XB, 'canberra')`` | |
Computes the Canberra distance between the points. The | |
Canberra distance between two points ``u`` and ``v`` is | |
.. math:: | |
d(u,v) = \\sum_i \\frac{|u_i-v_i|} | |
{|u_i|+|v_i|}. | |
13. ``Y = cdist(XA, XB, 'braycurtis')`` | |
Computes the Bray-Curtis distance between the points. The | |
Bray-Curtis distance between two points ``u`` and ``v`` is | |
.. math:: | |
d(u,v) = \\frac{\\sum_i (|u_i-v_i|)} | |
{\\sum_i (|u_i+v_i|)} | |
14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)`` | |
Computes the Mahalanobis distance between the points. The | |
Mahalanobis distance between two points ``u`` and ``v`` is | |
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` | |
variable) is the inverse covariance. If ``VI`` is not None, | |
``VI`` will be used as the inverse covariance matrix. | |
15. ``Y = cdist(XA, XB, 'yule')`` | |
Computes the Yule distance between the boolean | |
vectors. (see `yule` function documentation) | |
16. ``Y = cdist(XA, XB, 'matching')`` | |
Synonym for 'hamming'. | |
17. ``Y = cdist(XA, XB, 'dice')`` | |
Computes the Dice distance between the boolean vectors. (see | |
`dice` function documentation) | |
18. ``Y = cdist(XA, XB, 'kulczynski1')`` | |
Computes the kulczynski distance between the boolean | |
vectors. (see `kulczynski1` function documentation) | |
19. ``Y = cdist(XA, XB, 'rogerstanimoto')`` | |
Computes the Rogers-Tanimoto distance between the boolean | |
vectors. (see `rogerstanimoto` function documentation) | |
20. ``Y = cdist(XA, XB, 'russellrao')`` | |
Computes the Russell-Rao distance between the boolean | |
vectors. (see `russellrao` function documentation) | |
21. ``Y = cdist(XA, XB, 'sokalmichener')`` | |
Computes the Sokal-Michener distance between the boolean | |
vectors. (see `sokalmichener` function documentation) | |
22. ``Y = cdist(XA, XB, 'sokalsneath')`` | |
Computes the Sokal-Sneath distance between the vectors. (see | |
`sokalsneath` function documentation) | |
23. ``Y = cdist(XA, XB, f)`` | |
Computes the distance between all pairs of vectors in X | |
using the user supplied 2-arity function f. For example, | |
Euclidean distance between the vectors could be computed | |
as follows:: | |
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum())) | |
Note that you should avoid passing a reference to one of | |
the distance functions defined in this library. For example,:: | |
dm = cdist(XA, XB, sokalsneath) | |
would calculate the pair-wise distances between the vectors in | |
X using the Python function `sokalsneath`. This would result in | |
sokalsneath being called :math:`{n \\choose 2}` times, which | |
is inefficient. Instead, the optimized C version is more | |
efficient, and we call it using the following syntax:: | |
dm = cdist(XA, XB, 'sokalsneath') | |
Examples | |
-------- | |
Find the Euclidean distances between four 2-D coordinates: | |
>>> from scipy.spatial import distance | |
>>> import numpy as np | |
>>> coords = [(35.0456, -85.2672), | |
... (35.1174, -89.9711), | |
... (35.9728, -83.9422), | |
... (36.1667, -86.7833)] | |
>>> distance.cdist(coords, coords, 'euclidean') | |
array([[ 0. , 4.7044, 1.6172, 1.8856], | |
[ 4.7044, 0. , 6.0893, 3.3561], | |
[ 1.6172, 6.0893, 0. , 2.8477], | |
[ 1.8856, 3.3561, 2.8477, 0. ]]) | |
Find the Manhattan distance from a 3-D point to the corners of the unit | |
cube: | |
>>> a = np.array([[0, 0, 0], | |
... [0, 0, 1], | |
... [0, 1, 0], | |
... [0, 1, 1], | |
... [1, 0, 0], | |
... [1, 0, 1], | |
... [1, 1, 0], | |
... [1, 1, 1]]) | |
>>> b = np.array([[ 0.1, 0.2, 0.4]]) | |
>>> distance.cdist(a, b, 'cityblock') | |
array([[ 0.7], | |
[ 0.9], | |
[ 1.3], | |
[ 1.5], | |
[ 1.5], | |
[ 1.7], | |
[ 2.1], | |
[ 2.3]]) | |
""" | |
# You can also call this as: | |
# Y = cdist(XA, XB, 'test_abc') | |
# where 'abc' is the metric being tested. This computes the distance | |
# between all pairs of vectors in XA and XB using the distance metric 'abc' | |
# but with a more succinct, verifiable, but less efficient implementation. | |
XA = np.asarray(XA) | |
XB = np.asarray(XB) | |
s = XA.shape | |
sB = XB.shape | |
if len(s) != 2: | |
raise ValueError('XA must be a 2-dimensional array.') | |
if len(sB) != 2: | |
raise ValueError('XB must be a 2-dimensional array.') | |
if s[1] != sB[1]: | |
raise ValueError('XA and XB must have the same number of columns ' | |
'(i.e. feature dimension.)') | |
mA = s[0] | |
mB = sB[0] | |
n = s[1] | |
if callable(metric): | |
mstr = getattr(metric, '__name__', 'Unknown') | |
metric_info = _METRIC_ALIAS.get(mstr, None) | |
if metric_info is not None: | |
XA, XB, typ, kwargs = _validate_cdist_input( | |
XA, XB, mA, mB, n, metric_info, **kwargs) | |
return _cdist_callable(XA, XB, metric=metric, out=out, **kwargs) | |
elif isinstance(metric, str): | |
mstr = metric.lower() | |
metric_info = _METRIC_ALIAS.get(mstr, None) | |
if metric_info is not None: | |
cdist_fn = metric_info.cdist_func | |
return cdist_fn(XA, XB, out=out, **kwargs) | |
elif mstr.startswith("test_"): | |
metric_info = _TEST_METRICS.get(mstr, None) | |
if metric_info is None: | |
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}') | |
XA, XB, typ, kwargs = _validate_cdist_input( | |
XA, XB, mA, mB, n, metric_info, **kwargs) | |
return _cdist_callable( | |
XA, XB, metric=metric_info.dist_func, out=out, **kwargs) | |
else: | |
raise ValueError('Unknown Distance Metric: %s' % mstr) | |
else: | |
raise TypeError('2nd argument metric must be a string identifier ' | |
'or a function.') | |