peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/tests
/test_distance.py
# | |
# Author: Damian Eads | |
# Date: April 17, 2008 | |
# | |
# Copyright (C) 2008 Damian Eads | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import sys | |
import os.path | |
from functools import wraps, partial | |
import weakref | |
import numpy as np | |
import warnings | |
from numpy.linalg import norm | |
from numpy.testing import (verbose, assert_, | |
assert_array_equal, assert_equal, | |
assert_almost_equal, assert_allclose, | |
break_cycles, IS_PYPY) | |
import pytest | |
import scipy.spatial.distance | |
from scipy.spatial.distance import ( | |
squareform, pdist, cdist, num_obs_y, num_obs_dm, is_valid_dm, is_valid_y, | |
_validate_vector, _METRICS_NAMES) | |
# these were missing: chebyshev cityblock | |
# jensenshannon and seuclidean are referenced by string name. | |
from scipy.spatial.distance import (braycurtis, canberra, chebyshev, cityblock, | |
correlation, cosine, dice, euclidean, | |
hamming, jaccard, jensenshannon, | |
kulczynski1, mahalanobis, | |
minkowski, rogerstanimoto, | |
russellrao, seuclidean, sokalmichener, # noqa: F401 | |
sokalsneath, sqeuclidean, yule) | |
from scipy._lib._util import np_long, np_ulong | |
def metric(request): | |
""" | |
Fixture for all metrics in scipy.spatial.distance | |
""" | |
return request.param | |
_filenames = [ | |
"cdist-X1.txt", | |
"cdist-X2.txt", | |
"iris.txt", | |
"pdist-boolean-inp.txt", | |
"pdist-chebyshev-ml-iris.txt", | |
"pdist-chebyshev-ml.txt", | |
"pdist-cityblock-ml-iris.txt", | |
"pdist-cityblock-ml.txt", | |
"pdist-correlation-ml-iris.txt", | |
"pdist-correlation-ml.txt", | |
"pdist-cosine-ml-iris.txt", | |
"pdist-cosine-ml.txt", | |
"pdist-double-inp.txt", | |
"pdist-euclidean-ml-iris.txt", | |
"pdist-euclidean-ml.txt", | |
"pdist-hamming-ml.txt", | |
"pdist-jaccard-ml.txt", | |
"pdist-jensenshannon-ml-iris.txt", | |
"pdist-jensenshannon-ml.txt", | |
"pdist-minkowski-3.2-ml-iris.txt", | |
"pdist-minkowski-3.2-ml.txt", | |
"pdist-minkowski-5.8-ml-iris.txt", | |
"pdist-seuclidean-ml-iris.txt", | |
"pdist-seuclidean-ml.txt", | |
"pdist-spearman-ml.txt", | |
"random-bool-data.txt", | |
"random-double-data.txt", | |
"random-int-data.txt", | |
"random-uint-data.txt", | |
] | |
_tdist = np.array([[0, 662, 877, 255, 412, 996], | |
[662, 0, 295, 468, 268, 400], | |
[877, 295, 0, 754, 564, 138], | |
[255, 468, 754, 0, 219, 869], | |
[412, 268, 564, 219, 0, 669], | |
[996, 400, 138, 869, 669, 0]], dtype='double') | |
_ytdist = squareform(_tdist) | |
# A hashmap of expected output arrays for the tests. These arrays | |
# come from a list of text files, which are read prior to testing. | |
# Each test loads inputs and outputs from this dictionary. | |
eo = {} | |
def load_testing_files(): | |
for fn in _filenames: | |
name = fn.replace(".txt", "").replace("-ml", "") | |
fqfn = os.path.join(os.path.dirname(__file__), 'data', fn) | |
fp = open(fqfn) | |
eo[name] = np.loadtxt(fp) | |
fp.close() | |
eo['pdist-boolean-inp'] = np.bool_(eo['pdist-boolean-inp']) | |
eo['random-bool-data'] = np.bool_(eo['random-bool-data']) | |
eo['random-float32-data'] = np.float32(eo['random-double-data']) | |
eo['random-int-data'] = np_long(eo['random-int-data']) | |
eo['random-uint-data'] = np_ulong(eo['random-uint-data']) | |
load_testing_files() | |
def _is_32bit(): | |
return np.intp(0).itemsize < 8 | |
def _chk_asarrays(arrays, axis=None): | |
arrays = [np.asanyarray(a) for a in arrays] | |
if axis is None: | |
# np < 1.10 ravel removes subclass from arrays | |
arrays = [np.ravel(a) if a.ndim != 1 else a | |
for a in arrays] | |
axis = 0 | |
arrays = tuple(np.atleast_1d(a) for a in arrays) | |
if axis < 0: | |
if not all(a.ndim == arrays[0].ndim for a in arrays): | |
raise ValueError("array ndim must be the same for neg axis") | |
axis = range(arrays[0].ndim)[axis] | |
return arrays + (axis,) | |
def _chk_weights(arrays, weights=None, axis=None, | |
force_weights=False, simplify_weights=True, | |
pos_only=False, neg_check=False, | |
nan_screen=False, mask_screen=False, | |
ddof=None): | |
chked = _chk_asarrays(arrays, axis=axis) | |
arrays, axis = chked[:-1], chked[-1] | |
simplify_weights = simplify_weights and not force_weights | |
if not force_weights and mask_screen: | |
force_weights = any(np.ma.getmask(a) is not np.ma.nomask for a in arrays) | |
if nan_screen: | |
has_nans = [np.isnan(np.sum(a)) for a in arrays] | |
if any(has_nans): | |
mask_screen = True | |
force_weights = True | |
arrays = tuple(np.ma.masked_invalid(a) if has_nan else a | |
for a, has_nan in zip(arrays, has_nans)) | |
if weights is not None: | |
weights = np.asanyarray(weights) | |
elif force_weights: | |
weights = np.ones(arrays[0].shape[axis]) | |
else: | |
return arrays + (weights, axis) | |
if ddof: | |
weights = _freq_weights(weights) | |
if mask_screen: | |
weights = _weight_masked(arrays, weights, axis) | |
if not all(weights.shape == (a.shape[axis],) for a in arrays): | |
raise ValueError("weights shape must match arrays along axis") | |
if neg_check and (weights < 0).any(): | |
raise ValueError("weights cannot be negative") | |
if pos_only: | |
pos_weights = np.nonzero(weights > 0)[0] | |
if pos_weights.size < weights.size: | |
arrays = tuple(np.take(a, pos_weights, axis=axis) for a in arrays) | |
weights = weights[pos_weights] | |
if simplify_weights and (weights == 1).all(): | |
weights = None | |
return arrays + (weights, axis) | |
def _freq_weights(weights): | |
if weights is None: | |
return weights | |
int_weights = weights.astype(int) | |
if (weights != int_weights).any(): | |
raise ValueError("frequency (integer count-type) weights required %s" % weights) | |
return int_weights | |
def _weight_masked(arrays, weights, axis): | |
if axis is None: | |
axis = 0 | |
weights = np.asanyarray(weights) | |
for a in arrays: | |
axis_mask = np.ma.getmask(a) | |
if axis_mask is np.ma.nomask: | |
continue | |
if a.ndim > 1: | |
not_axes = tuple(i for i in range(a.ndim) if i != axis) | |
axis_mask = axis_mask.any(axis=not_axes) | |
weights *= 1 - axis_mask.astype(int) | |
return weights | |
def _rand_split(arrays, weights, axis, split_per, seed=None): | |
# Coerce `arrays` to float64 if integer, to avoid nan-to-integer issues | |
arrays = [arr.astype(np.float64) if np.issubdtype(arr.dtype, np.integer) | |
else arr for arr in arrays] | |
# inverse operation for stats.collapse_weights | |
weights = np.array(weights, dtype=np.float64) # modified inplace; need a copy | |
seeded_rand = np.random.RandomState(seed) | |
def mytake(a, ix, axis): | |
record = np.asanyarray(np.take(a, ix, axis=axis)) | |
return record.reshape([a.shape[i] if i != axis else 1 | |
for i in range(a.ndim)]) | |
n_obs = arrays[0].shape[axis] | |
assert all(a.shape[axis] == n_obs for a in arrays), \ | |
"data must be aligned on sample axis" | |
for i in range(int(split_per) * n_obs): | |
split_ix = seeded_rand.randint(n_obs + i) | |
prev_w = weights[split_ix] | |
q = seeded_rand.rand() | |
weights[split_ix] = q * prev_w | |
weights = np.append(weights, (1. - q) * prev_w) | |
arrays = [np.append(a, mytake(a, split_ix, axis=axis), | |
axis=axis) for a in arrays] | |
return arrays, weights | |
def _rough_check(a, b, compare_assert=partial(assert_allclose, atol=1e-5), | |
key=lambda x: x, w=None): | |
check_a = key(a) | |
check_b = key(b) | |
try: | |
if np.array(check_a != check_b).any(): # try strict equality for string types | |
compare_assert(check_a, check_b) | |
except AttributeError: # masked array | |
compare_assert(check_a, check_b) | |
except (TypeError, ValueError): # nested data structure | |
for a_i, b_i in zip(check_a, check_b): | |
_rough_check(a_i, b_i, compare_assert=compare_assert) | |
# diff from test_stats: | |
# n_args=2, weight_arg='w', default_axis=None | |
# ma_safe = False, nan_safe = False | |
def _weight_checked(fn, n_args=2, default_axis=None, key=lambda x: x, weight_arg='w', | |
squeeze=True, silent=False, | |
ones_test=True, const_test=True, dup_test=True, | |
split_test=True, dud_test=True, ma_safe=False, ma_very_safe=False, | |
nan_safe=False, split_per=1.0, seed=0, | |
compare_assert=partial(assert_allclose, atol=1e-5)): | |
"""runs fn on its arguments 2 or 3 ways, checks that the results are the same, | |
then returns the same thing it would have returned before""" | |
def wrapped(*args, **kwargs): | |
result = fn(*args, **kwargs) | |
arrays = args[:n_args] | |
rest = args[n_args:] | |
weights = kwargs.get(weight_arg, None) | |
axis = kwargs.get('axis', default_axis) | |
chked = _chk_weights(arrays, weights=weights, axis=axis, | |
force_weights=True, mask_screen=True) | |
arrays, weights, axis = chked[:-2], chked[-2], chked[-1] | |
if squeeze: | |
arrays = [np.atleast_1d(a.squeeze()) for a in arrays] | |
try: | |
# WEIGHTS CHECK 1: EQUAL WEIGHTED OBSERVATIONS | |
args = tuple(arrays) + rest | |
if ones_test: | |
kwargs[weight_arg] = weights | |
_rough_check(result, fn(*args, **kwargs), key=key) | |
if const_test: | |
kwargs[weight_arg] = weights * 101.0 | |
_rough_check(result, fn(*args, **kwargs), key=key) | |
kwargs[weight_arg] = weights * 0.101 | |
try: | |
_rough_check(result, fn(*args, **kwargs), key=key) | |
except Exception as e: | |
raise type(e)((e, arrays, weights)) from e | |
# WEIGHTS CHECK 2: ADDL 0-WEIGHTED OBS | |
if dud_test: | |
# add randomly resampled rows, weighted at 0 | |
dud_arrays, dud_weights = _rand_split(arrays, weights, axis, | |
split_per=split_per, seed=seed) | |
dud_weights[:weights.size] = weights # not exactly 1 because of masked arrays # noqa: E501 | |
dud_weights[weights.size:] = 0 | |
dud_args = tuple(dud_arrays) + rest | |
kwargs[weight_arg] = dud_weights | |
_rough_check(result, fn(*dud_args, **kwargs), key=key) | |
# increase the value of those 0-weighted rows | |
for a in dud_arrays: | |
indexer = [slice(None)] * a.ndim | |
indexer[axis] = slice(weights.size, None) | |
indexer = tuple(indexer) | |
a[indexer] = a[indexer] * 101 | |
dud_args = tuple(dud_arrays) + rest | |
_rough_check(result, fn(*dud_args, **kwargs), key=key) | |
# set those 0-weighted rows to NaNs | |
for a in dud_arrays: | |
indexer = [slice(None)] * a.ndim | |
indexer[axis] = slice(weights.size, None) | |
indexer = tuple(indexer) | |
a[indexer] = a[indexer] * np.nan | |
if kwargs.get("nan_policy", None) == "omit" and nan_safe: | |
dud_args = tuple(dud_arrays) + rest | |
_rough_check(result, fn(*dud_args, **kwargs), key=key) | |
# mask out those nan values | |
if ma_safe: | |
dud_arrays = [np.ma.masked_invalid(a) for a in dud_arrays] | |
dud_args = tuple(dud_arrays) + rest | |
_rough_check(result, fn(*dud_args, **kwargs), key=key) | |
if ma_very_safe: | |
kwargs[weight_arg] = None | |
_rough_check(result, fn(*dud_args, **kwargs), key=key) | |
del dud_arrays, dud_args, dud_weights | |
# WEIGHTS CHECK 3: DUPLICATE DATA (DUMB SPLITTING) | |
if dup_test: | |
dup_arrays = [np.append(a, a, axis=axis) for a in arrays] | |
dup_weights = np.append(weights, weights) / 2.0 | |
dup_args = tuple(dup_arrays) + rest | |
kwargs[weight_arg] = dup_weights | |
_rough_check(result, fn(*dup_args, **kwargs), key=key) | |
del dup_args, dup_arrays, dup_weights | |
# WEIGHT CHECK 3: RANDOM SPLITTING | |
if split_test and split_per > 0: | |
split = _rand_split(arrays, weights, axis, | |
split_per=split_per, seed=seed) | |
split_arrays, split_weights = split | |
split_args = tuple(split_arrays) + rest | |
kwargs[weight_arg] = split_weights | |
_rough_check(result, fn(*split_args, **kwargs), key=key) | |
except NotImplementedError as e: | |
# when some combination of arguments makes weighting impossible, | |
# this is the desired response | |
if not silent: | |
warnings.warn(f"{fn.__name__} NotImplemented weights: {e}", | |
stacklevel=3) | |
return result | |
return wrapped | |
wcdist = _weight_checked(cdist, default_axis=1, squeeze=False) | |
wcdist_no_const = _weight_checked(cdist, default_axis=1, | |
squeeze=False, const_test=False) | |
wpdist = _weight_checked(pdist, default_axis=1, squeeze=False, n_args=1) | |
wpdist_no_const = _weight_checked(pdist, default_axis=1, squeeze=False, | |
const_test=False, n_args=1) | |
wrogerstanimoto = _weight_checked(rogerstanimoto) | |
wmatching = whamming = _weight_checked(hamming, dud_test=False) | |
wyule = _weight_checked(yule) | |
wdice = _weight_checked(dice) | |
wcityblock = _weight_checked(cityblock) | |
wchebyshev = _weight_checked(chebyshev) | |
wcosine = _weight_checked(cosine) | |
wcorrelation = _weight_checked(correlation) | |
wkulczynski1 = _weight_checked(kulczynski1) | |
wjaccard = _weight_checked(jaccard) | |
weuclidean = _weight_checked(euclidean, const_test=False) | |
wsqeuclidean = _weight_checked(sqeuclidean, const_test=False) | |
wbraycurtis = _weight_checked(braycurtis) | |
wcanberra = _weight_checked(canberra, const_test=False) | |
wsokalsneath = _weight_checked(sokalsneath) | |
wsokalmichener = _weight_checked(sokalmichener) | |
wrussellrao = _weight_checked(russellrao) | |
class TestCdist: | |
def setup_method(self): | |
self.rnd_eo_names = ['random-float32-data', 'random-int-data', | |
'random-uint-data', 'random-double-data', | |
'random-bool-data'] | |
self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64], | |
'uint': [np_long, np.float32, np.float64], | |
'int': [np.float32, np.float64], | |
'float32': [np.float64]} | |
def test_cdist_extra_args(self, metric): | |
# Tests that args and kwargs are correctly handled | |
X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]] | |
X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]] | |
kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)} | |
args = [3.14] * 200 | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric=metric, **kwargs) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric=eval(metric), **kwargs) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric="test_" + metric, **kwargs) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric=metric, *args) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric=eval(metric), *args) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, metric="test_" + metric, *args) | |
def test_cdist_extra_args_custom(self): | |
# Tests that args and kwargs are correctly handled | |
# also for custom metric | |
def _my_metric(x, y, arg, kwarg=1, kwarg2=2): | |
return arg + kwarg + kwarg2 | |
X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]] | |
X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]] | |
kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)} | |
args = [3.14] * 200 | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, *args) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, **kwargs) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, kwarg=2.2, kwarg2=3.3) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1.1, 2.2, 3.3) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1.1, 2.2) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1.1) | |
with pytest.raises(TypeError): | |
cdist(X1, X2, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3) | |
# this should work | |
assert_allclose(cdist(X1, X2, metric=_my_metric, | |
arg=1.1, kwarg2=3.3), 5.4) | |
def test_cdist_euclidean_random_unicode(self): | |
eps = 1e-15 | |
X1 = eo['cdist-X1'] | |
X2 = eo['cdist-X2'] | |
Y1 = wcdist_no_const(X1, X2, 'euclidean') | |
Y2 = wcdist_no_const(X1, X2, 'test_euclidean') | |
assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) | |
def test_cdist_minkowski_random(self, p): | |
eps = 1e-13 | |
X1 = eo['cdist-X1'] | |
X2 = eo['cdist-X2'] | |
Y1 = wcdist_no_const(X1, X2, 'minkowski', p=p) | |
Y2 = wcdist_no_const(X1, X2, 'test_minkowski', p=p) | |
assert_allclose(Y1, Y2, atol=0, rtol=eps, verbose=verbose > 2) | |
def test_cdist_cosine_random(self): | |
eps = 1e-14 | |
X1 = eo['cdist-X1'] | |
X2 = eo['cdist-X2'] | |
Y1 = wcdist(X1, X2, 'cosine') | |
# Naive implementation | |
def norms(X): | |
return np.linalg.norm(X, axis=1).reshape(-1, 1) | |
Y2 = 1 - np.dot((X1 / norms(X1)), (X2 / norms(X2)).T) | |
assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) | |
def test_cdist_mahalanobis(self): | |
# 1-dimensional observations | |
x1 = np.array([[2], [3]]) | |
x2 = np.array([[2], [5]]) | |
dist = cdist(x1, x2, metric='mahalanobis') | |
assert_allclose(dist, [[0.0, np.sqrt(4.5)], [np.sqrt(0.5), np.sqrt(2)]]) | |
# 2-dimensional observations | |
x1 = np.array([[0, 0], [-1, 0]]) | |
x2 = np.array([[0, 2], [1, 0], [0, -2]]) | |
dist = cdist(x1, x2, metric='mahalanobis') | |
rt2 = np.sqrt(2) | |
assert_allclose(dist, [[rt2, rt2, rt2], [2, 2 * rt2, 2]]) | |
# Too few observations | |
with pytest.raises(ValueError): | |
cdist([[0, 1]], [[2, 3]], metric='mahalanobis') | |
def test_cdist_custom_notdouble(self): | |
class myclass: | |
pass | |
def _my_metric(x, y): | |
if not isinstance(x[0], myclass) or not isinstance(y[0], myclass): | |
raise ValueError("Type has been changed") | |
return 1.123 | |
data = np.array([[myclass()]], dtype=object) | |
cdist_y = cdist(data, data, metric=_my_metric) | |
right_y = 1.123 | |
assert_equal(cdist_y, right_y, verbose=verbose > 2) | |
def _check_calling_conventions(self, X1, X2, metric, eps=1e-07, **kwargs): | |
# helper function for test_cdist_calling_conventions | |
try: | |
y1 = cdist(X1, X2, metric=metric, **kwargs) | |
y2 = cdist(X1, X2, metric=eval(metric), **kwargs) | |
y3 = cdist(X1, X2, metric="test_" + metric, **kwargs) | |
except Exception as e: | |
e_cls = e.__class__ | |
if verbose > 2: | |
print(e_cls.__name__) | |
print(e) | |
with pytest.raises(e_cls): | |
cdist(X1, X2, metric=metric, **kwargs) | |
with pytest.raises(e_cls): | |
cdist(X1, X2, metric=eval(metric), **kwargs) | |
with pytest.raises(e_cls): | |
cdist(X1, X2, metric="test_" + metric, **kwargs) | |
else: | |
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) | |
assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2) | |
def test_cdist_calling_conventions(self, metric): | |
# Ensures that specifying the metric with a str or scipy function | |
# gives the same behaviour (i.e. same result or same exception). | |
# NOTE: The correctness should be checked within each metric tests. | |
for eo_name in self.rnd_eo_names: | |
# subsampling input data to speed-up tests | |
# NOTE: num samples needs to be > than dimensions for mahalanobis | |
X1 = eo[eo_name][::5, ::-2] | |
X2 = eo[eo_name][1::5, ::2] | |
if verbose > 2: | |
print("testing: ", metric, " with: ", eo_name) | |
if metric in {'dice', 'yule', | |
'rogerstanimoto', | |
'russellrao', 'sokalmichener', | |
'sokalsneath', | |
'kulczynski1'} and 'bool' not in eo_name: | |
# python version permits non-bools e.g. for fuzzy logic | |
continue | |
self._check_calling_conventions(X1, X2, metric) | |
# Testing built-in metrics with extra args | |
if metric == "seuclidean": | |
X12 = np.vstack([X1, X2]).astype(np.float64) | |
V = np.var(X12, axis=0, ddof=1) | |
self._check_calling_conventions(X1, X2, metric, V=V) | |
elif metric == "mahalanobis": | |
X12 = np.vstack([X1, X2]).astype(np.float64) | |
V = np.atleast_2d(np.cov(X12.T)) | |
VI = np.array(np.linalg.inv(V).T) | |
self._check_calling_conventions(X1, X2, metric, VI=VI) | |
def test_cdist_dtype_equivalence(self, metric): | |
# Tests that the result is not affected by type up-casting | |
eps = 1e-07 | |
tests = [(eo['random-bool-data'], self.valid_upcasts['bool']), | |
(eo['random-uint-data'], self.valid_upcasts['uint']), | |
(eo['random-int-data'], self.valid_upcasts['int']), | |
(eo['random-float32-data'], self.valid_upcasts['float32'])] | |
for test in tests: | |
X1 = test[0][::5, ::-2] | |
X2 = test[0][1::5, ::2] | |
try: | |
y1 = cdist(X1, X2, metric=metric) | |
except Exception as e: | |
e_cls = e.__class__ | |
if verbose > 2: | |
print(e_cls.__name__) | |
print(e) | |
for new_type in test[1]: | |
X1new = new_type(X1) | |
X2new = new_type(X2) | |
with pytest.raises(e_cls): | |
cdist(X1new, X2new, metric=metric) | |
else: | |
for new_type in test[1]: | |
y2 = cdist(new_type(X1), new_type(X2), metric=metric) | |
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) | |
def test_cdist_out(self, metric): | |
# Test that out parameter works properly | |
eps = 1e-15 | |
X1 = eo['cdist-X1'] | |
X2 = eo['cdist-X2'] | |
out_r, out_c = X1.shape[0], X2.shape[0] | |
kwargs = dict() | |
if metric == 'minkowski': | |
kwargs['p'] = 1.23 | |
out1 = np.empty((out_r, out_c), dtype=np.float64) | |
Y1 = cdist(X1, X2, metric, **kwargs) | |
Y2 = cdist(X1, X2, metric, out=out1, **kwargs) | |
# test that output is numerically equivalent | |
assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) | |
# test that Y_test1 and out1 are the same object | |
assert_(Y2 is out1) | |
# test for incorrect shape | |
out2 = np.empty((out_r-1, out_c+1), dtype=np.float64) | |
with pytest.raises(ValueError): | |
cdist(X1, X2, metric, out=out2, **kwargs) | |
# test for C-contiguous order | |
out3 = np.empty( | |
(2 * out_r, 2 * out_c), dtype=np.float64)[::2, ::2] | |
out4 = np.empty((out_r, out_c), dtype=np.float64, order='F') | |
with pytest.raises(ValueError): | |
cdist(X1, X2, metric, out=out3, **kwargs) | |
with pytest.raises(ValueError): | |
cdist(X1, X2, metric, out=out4, **kwargs) | |
# test for incorrect dtype | |
out5 = np.empty((out_r, out_c), dtype=np.int64) | |
with pytest.raises(ValueError): | |
cdist(X1, X2, metric, out=out5, **kwargs) | |
def test_striding(self, metric): | |
# test that striding is handled correct with calls to | |
# _copy_array_if_base_present | |
eps = 1e-15 | |
X1 = eo['cdist-X1'][::2, ::2] | |
X2 = eo['cdist-X2'][::2, ::2] | |
X1_copy = X1.copy() | |
X2_copy = X2.copy() | |
# confirm equivalence | |
assert_equal(X1, X1_copy) | |
assert_equal(X2, X2_copy) | |
# confirm contiguity | |
assert_(not X1.flags.c_contiguous) | |
assert_(not X2.flags.c_contiguous) | |
assert_(X1_copy.flags.c_contiguous) | |
assert_(X2_copy.flags.c_contiguous) | |
kwargs = dict() | |
if metric == 'minkowski': | |
kwargs['p'] = 1.23 | |
Y1 = cdist(X1, X2, metric, **kwargs) | |
Y2 = cdist(X1_copy, X2_copy, metric, **kwargs) | |
# test that output is numerically equivalent | |
assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) | |
def test_cdist_refcount(self, metric): | |
x1 = np.random.rand(10, 10) | |
x2 = np.random.rand(10, 10) | |
kwargs = dict() | |
if metric == 'minkowski': | |
kwargs['p'] = 1.23 | |
out = cdist(x1, x2, metric=metric, **kwargs) | |
# Check reference counts aren't messed up. If we only hold weak | |
# references, the arrays should be deallocated. | |
weak_refs = [weakref.ref(v) for v in (x1, x2, out)] | |
del x1, x2, out | |
if IS_PYPY: | |
break_cycles() | |
assert all(weak_ref() is None for weak_ref in weak_refs) | |
class TestPdist: | |
def setup_method(self): | |
self.rnd_eo_names = ['random-float32-data', 'random-int-data', | |
'random-uint-data', 'random-double-data', | |
'random-bool-data'] | |
self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64], | |
'uint': [np_long, np.float32, np.float64], | |
'int': [np.float32, np.float64], | |
'float32': [np.float64]} | |
def test_pdist_extra_args(self, metric): | |
# Tests that args and kwargs are correctly handled | |
X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]] | |
kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)} | |
args = [3.14] * 200 | |
with pytest.raises(TypeError): | |
pdist(X1, metric=metric, **kwargs) | |
with pytest.raises(TypeError): | |
pdist(X1, metric=eval(metric), **kwargs) | |
with pytest.raises(TypeError): | |
pdist(X1, metric="test_" + metric, **kwargs) | |
with pytest.raises(TypeError): | |
pdist(X1, metric=metric, *args) | |
with pytest.raises(TypeError): | |
pdist(X1, metric=eval(metric), *args) | |
with pytest.raises(TypeError): | |
pdist(X1, metric="test_" + metric, *args) | |
def test_pdist_extra_args_custom(self): | |
# Tests that args and kwargs are correctly handled | |
# also for custom metric | |
def _my_metric(x, y, arg, kwarg=1, kwarg2=2): | |
return arg + kwarg + kwarg2 | |
X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]] | |
kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)} | |
args = [3.14] * 200 | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, *args) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, **kwargs) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, kwarg=2.2, kwarg2=3.3) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1, 2, kwarg=2.2) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1, 2, kwarg=2.2) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1.1, 2.2, 3.3) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1.1, 2.2) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1.1) | |
with pytest.raises(TypeError): | |
pdist(X1, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3) | |
# these should work | |
assert_allclose(pdist(X1, metric=_my_metric, | |
arg=1.1, kwarg2=3.3), 5.4) | |
def test_pdist_euclidean_random(self): | |
eps = 1e-07 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-euclidean'] | |
Y_test1 = wpdist_no_const(X, 'euclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_euclidean_random_u(self): | |
eps = 1e-07 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-euclidean'] | |
Y_test1 = wpdist_no_const(X, 'euclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_euclidean_random_float32(self): | |
eps = 1e-07 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-euclidean'] | |
Y_test1 = wpdist_no_const(X, 'euclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_euclidean_random_nonC(self): | |
eps = 1e-07 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-euclidean'] | |
Y_test2 = wpdist_no_const(X, 'test_euclidean') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_euclidean_iris_double(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-euclidean-iris'] | |
Y_test1 = wpdist_no_const(X, 'euclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_euclidean_iris_float32(self): | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-euclidean-iris'] | |
Y_test1 = wpdist_no_const(X, 'euclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_euclidean_iris_nonC(self): | |
# Test pdist(X, 'test_euclidean') [the non-C implementation] on the | |
# Iris data set. | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-euclidean-iris'] | |
Y_test2 = wpdist_no_const(X, 'test_euclidean') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_seuclidean_random(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-seuclidean'] | |
Y_test1 = pdist(X, 'seuclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_seuclidean_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-seuclidean'] | |
Y_test1 = pdist(X, 'seuclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
# Check no error is raise when V has float32 dtype (#11171). | |
V = np.var(X, axis=0, ddof=1) | |
Y_test2 = pdist(X, 'seuclidean', V=V) | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_seuclidean_random_nonC(self): | |
# Test pdist(X, 'test_sqeuclidean') [the non-C implementation] | |
eps = 1e-07 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-seuclidean'] | |
Y_test2 = pdist(X, 'test_seuclidean') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_seuclidean_iris(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-seuclidean-iris'] | |
Y_test1 = pdist(X, 'seuclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_seuclidean_iris_float32(self): | |
# Tests pdist(X, 'seuclidean') on the Iris data set (float32). | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-seuclidean-iris'] | |
Y_test1 = pdist(X, 'seuclidean') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_seuclidean_iris_nonC(self): | |
# Test pdist(X, 'test_seuclidean') [the non-C implementation] on the | |
# Iris data set. | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-seuclidean-iris'] | |
Y_test2 = pdist(X, 'test_seuclidean') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_cosine_random(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-cosine'] | |
Y_test1 = wpdist(X, 'cosine') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_cosine_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-cosine'] | |
Y_test1 = wpdist(X, 'cosine') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_cosine_random_nonC(self): | |
# Test pdist(X, 'test_cosine') [the non-C implementation] | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-cosine'] | |
Y_test2 = wpdist(X, 'test_cosine') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_cosine_iris(self): | |
eps = 1e-05 | |
X = eo['iris'] | |
Y_right = eo['pdist-cosine-iris'] | |
Y_test1 = wpdist(X, 'cosine') | |
assert_allclose(Y_test1, Y_right, atol=eps) | |
def test_pdist_cosine_iris_float32(self): | |
eps = 1e-05 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-cosine-iris'] | |
Y_test1 = wpdist(X, 'cosine') | |
assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2) | |
def test_pdist_cosine_iris_nonC(self): | |
eps = 1e-05 | |
X = eo['iris'] | |
Y_right = eo['pdist-cosine-iris'] | |
Y_test2 = wpdist(X, 'test_cosine') | |
assert_allclose(Y_test2, Y_right, atol=eps) | |
def test_pdist_cosine_bounds(self): | |
# Test adapted from @joernhees's example at gh-5208: case where | |
# cosine distance used to be negative. XXX: very sensitive to the | |
# specific norm computation. | |
x = np.abs(np.random.RandomState(1337).rand(91)) | |
X = np.vstack([x, x]) | |
assert_(wpdist(X, 'cosine')[0] >= 0, | |
msg='cosine distance should be non-negative') | |
def test_pdist_cityblock_random(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-cityblock'] | |
Y_test1 = wpdist_no_const(X, 'cityblock') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_cityblock_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-cityblock'] | |
Y_test1 = wpdist_no_const(X, 'cityblock') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_cityblock_random_nonC(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-cityblock'] | |
Y_test2 = wpdist_no_const(X, 'test_cityblock') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_cityblock_iris(self): | |
eps = 1e-14 | |
X = eo['iris'] | |
Y_right = eo['pdist-cityblock-iris'] | |
Y_test1 = wpdist_no_const(X, 'cityblock') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_cityblock_iris_float32(self): | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-cityblock-iris'] | |
Y_test1 = wpdist_no_const(X, 'cityblock') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_cityblock_iris_nonC(self): | |
# Test pdist(X, 'test_cityblock') [the non-C implementation] on the | |
# Iris data set. | |
eps = 1e-14 | |
X = eo['iris'] | |
Y_right = eo['pdist-cityblock-iris'] | |
Y_test2 = wpdist_no_const(X, 'test_cityblock') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_correlation_random(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-correlation'] | |
Y_test1 = wpdist(X, 'correlation') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_correlation_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-correlation'] | |
Y_test1 = wpdist(X, 'correlation') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_correlation_random_nonC(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-correlation'] | |
Y_test2 = wpdist(X, 'test_correlation') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_correlation_iris(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-correlation-iris'] | |
Y_test1 = wpdist(X, 'correlation') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_correlation_iris_float32(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = np.float32(eo['pdist-correlation-iris']) | |
Y_test1 = wpdist(X, 'correlation') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_correlation_iris_nonC(self): | |
if sys.maxsize > 2**32: | |
eps = 1e-7 | |
else: | |
pytest.skip("see gh-16456") | |
X = eo['iris'] | |
Y_right = eo['pdist-correlation-iris'] | |
Y_test2 = wpdist(X, 'test_correlation') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_minkowski_random_p(self, p): | |
eps = 1e-13 | |
X = eo['pdist-double-inp'] | |
Y1 = wpdist_no_const(X, 'minkowski', p=p) | |
Y2 = wpdist_no_const(X, 'test_minkowski', p=p) | |
assert_allclose(Y1, Y2, atol=0, rtol=eps) | |
def test_pdist_minkowski_random(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-minkowski-3.2'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_minkowski_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-minkowski-3.2'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_minkowski_random_nonC(self): | |
eps = 1e-7 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-minkowski-3.2'] | |
Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2) | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_minkowski_3_2_iris(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-minkowski-3.2-iris'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_minkowski_3_2_iris_float32(self): | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-minkowski-3.2-iris'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_minkowski_3_2_iris_nonC(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-minkowski-3.2-iris'] | |
Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2) | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_minkowski_5_8_iris(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-minkowski-5.8-iris'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8) | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_minkowski_5_8_iris_float32(self): | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-minkowski-5.8-iris'] | |
Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8) | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_minkowski_5_8_iris_nonC(self): | |
eps = 1e-7 | |
X = eo['iris'] | |
Y_right = eo['pdist-minkowski-5.8-iris'] | |
Y_test2 = wpdist_no_const(X, 'test_minkowski', p=5.8) | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_mahalanobis(self): | |
# 1-dimensional observations | |
x = np.array([2.0, 2.0, 3.0, 5.0]).reshape(-1, 1) | |
dist = pdist(x, metric='mahalanobis') | |
assert_allclose(dist, [0.0, np.sqrt(0.5), np.sqrt(4.5), | |
np.sqrt(0.5), np.sqrt(4.5), np.sqrt(2.0)]) | |
# 2-dimensional observations | |
x = np.array([[0, 0], [-1, 0], [0, 2], [1, 0], [0, -2]]) | |
dist = pdist(x, metric='mahalanobis') | |
rt2 = np.sqrt(2) | |
assert_allclose(dist, [rt2, rt2, rt2, rt2, 2, 2 * rt2, 2, 2, 2 * rt2, 2]) | |
# Too few observations | |
with pytest.raises(ValueError): | |
wpdist([[0, 1], [2, 3]], metric='mahalanobis') | |
def test_pdist_hamming_random(self): | |
eps = 1e-15 | |
X = eo['pdist-boolean-inp'] | |
Y_right = eo['pdist-hamming'] | |
Y_test1 = wpdist(X, 'hamming') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_hamming_random_float32(self): | |
eps = 1e-15 | |
X = np.float32(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-hamming'] | |
Y_test1 = wpdist(X, 'hamming') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_hamming_random_nonC(self): | |
eps = 1e-15 | |
X = eo['pdist-boolean-inp'] | |
Y_right = eo['pdist-hamming'] | |
Y_test2 = wpdist(X, 'test_hamming') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_dhamming_random(self): | |
eps = 1e-15 | |
X = np.float64(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-hamming'] | |
Y_test1 = wpdist(X, 'hamming') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_dhamming_random_float32(self): | |
eps = 1e-15 | |
X = np.float32(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-hamming'] | |
Y_test1 = wpdist(X, 'hamming') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_dhamming_random_nonC(self): | |
eps = 1e-15 | |
X = np.float64(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-hamming'] | |
Y_test2 = wpdist(X, 'test_hamming') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_jaccard_random(self): | |
eps = 1e-8 | |
X = eo['pdist-boolean-inp'] | |
Y_right = eo['pdist-jaccard'] | |
Y_test1 = wpdist(X, 'jaccard') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_jaccard_random_float32(self): | |
eps = 1e-8 | |
X = np.float32(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-jaccard'] | |
Y_test1 = wpdist(X, 'jaccard') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_jaccard_random_nonC(self): | |
eps = 1e-8 | |
X = eo['pdist-boolean-inp'] | |
Y_right = eo['pdist-jaccard'] | |
Y_test2 = wpdist(X, 'test_jaccard') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_djaccard_random(self): | |
eps = 1e-8 | |
X = np.float64(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-jaccard'] | |
Y_test1 = wpdist(X, 'jaccard') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_djaccard_random_float32(self): | |
eps = 1e-8 | |
X = np.float32(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-jaccard'] | |
Y_test1 = wpdist(X, 'jaccard') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_djaccard_allzeros(self): | |
eps = 1e-15 | |
Y = pdist(np.zeros((5, 3)), 'jaccard') | |
assert_allclose(np.zeros(10), Y, rtol=eps) | |
def test_pdist_djaccard_random_nonC(self): | |
eps = 1e-8 | |
X = np.float64(eo['pdist-boolean-inp']) | |
Y_right = eo['pdist-jaccard'] | |
Y_test2 = wpdist(X, 'test_jaccard') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_jensenshannon_random(self): | |
eps = 1e-11 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-jensenshannon'] | |
Y_test1 = pdist(X, 'jensenshannon') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_jensenshannon_random_float32(self): | |
eps = 1e-8 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-jensenshannon'] | |
Y_test1 = pdist(X, 'jensenshannon') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_jensenshannon_random_nonC(self): | |
eps = 1e-11 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-jensenshannon'] | |
Y_test2 = pdist(X, 'test_jensenshannon') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_jensenshannon_iris(self): | |
if _is_32bit(): | |
# Test failing on 32-bit Linux on Azure otherwise, see gh-12810 | |
eps = 2.5e-10 | |
else: | |
eps = 1e-12 | |
X = eo['iris'] | |
Y_right = eo['pdist-jensenshannon-iris'] | |
Y_test1 = pdist(X, 'jensenshannon') | |
assert_allclose(Y_test1, Y_right, atol=eps) | |
def test_pdist_jensenshannon_iris_float32(self): | |
eps = 1e-06 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-jensenshannon-iris'] | |
Y_test1 = pdist(X, 'jensenshannon') | |
assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2) | |
def test_pdist_jensenshannon_iris_nonC(self): | |
eps = 5e-5 | |
X = eo['iris'] | |
Y_right = eo['pdist-jensenshannon-iris'] | |
Y_test2 = pdist(X, 'test_jensenshannon') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_djaccard_allzeros_nonC(self): | |
eps = 1e-15 | |
Y = pdist(np.zeros((5, 3)), 'test_jaccard') | |
assert_allclose(np.zeros(10), Y, rtol=eps) | |
def test_pdist_chebyshev_random(self): | |
eps = 1e-8 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-chebyshev'] | |
Y_test1 = pdist(X, 'chebyshev') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_chebyshev_random_float32(self): | |
eps = 1e-7 | |
X = np.float32(eo['pdist-double-inp']) | |
Y_right = eo['pdist-chebyshev'] | |
Y_test1 = pdist(X, 'chebyshev') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_chebyshev_random_nonC(self): | |
eps = 1e-8 | |
X = eo['pdist-double-inp'] | |
Y_right = eo['pdist-chebyshev'] | |
Y_test2 = pdist(X, 'test_chebyshev') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_chebyshev_iris(self): | |
eps = 1e-14 | |
X = eo['iris'] | |
Y_right = eo['pdist-chebyshev-iris'] | |
Y_test1 = pdist(X, 'chebyshev') | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
def test_pdist_chebyshev_iris_float32(self): | |
eps = 1e-5 | |
X = np.float32(eo['iris']) | |
Y_right = eo['pdist-chebyshev-iris'] | |
Y_test1 = pdist(X, 'chebyshev') | |
assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) | |
def test_pdist_chebyshev_iris_nonC(self): | |
eps = 1e-14 | |
X = eo['iris'] | |
Y_right = eo['pdist-chebyshev-iris'] | |
Y_test2 = pdist(X, 'test_chebyshev') | |
assert_allclose(Y_test2, Y_right, rtol=eps) | |
def test_pdist_matching_mtica1(self): | |
# Test matching(*,*) with mtica example #1 (nums). | |
m = wmatching(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wmatching(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
assert_allclose(m, 0.6, rtol=0, atol=1e-10) | |
assert_allclose(m2, 0.6, rtol=0, atol=1e-10) | |
def test_pdist_matching_mtica2(self): | |
# Test matching(*,*) with mtica example #2. | |
m = wmatching(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wmatching(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) | |
assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) | |
def test_pdist_jaccard_mtica1(self): | |
m = wjaccard(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wjaccard(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
assert_allclose(m, 0.6, rtol=0, atol=1e-10) | |
assert_allclose(m2, 0.6, rtol=0, atol=1e-10) | |
def test_pdist_jaccard_mtica2(self): | |
m = wjaccard(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wjaccard(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) | |
assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) | |
def test_pdist_yule_mtica1(self): | |
m = wyule(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wyule(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 2, rtol=0, atol=1e-10) | |
assert_allclose(m2, 2, rtol=0, atol=1e-10) | |
def test_pdist_yule_mtica2(self): | |
m = wyule(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wyule(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 2, rtol=0, atol=1e-10) | |
assert_allclose(m2, 2, rtol=0, atol=1e-10) | |
def test_pdist_dice_mtica1(self): | |
m = wdice(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wdice(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 3 / 7, rtol=0, atol=1e-10) | |
assert_allclose(m2, 3 / 7, rtol=0, atol=1e-10) | |
def test_pdist_dice_mtica2(self): | |
m = wdice(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wdice(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 0.5, rtol=0, atol=1e-10) | |
assert_allclose(m2, 0.5, rtol=0, atol=1e-10) | |
def test_pdist_sokalsneath_mtica1(self): | |
m = sokalsneath(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = sokalsneath(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 3 / 4, rtol=0, atol=1e-10) | |
assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10) | |
def test_pdist_sokalsneath_mtica2(self): | |
m = wsokalsneath(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wsokalsneath(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 4 / 5, rtol=0, atol=1e-10) | |
assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10) | |
def test_pdist_rogerstanimoto_mtica1(self): | |
m = wrogerstanimoto(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wrogerstanimoto(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 3 / 4, rtol=0, atol=1e-10) | |
assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10) | |
def test_pdist_rogerstanimoto_mtica2(self): | |
m = wrogerstanimoto(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wrogerstanimoto(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 4 / 5, rtol=0, atol=1e-10) | |
assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10) | |
def test_pdist_russellrao_mtica1(self): | |
m = wrussellrao(np.array([1, 0, 1, 1, 0]), | |
np.array([1, 1, 0, 1, 1])) | |
m2 = wrussellrao(np.array([1, 0, 1, 1, 0], dtype=bool), | |
np.array([1, 1, 0, 1, 1], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 3 / 5, rtol=0, atol=1e-10) | |
assert_allclose(m2, 3 / 5, rtol=0, atol=1e-10) | |
def test_pdist_russellrao_mtica2(self): | |
m = wrussellrao(np.array([1, 0, 1]), | |
np.array([1, 1, 0])) | |
m2 = wrussellrao(np.array([1, 0, 1], dtype=bool), | |
np.array([1, 1, 0], dtype=bool)) | |
if verbose > 2: | |
print(m) | |
assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) | |
assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) | |
def test_pdist_canberra_match(self): | |
D = eo['iris'] | |
if verbose > 2: | |
print(D.shape, D.dtype) | |
eps = 1e-15 | |
y1 = wpdist_no_const(D, "canberra") | |
y2 = wpdist_no_const(D, "test_canberra") | |
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) | |
def test_pdist_canberra_ticket_711(self): | |
# Test pdist(X, 'canberra') to see if Canberra gives the right result | |
# as reported on gh-1238. | |
eps = 1e-8 | |
pdist_y = wpdist_no_const(([3.3], [3.4]), "canberra") | |
right_y = 0.01492537 | |
assert_allclose(pdist_y, right_y, atol=eps, verbose=verbose > 2) | |
def test_pdist_custom_notdouble(self): | |
# tests that when using a custom metric the data type is not altered | |
class myclass: | |
pass | |
def _my_metric(x, y): | |
if not isinstance(x[0], myclass) or not isinstance(y[0], myclass): | |
raise ValueError("Type has been changed") | |
return 1.123 | |
data = np.array([[myclass()], [myclass()]], dtype=object) | |
pdist_y = pdist(data, metric=_my_metric) | |
right_y = 1.123 | |
assert_equal(pdist_y, right_y, verbose=verbose > 2) | |
def _check_calling_conventions(self, X, metric, eps=1e-07, **kwargs): | |
# helper function for test_pdist_calling_conventions | |
try: | |
y1 = pdist(X, metric=metric, **kwargs) | |
y2 = pdist(X, metric=eval(metric), **kwargs) | |
y3 = pdist(X, metric="test_" + metric, **kwargs) | |
except Exception as e: | |
e_cls = e.__class__ | |
if verbose > 2: | |
print(e_cls.__name__) | |
print(e) | |
with pytest.raises(e_cls): | |
pdist(X, metric=metric, **kwargs) | |
with pytest.raises(e_cls): | |
pdist(X, metric=eval(metric), **kwargs) | |
with pytest.raises(e_cls): | |
pdist(X, metric="test_" + metric, **kwargs) | |
else: | |
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) | |
assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2) | |
def test_pdist_calling_conventions(self, metric): | |
# Ensures that specifying the metric with a str or scipy function | |
# gives the same behaviour (i.e. same result or same exception). | |
# NOTE: The correctness should be checked within each metric tests. | |
# NOTE: Extra args should be checked with a dedicated test | |
for eo_name in self.rnd_eo_names: | |
# subsampling input data to speed-up tests | |
# NOTE: num samples needs to be > than dimensions for mahalanobis | |
X = eo[eo_name][::5, ::2] | |
if verbose > 2: | |
print("testing: ", metric, " with: ", eo_name) | |
if metric in {'dice', 'yule', 'matching', | |
'rogerstanimoto', 'russellrao', 'sokalmichener', | |
'sokalsneath', | |
'kulczynski1'} and 'bool' not in eo_name: | |
# python version permits non-bools e.g. for fuzzy logic | |
continue | |
self._check_calling_conventions(X, metric) | |
# Testing built-in metrics with extra args | |
if metric == "seuclidean": | |
V = np.var(X.astype(np.float64), axis=0, ddof=1) | |
self._check_calling_conventions(X, metric, V=V) | |
elif metric == "mahalanobis": | |
V = np.atleast_2d(np.cov(X.astype(np.float64).T)) | |
VI = np.array(np.linalg.inv(V).T) | |
self._check_calling_conventions(X, metric, VI=VI) | |
def test_pdist_dtype_equivalence(self, metric): | |
# Tests that the result is not affected by type up-casting | |
eps = 1e-07 | |
tests = [(eo['random-bool-data'], self.valid_upcasts['bool']), | |
(eo['random-uint-data'], self.valid_upcasts['uint']), | |
(eo['random-int-data'], self.valid_upcasts['int']), | |
(eo['random-float32-data'], self.valid_upcasts['float32'])] | |
for test in tests: | |
X1 = test[0][::5, ::2] | |
try: | |
y1 = pdist(X1, metric=metric) | |
except Exception as e: | |
e_cls = e.__class__ | |
if verbose > 2: | |
print(e_cls.__name__) | |
print(e) | |
for new_type in test[1]: | |
X2 = new_type(X1) | |
with pytest.raises(e_cls): | |
pdist(X2, metric=metric) | |
else: | |
for new_type in test[1]: | |
y2 = pdist(new_type(X1), metric=metric) | |
assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) | |
def test_pdist_out(self, metric): | |
# Test that out parameter works properly | |
eps = 1e-15 | |
X = eo['random-float32-data'][::5, ::2] | |
out_size = int((X.shape[0] * (X.shape[0] - 1)) / 2) | |
kwargs = dict() | |
if metric == 'minkowski': | |
kwargs['p'] = 1.23 | |
out1 = np.empty(out_size, dtype=np.float64) | |
Y_right = pdist(X, metric, **kwargs) | |
Y_test1 = pdist(X, metric, out=out1, **kwargs) | |
# test that output is numerically equivalent | |
assert_allclose(Y_test1, Y_right, rtol=eps) | |
# test that Y_test1 and out1 are the same object | |
assert_(Y_test1 is out1) | |
# test for incorrect shape | |
out2 = np.empty(out_size + 3, dtype=np.float64) | |
with pytest.raises(ValueError): | |
pdist(X, metric, out=out2, **kwargs) | |
# test for (C-)contiguous output | |
out3 = np.empty(2 * out_size, dtype=np.float64)[::2] | |
with pytest.raises(ValueError): | |
pdist(X, metric, out=out3, **kwargs) | |
# test for incorrect dtype | |
out5 = np.empty(out_size, dtype=np.int64) | |
with pytest.raises(ValueError): | |
pdist(X, metric, out=out5, **kwargs) | |
def test_striding(self, metric): | |
# test that striding is handled correct with calls to | |
# _copy_array_if_base_present | |
eps = 1e-15 | |
X = eo['random-float32-data'][::5, ::2] | |
X_copy = X.copy() | |
# confirm contiguity | |
assert_(not X.flags.c_contiguous) | |
assert_(X_copy.flags.c_contiguous) | |
kwargs = dict() | |
if metric == 'minkowski': | |
kwargs['p'] = 1.23 | |
Y1 = pdist(X, metric, **kwargs) | |
Y2 = pdist(X_copy, metric, **kwargs) | |
# test that output is numerically equivalent | |
assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) | |
class TestSomeDistanceFunctions: | |
def setup_method(self): | |
# 1D arrays | |
x = np.array([1.0, 2.0, 3.0]) | |
y = np.array([1.0, 1.0, 5.0]) | |
self.cases = [(x, y)] | |
def test_minkowski(self): | |
for x, y in self.cases: | |
dist1 = minkowski(x, y, p=1) | |
assert_almost_equal(dist1, 3.0) | |
dist1p5 = minkowski(x, y, p=1.5) | |
assert_almost_equal(dist1p5, (1.0 + 2.0**1.5)**(2. / 3)) | |
dist2 = minkowski(x, y, p=2) | |
assert_almost_equal(dist2, 5.0 ** 0.5) | |
dist0p25 = minkowski(x, y, p=0.25) | |
assert_almost_equal(dist0p25, (1.0 + 2.0 ** 0.25) ** 4) | |
# Check that casting input to minimum scalar type doesn't affect result | |
# (issue #10262). This could be extended to more test inputs with | |
# np.min_scalar_type(np.max(input_matrix)). | |
a = np.array([352, 916]) | |
b = np.array([350, 660]) | |
assert_equal(minkowski(a, b), | |
minkowski(a.astype('uint16'), b.astype('uint16'))) | |
def test_euclidean(self): | |
for x, y in self.cases: | |
dist = weuclidean(x, y) | |
assert_almost_equal(dist, np.sqrt(5)) | |
def test_sqeuclidean(self): | |
for x, y in self.cases: | |
dist = wsqeuclidean(x, y) | |
assert_almost_equal(dist, 5.0) | |
def test_cosine(self): | |
for x, y in self.cases: | |
dist = wcosine(x, y) | |
assert_almost_equal(dist, 1.0 - 18.0 / (np.sqrt(14) * np.sqrt(27))) | |
def test_cosine_output_dtype(self): | |
# Regression test for gh-19541 | |
assert isinstance(wcorrelation([1, 1], [1, 1], centered=False), float) | |
assert isinstance(wcosine([1, 1], [1, 1]), float) | |
def test_correlation(self): | |
xm = np.array([-1.0, 0, 1.0]) | |
ym = np.array([-4.0 / 3, -4.0 / 3, 5.0 - 7.0 / 3]) | |
for x, y in self.cases: | |
dist = wcorrelation(x, y) | |
assert_almost_equal(dist, 1.0 - np.dot(xm, ym) / (norm(xm) * norm(ym))) | |
def test_correlation_positive(self): | |
# Regression test for gh-12320 (negative return value due to rounding | |
x = np.array([0., 0., 0., 0., 0., 0., -2., 0., 0., 0., -2., -2., -2., | |
0., -2., 0., -2., 0., 0., -1., -2., 0., 1., 0., 0., -2., | |
0., 0., -2., 0., -2., -2., -2., -2., -2., -2., 0.]) | |
y = np.array([1., 1., 1., 1., 1., 1., -1., 1., 1., 1., -1., -1., -1., | |
1., -1., 1., -1., 1., 1., 0., -1., 1., 2., 1., 1., -1., | |
1., 1., -1., 1., -1., -1., -1., -1., -1., -1., 1.]) | |
dist = correlation(x, y) | |
assert 0 <= dist <= 10 * np.finfo(np.float64).eps | |
def test_mahalanobis(self): | |
x = np.array([1.0, 2.0, 3.0]) | |
y = np.array([1.0, 1.0, 5.0]) | |
vi = np.array([[2.0, 1.0, 0.0], [1.0, 2.0, 1.0], [0.0, 1.0, 2.0]]) | |
for x, y in self.cases: | |
dist = mahalanobis(x, y, vi) | |
assert_almost_equal(dist, np.sqrt(6.0)) | |
class TestSquareForm: | |
checked_dtypes = [np.float64, np.float32, np.int32, np.int8, bool] | |
def test_squareform_matrix(self): | |
for dtype in self.checked_dtypes: | |
self.check_squareform_matrix(dtype) | |
def test_squareform_vector(self): | |
for dtype in self.checked_dtypes: | |
self.check_squareform_vector(dtype) | |
def check_squareform_matrix(self, dtype): | |
A = np.zeros((0, 0), dtype=dtype) | |
rA = squareform(A) | |
assert_equal(rA.shape, (0,)) | |
assert_equal(rA.dtype, dtype) | |
A = np.zeros((1, 1), dtype=dtype) | |
rA = squareform(A) | |
assert_equal(rA.shape, (0,)) | |
assert_equal(rA.dtype, dtype) | |
A = np.array([[0, 4.2], [4.2, 0]], dtype=dtype) | |
rA = squareform(A) | |
assert_equal(rA.shape, (1,)) | |
assert_equal(rA.dtype, dtype) | |
assert_array_equal(rA, np.array([4.2], dtype=dtype)) | |
def check_squareform_vector(self, dtype): | |
v = np.zeros((0,), dtype=dtype) | |
rv = squareform(v) | |
assert_equal(rv.shape, (1, 1)) | |
assert_equal(rv.dtype, dtype) | |
assert_array_equal(rv, [[0]]) | |
v = np.array([8.3], dtype=dtype) | |
rv = squareform(v) | |
assert_equal(rv.shape, (2, 2)) | |
assert_equal(rv.dtype, dtype) | |
assert_array_equal(rv, np.array([[0, 8.3], [8.3, 0]], dtype=dtype)) | |
def test_squareform_multi_matrix(self): | |
for n in range(2, 5): | |
self.check_squareform_multi_matrix(n) | |
def check_squareform_multi_matrix(self, n): | |
X = np.random.rand(n, 4) | |
Y = wpdist_no_const(X) | |
assert_equal(len(Y.shape), 1) | |
A = squareform(Y) | |
Yr = squareform(A) | |
s = A.shape | |
k = 0 | |
if verbose >= 3: | |
print(A.shape, Y.shape, Yr.shape) | |
assert_equal(len(s), 2) | |
assert_equal(len(Yr.shape), 1) | |
assert_equal(s[0], s[1]) | |
for i in range(0, s[0]): | |
for j in range(i + 1, s[1]): | |
if i != j: | |
assert_equal(A[i, j], Y[k]) | |
k += 1 | |
else: | |
assert_equal(A[i, j], 0) | |
class TestNumObsY: | |
def test_num_obs_y_multi_matrix(self): | |
for n in range(2, 10): | |
X = np.random.rand(n, 4) | |
Y = wpdist_no_const(X) | |
assert_equal(num_obs_y(Y), n) | |
def test_num_obs_y_1(self): | |
# Tests num_obs_y(y) on a condensed distance matrix over 1 | |
# observations. Expecting exception. | |
with pytest.raises(ValueError): | |
self.check_y(1) | |
def test_num_obs_y_2(self): | |
# Tests num_obs_y(y) on a condensed distance matrix over 2 | |
# observations. | |
assert_(self.check_y(2)) | |
def test_num_obs_y_3(self): | |
assert_(self.check_y(3)) | |
def test_num_obs_y_4(self): | |
assert_(self.check_y(4)) | |
def test_num_obs_y_5_10(self): | |
for i in range(5, 16): | |
self.minit(i) | |
def test_num_obs_y_2_100(self): | |
# Tests num_obs_y(y) on 100 improper condensed distance matrices. | |
# Expecting exception. | |
a = set() | |
for n in range(2, 16): | |
a.add(n * (n - 1) / 2) | |
for i in range(5, 105): | |
if i not in a: | |
with pytest.raises(ValueError): | |
self.bad_y(i) | |
def minit(self, n): | |
assert_(self.check_y(n)) | |
def bad_y(self, n): | |
y = np.random.rand(n) | |
return num_obs_y(y) | |
def check_y(self, n): | |
return num_obs_y(self.make_y(n)) == n | |
def make_y(self, n): | |
return np.random.rand((n * (n - 1)) // 2) | |
class TestNumObsDM: | |
def test_num_obs_dm_multi_matrix(self): | |
for n in range(1, 10): | |
X = np.random.rand(n, 4) | |
Y = wpdist_no_const(X) | |
A = squareform(Y) | |
if verbose >= 3: | |
print(A.shape, Y.shape) | |
assert_equal(num_obs_dm(A), n) | |
def test_num_obs_dm_0(self): | |
# Tests num_obs_dm(D) on a 0x0 distance matrix. Expecting exception. | |
assert_(self.check_D(0)) | |
def test_num_obs_dm_1(self): | |
# Tests num_obs_dm(D) on a 1x1 distance matrix. | |
assert_(self.check_D(1)) | |
def test_num_obs_dm_2(self): | |
assert_(self.check_D(2)) | |
def test_num_obs_dm_3(self): | |
assert_(self.check_D(2)) | |
def test_num_obs_dm_4(self): | |
assert_(self.check_D(4)) | |
def check_D(self, n): | |
return num_obs_dm(self.make_D(n)) == n | |
def make_D(self, n): | |
return np.random.rand(n, n) | |
def is_valid_dm_throw(D): | |
return is_valid_dm(D, throw=True) | |
class TestIsValidDM: | |
def test_is_valid_dm_improper_shape_1D_E(self): | |
D = np.zeros((5,), dtype=np.float64) | |
with pytest.raises(ValueError): | |
is_valid_dm_throw(D) | |
def test_is_valid_dm_improper_shape_1D_F(self): | |
D = np.zeros((5,), dtype=np.float64) | |
assert_equal(is_valid_dm(D), False) | |
def test_is_valid_dm_improper_shape_3D_E(self): | |
D = np.zeros((3, 3, 3), dtype=np.float64) | |
with pytest.raises(ValueError): | |
is_valid_dm_throw(D) | |
def test_is_valid_dm_improper_shape_3D_F(self): | |
D = np.zeros((3, 3, 3), dtype=np.float64) | |
assert_equal(is_valid_dm(D), False) | |
def test_is_valid_dm_nonzero_diagonal_E(self): | |
y = np.random.rand(10) | |
D = squareform(y) | |
for i in range(0, 5): | |
D[i, i] = 2.0 | |
with pytest.raises(ValueError): | |
is_valid_dm_throw(D) | |
def test_is_valid_dm_nonzero_diagonal_F(self): | |
y = np.random.rand(10) | |
D = squareform(y) | |
for i in range(0, 5): | |
D[i, i] = 2.0 | |
assert_equal(is_valid_dm(D), False) | |
def test_is_valid_dm_asymmetric_E(self): | |
y = np.random.rand(10) | |
D = squareform(y) | |
D[1, 3] = D[3, 1] + 1 | |
with pytest.raises(ValueError): | |
is_valid_dm_throw(D) | |
def test_is_valid_dm_asymmetric_F(self): | |
y = np.random.rand(10) | |
D = squareform(y) | |
D[1, 3] = D[3, 1] + 1 | |
assert_equal(is_valid_dm(D), False) | |
def test_is_valid_dm_correct_1_by_1(self): | |
D = np.zeros((1, 1), dtype=np.float64) | |
assert_equal(is_valid_dm(D), True) | |
def test_is_valid_dm_correct_2_by_2(self): | |
y = np.random.rand(1) | |
D = squareform(y) | |
assert_equal(is_valid_dm(D), True) | |
def test_is_valid_dm_correct_3_by_3(self): | |
y = np.random.rand(3) | |
D = squareform(y) | |
assert_equal(is_valid_dm(D), True) | |
def test_is_valid_dm_correct_4_by_4(self): | |
y = np.random.rand(6) | |
D = squareform(y) | |
assert_equal(is_valid_dm(D), True) | |
def test_is_valid_dm_correct_5_by_5(self): | |
y = np.random.rand(10) | |
D = squareform(y) | |
assert_equal(is_valid_dm(D), True) | |
def is_valid_y_throw(y): | |
return is_valid_y(y, throw=True) | |
class TestIsValidY: | |
# If test case name ends on "_E" then an exception is expected for the | |
# given input, if it ends in "_F" then False is expected for the is_valid_y | |
# check. Otherwise the input is expected to be valid. | |
def test_is_valid_y_improper_shape_2D_E(self): | |
y = np.zeros((3, 3,), dtype=np.float64) | |
with pytest.raises(ValueError): | |
is_valid_y_throw(y) | |
def test_is_valid_y_improper_shape_2D_F(self): | |
y = np.zeros((3, 3,), dtype=np.float64) | |
assert_equal(is_valid_y(y), False) | |
def test_is_valid_y_improper_shape_3D_E(self): | |
y = np.zeros((3, 3, 3), dtype=np.float64) | |
with pytest.raises(ValueError): | |
is_valid_y_throw(y) | |
def test_is_valid_y_improper_shape_3D_F(self): | |
y = np.zeros((3, 3, 3), dtype=np.float64) | |
assert_equal(is_valid_y(y), False) | |
def test_is_valid_y_correct_2_by_2(self): | |
y = self.correct_n_by_n(2) | |
assert_equal(is_valid_y(y), True) | |
def test_is_valid_y_correct_3_by_3(self): | |
y = self.correct_n_by_n(3) | |
assert_equal(is_valid_y(y), True) | |
def test_is_valid_y_correct_4_by_4(self): | |
y = self.correct_n_by_n(4) | |
assert_equal(is_valid_y(y), True) | |
def test_is_valid_y_correct_5_by_5(self): | |
y = self.correct_n_by_n(5) | |
assert_equal(is_valid_y(y), True) | |
def test_is_valid_y_2_100(self): | |
a = set() | |
for n in range(2, 16): | |
a.add(n * (n - 1) / 2) | |
for i in range(5, 105): | |
if i not in a: | |
with pytest.raises(ValueError): | |
self.bad_y(i) | |
def bad_y(self, n): | |
y = np.random.rand(n) | |
return is_valid_y(y, throw=True) | |
def correct_n_by_n(self, n): | |
y = np.random.rand((n * (n - 1)) // 2) | |
return y | |
def test_bad_p(p): | |
# Raise ValueError if p <=0. | |
with pytest.raises(ValueError): | |
minkowski([1, 2], [3, 4], p) | |
with pytest.raises(ValueError): | |
minkowski([1, 2], [3, 4], p, [1, 1]) | |
def test_sokalsneath_all_false(): | |
# Regression test for ticket #876 | |
with pytest.raises(ValueError): | |
sokalsneath([False, False, False], [False, False, False]) | |
def test_canberra(): | |
# Regression test for ticket #1430. | |
assert_equal(wcanberra([1, 2, 3], [2, 4, 6]), 1) | |
assert_equal(wcanberra([1, 1, 0, 0], [1, 0, 1, 0]), 2) | |
def test_braycurtis(): | |
# Regression test for ticket #1430. | |
assert_almost_equal(wbraycurtis([1, 2, 3], [2, 4, 6]), 1. / 3, decimal=15) | |
assert_almost_equal(wbraycurtis([1, 1, 0, 0], [1, 0, 1, 0]), 0.5, decimal=15) | |
def test_euclideans(): | |
# Regression test for ticket #1328. | |
x1 = np.array([1, 1, 1]) | |
x2 = np.array([0, 0, 0]) | |
# Basic test of the calculation. | |
assert_almost_equal(wsqeuclidean(x1, x2), 3.0, decimal=14) | |
assert_almost_equal(weuclidean(x1, x2), np.sqrt(3), decimal=14) | |
# Check flattening for (1, N) or (N, 1) inputs | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
weuclidean(x1[np.newaxis, :], x2[np.newaxis, :]), np.sqrt(3) | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
wsqeuclidean(x1[np.newaxis, :], x2[np.newaxis, :]) | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
wsqeuclidean(x1[:, np.newaxis], x2[:, np.newaxis]) | |
# Distance metrics only defined for vectors (= 1-D) | |
x = np.arange(4).reshape(2, 2) | |
with pytest.raises(ValueError): | |
weuclidean(x, x) | |
with pytest.raises(ValueError): | |
wsqeuclidean(x, x) | |
# Another check, with random data. | |
rs = np.random.RandomState(1234567890) | |
x = rs.rand(10) | |
y = rs.rand(10) | |
d1 = weuclidean(x, y) | |
d2 = wsqeuclidean(x, y) | |
assert_almost_equal(d1**2, d2, decimal=14) | |
def test_hamming_unequal_length(): | |
# Regression test for gh-4290. | |
x = [0, 0, 1] | |
y = [1, 0, 1, 0] | |
# Used to give an AttributeError from ndarray.mean called on bool | |
with pytest.raises(ValueError): | |
whamming(x, y) | |
def test_hamming_unequal_length_with_w(): | |
u = [0, 0, 1] | |
v = [0, 0, 1] | |
w = [1, 0, 1, 0] | |
msg = "'w' should have the same length as 'u' and 'v'." | |
with pytest.raises(ValueError, match=msg): | |
whamming(u, v, w) | |
def test_hamming_string_array(): | |
# https://github.com/scikit-learn/scikit-learn/issues/4014 | |
a = np.array(['eggs', 'spam', 'spam', 'eggs', 'spam', 'spam', 'spam', | |
'spam', 'spam', 'spam', 'spam', 'eggs', 'eggs', 'spam', | |
'eggs', 'eggs', 'eggs', 'eggs', 'eggs', 'spam'], | |
dtype='|S4') | |
b = np.array(['eggs', 'spam', 'spam', 'eggs', 'eggs', 'spam', 'spam', | |
'spam', 'spam', 'eggs', 'spam', 'eggs', 'spam', 'eggs', | |
'spam', 'spam', 'eggs', 'spam', 'spam', 'eggs'], | |
dtype='|S4') | |
desired = 0.45 | |
assert_allclose(whamming(a, b), desired) | |
def test_minkowski_w(): | |
# Regression test for gh-8142. | |
arr_in = np.array([[83.33333333, 100., 83.33333333, 100., 36., | |
60., 90., 150., 24., 48.], | |
[83.33333333, 100., 83.33333333, 100., 36., | |
60., 90., 150., 24., 48.]]) | |
p0 = pdist(arr_in, metric='minkowski', p=1, w=None) | |
c0 = cdist(arr_in, arr_in, metric='minkowski', p=1, w=None) | |
p1 = pdist(arr_in, metric='minkowski', p=1) | |
c1 = cdist(arr_in, arr_in, metric='minkowski', p=1) | |
assert_allclose(p0, p1, rtol=1e-15) | |
assert_allclose(c0, c1, rtol=1e-15) | |
def test_sqeuclidean_dtypes(): | |
# Assert that sqeuclidean returns the right types of values. | |
# Integer types should be converted to floating for stability. | |
# Floating point types should be the same as the input. | |
x = [1, 2, 3] | |
y = [4, 5, 6] | |
for dtype in [np.int8, np.int16, np.int32, np.int64]: | |
d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype)) | |
assert_(np.issubdtype(d.dtype, np.floating)) | |
for dtype in [np.uint8, np.uint16, np.uint32, np.uint64]: | |
umax = np.iinfo(dtype).max | |
d1 = wsqeuclidean([0], np.asarray([umax], dtype=dtype)) | |
d2 = wsqeuclidean(np.asarray([umax], dtype=dtype), [0]) | |
assert_equal(d1, d2) | |
assert_equal(d1, np.float64(umax)**2) | |
dtypes = [np.float32, np.float64, np.complex64, np.complex128] | |
for dtype in ['float16', 'float128']: | |
# These aren't present in older numpy versions; float128 may also not | |
# be present on all platforms. | |
if hasattr(np, dtype): | |
dtypes.append(getattr(np, dtype)) | |
for dtype in dtypes: | |
d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype)) | |
assert_equal(d.dtype, dtype) | |
def test_sokalmichener(): | |
# Test that sokalmichener has the same result for bool and int inputs. | |
p = [True, True, False] | |
q = [True, False, True] | |
x = [int(b) for b in p] | |
y = [int(b) for b in q] | |
dist1 = sokalmichener(p, q) | |
dist2 = sokalmichener(x, y) | |
# These should be exactly the same. | |
assert_equal(dist1, dist2) | |
def test_sokalmichener_with_weight(): | |
# from: | 1 | | 0 | | |
# to: | 1 | | 1 | | |
# weight| | 1 | | 0.2 | |
ntf = 0 * 1 + 0 * 0.2 | |
nft = 0 * 1 + 1 * 0.2 | |
ntt = 1 * 1 + 0 * 0.2 | |
nff = 0 * 1 + 0 * 0.2 | |
expected = 2 * (nft + ntf) / (ntt + nff + 2 * (nft + ntf)) | |
assert_almost_equal(expected, 0.2857143) | |
actual = sokalmichener([1, 0], [1, 1], w=[1, 0.2]) | |
assert_almost_equal(expected, actual) | |
a1 = [False, False, True, True, True, False, False, True, True, True, True, | |
True, True, False, True, False, False, False, True, True] | |
a2 = [True, True, True, False, False, True, True, True, False, True, | |
True, True, True, True, False, False, False, True, True, True] | |
for w in [0.05, 0.1, 1.0, 20.0]: | |
assert_almost_equal(sokalmichener(a2, a1, [w]), 0.6666666666666666) | |
def test_modifies_input(metric): | |
# test whether cdist or pdist modifies input arrays | |
X1 = np.asarray([[1., 2., 3.], | |
[1.2, 2.3, 3.4], | |
[2.2, 2.3, 4.4], | |
[22.2, 23.3, 44.4]]) | |
X1_copy = X1.copy() | |
cdist(X1, X1, metric) | |
pdist(X1, metric) | |
assert_array_equal(X1, X1_copy) | |
def test_Xdist_deprecated_args(metric): | |
# testing both cdist and pdist deprecated warnings | |
X1 = np.asarray([[1., 2., 3.], | |
[1.2, 2.3, 3.4], | |
[2.2, 2.3, 4.4], | |
[22.2, 23.3, 44.4]]) | |
with pytest.raises(TypeError): | |
cdist(X1, X1, metric, 2.) | |
with pytest.raises(TypeError): | |
pdist(X1, metric, 2.) | |
for arg in ["p", "V", "VI"]: | |
kwargs = {arg: "foo"} | |
if ((arg == "V" and metric == "seuclidean") | |
or (arg == "VI" and metric == "mahalanobis") | |
or (arg == "p" and metric == "minkowski")): | |
continue | |
with pytest.raises(TypeError): | |
cdist(X1, X1, metric, **kwargs) | |
with pytest.raises(TypeError): | |
pdist(X1, metric, **kwargs) | |
def test_Xdist_non_negative_weights(metric): | |
X = eo['random-float32-data'][::5, ::2] | |
w = np.ones(X.shape[1]) | |
w[::5] = -w[::5] | |
if metric in ['seuclidean', 'mahalanobis', 'jensenshannon']: | |
pytest.skip("not applicable") | |
for m in [metric, eval(metric), "test_" + metric]: | |
with pytest.raises(ValueError): | |
pdist(X, m, w=w) | |
with pytest.raises(ValueError): | |
cdist(X, X, m, w=w) | |
def test__validate_vector(): | |
x = [1, 2, 3] | |
y = _validate_vector(x) | |
assert_array_equal(y, x) | |
y = _validate_vector(x, dtype=np.float64) | |
assert_array_equal(y, x) | |
assert_equal(y.dtype, np.float64) | |
x = [1] | |
y = _validate_vector(x) | |
assert_equal(y.ndim, 1) | |
assert_equal(y, x) | |
x = 1 | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
_validate_vector(x) | |
x = np.arange(5).reshape(1, -1, 1) | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
_validate_vector(x) | |
x = [[1, 2], [3, 4]] | |
with pytest.raises(ValueError, match="Input vector should be 1-D"): | |
_validate_vector(x) | |
def test_yule_all_same(): | |
# Test yule avoids a divide by zero when exactly equal | |
x = np.ones((2, 6), dtype=bool) | |
d = wyule(x[0], x[0]) | |
assert d == 0.0 | |
d = pdist(x, 'yule') | |
assert_equal(d, [0.0]) | |
d = cdist(x[:1], x[:1], 'yule') | |
assert_equal(d, [[0.0]]) | |
def test_jensenshannon(): | |
assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0), | |
1.0) | |
assert_almost_equal(jensenshannon([1.0, 0.0], [0.5, 0.5]), | |
0.46450140402245893) | |
assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0]), 0.0) | |
assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0), | |
[0.0, 0.0]) | |
assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1), | |
[0.0649045]) | |
assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0, | |
keepdims=True), [[0.0, 0.0]]) | |
assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1, | |
keepdims=True), [[0.0649045]]) | |
a = np.array([[1, 2, 3, 4], | |
[5, 6, 7, 8], | |
[9, 10, 11, 12]]) | |
b = np.array([[13, 14, 15, 16], | |
[17, 18, 19, 20], | |
[21, 22, 23, 24]]) | |
assert_almost_equal(jensenshannon(a, b, axis=0), | |
[0.1954288, 0.1447697, 0.1138377, 0.0927636]) | |
assert_almost_equal(jensenshannon(a, b, axis=1), | |
[0.1402339, 0.0399106, 0.0201815]) | |
def test_gh_17703(): | |
arr_1 = np.array([1, 0, 0]) | |
arr_2 = np.array([2, 0, 0]) | |
expected = dice(arr_1, arr_2) | |
actual = pdist([arr_1, arr_2], metric='dice') | |
assert_allclose(actual, expected) | |
actual = cdist(np.atleast_2d(arr_1), | |
np.atleast_2d(arr_2), metric='dice') | |
assert_allclose(actual, expected) | |
def test_immutable_input(metric): | |
if metric in ("jensenshannon", "mahalanobis", "seuclidean"): | |
pytest.skip("not applicable") | |
x = np.arange(10, dtype=np.float64) | |
x.setflags(write=False) | |
getattr(scipy.spatial.distance, metric)(x, x, w=x) | |