peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_mptestutils.py
import os | |
import sys | |
import time | |
from itertools import zip_longest | |
import numpy as np | |
from numpy.testing import assert_ | |
import pytest | |
from scipy.special._testutils import assert_func_equal | |
try: | |
import mpmath | |
except ImportError: | |
pass | |
# ------------------------------------------------------------------------------ | |
# Machinery for systematic tests with mpmath | |
# ------------------------------------------------------------------------------ | |
class Arg: | |
"""Generate a set of numbers on the real axis, concentrating on | |
'interesting' regions and covering all orders of magnitude. | |
""" | |
def __init__(self, a=-np.inf, b=np.inf, inclusive_a=True, inclusive_b=True): | |
if a > b: | |
raise ValueError("a should be less than or equal to b") | |
if a == -np.inf: | |
a = -0.5*np.finfo(float).max | |
if b == np.inf: | |
b = 0.5*np.finfo(float).max | |
self.a, self.b = a, b | |
self.inclusive_a, self.inclusive_b = inclusive_a, inclusive_b | |
def _positive_values(self, a, b, n): | |
if a < 0: | |
raise ValueError("a should be positive") | |
# Try to put half of the points into a linspace between a and | |
# 10 the other half in a logspace. | |
if n % 2 == 0: | |
nlogpts = n//2 | |
nlinpts = nlogpts | |
else: | |
nlogpts = n//2 | |
nlinpts = nlogpts + 1 | |
if a >= 10: | |
# Outside of linspace range; just return a logspace. | |
pts = np.logspace(np.log10(a), np.log10(b), n) | |
elif a > 0 and b < 10: | |
# Outside of logspace range; just return a linspace | |
pts = np.linspace(a, b, n) | |
elif a > 0: | |
# Linspace between a and 10 and a logspace between 10 and | |
# b. | |
linpts = np.linspace(a, 10, nlinpts, endpoint=False) | |
logpts = np.logspace(1, np.log10(b), nlogpts) | |
pts = np.hstack((linpts, logpts)) | |
elif a == 0 and b <= 10: | |
# Linspace between 0 and b and a logspace between 0 and | |
# the smallest positive point of the linspace | |
linpts = np.linspace(0, b, nlinpts) | |
if linpts.size > 1: | |
right = np.log10(linpts[1]) | |
else: | |
right = -30 | |
logpts = np.logspace(-30, right, nlogpts, endpoint=False) | |
pts = np.hstack((logpts, linpts)) | |
else: | |
# Linspace between 0 and 10, logspace between 0 and the | |
# smallest positive point of the linspace, and a logspace | |
# between 10 and b. | |
if nlogpts % 2 == 0: | |
nlogpts1 = nlogpts//2 | |
nlogpts2 = nlogpts1 | |
else: | |
nlogpts1 = nlogpts//2 | |
nlogpts2 = nlogpts1 + 1 | |
linpts = np.linspace(0, 10, nlinpts, endpoint=False) | |
if linpts.size > 1: | |
right = np.log10(linpts[1]) | |
else: | |
right = -30 | |
logpts1 = np.logspace(-30, right, nlogpts1, endpoint=False) | |
logpts2 = np.logspace(1, np.log10(b), nlogpts2) | |
pts = np.hstack((logpts1, linpts, logpts2)) | |
return np.sort(pts) | |
def values(self, n): | |
"""Return an array containing n numbers.""" | |
a, b = self.a, self.b | |
if a == b: | |
return np.zeros(n) | |
if not self.inclusive_a: | |
n += 1 | |
if not self.inclusive_b: | |
n += 1 | |
if n % 2 == 0: | |
n1 = n//2 | |
n2 = n1 | |
else: | |
n1 = n//2 | |
n2 = n1 + 1 | |
if a >= 0: | |
pospts = self._positive_values(a, b, n) | |
negpts = [] | |
elif b <= 0: | |
pospts = [] | |
negpts = -self._positive_values(-b, -a, n) | |
else: | |
pospts = self._positive_values(0, b, n1) | |
negpts = -self._positive_values(0, -a, n2 + 1) | |
# Don't want to get zero twice | |
negpts = negpts[1:] | |
pts = np.hstack((negpts[::-1], pospts)) | |
if not self.inclusive_a: | |
pts = pts[1:] | |
if not self.inclusive_b: | |
pts = pts[:-1] | |
return pts | |
class FixedArg: | |
def __init__(self, values): | |
self._values = np.asarray(values) | |
def values(self, n): | |
return self._values | |
class ComplexArg: | |
def __init__(self, a=complex(-np.inf, -np.inf), b=complex(np.inf, np.inf)): | |
self.real = Arg(a.real, b.real) | |
self.imag = Arg(a.imag, b.imag) | |
def values(self, n): | |
m = int(np.floor(np.sqrt(n))) | |
x = self.real.values(m) | |
y = self.imag.values(m + 1) | |
return (x[:,None] + 1j*y[None,:]).ravel() | |
class IntArg: | |
def __init__(self, a=-1000, b=1000): | |
self.a = a | |
self.b = b | |
def values(self, n): | |
v1 = Arg(self.a, self.b).values(max(1 + n//2, n-5)).astype(int) | |
v2 = np.arange(-5, 5) | |
v = np.unique(np.r_[v1, v2]) | |
v = v[(v >= self.a) & (v < self.b)] | |
return v | |
def get_args(argspec, n): | |
if isinstance(argspec, np.ndarray): | |
args = argspec.copy() | |
else: | |
nargs = len(argspec) | |
ms = np.asarray( | |
[1.5 if isinstance(spec, ComplexArg) else 1.0 for spec in argspec] | |
) | |
ms = (n**(ms/sum(ms))).astype(int) + 1 | |
args = [spec.values(m) for spec, m in zip(argspec, ms)] | |
args = np.array(np.broadcast_arrays(*np.ix_(*args))).reshape(nargs, -1).T | |
return args | |
class MpmathData: | |
def __init__(self, scipy_func, mpmath_func, arg_spec, name=None, | |
dps=None, prec=None, n=None, rtol=1e-7, atol=1e-300, | |
ignore_inf_sign=False, distinguish_nan_and_inf=True, | |
nan_ok=True, param_filter=None): | |
# mpmath tests are really slow (see gh-6989). Use a small number of | |
# points by default, increase back to 5000 (old default) if XSLOW is | |
# set | |
if n is None: | |
try: | |
is_xslow = int(os.environ.get('SCIPY_XSLOW', '0')) | |
except ValueError: | |
is_xslow = False | |
n = 5000 if is_xslow else 500 | |
self.scipy_func = scipy_func | |
self.mpmath_func = mpmath_func | |
self.arg_spec = arg_spec | |
self.dps = dps | |
self.prec = prec | |
self.n = n | |
self.rtol = rtol | |
self.atol = atol | |
self.ignore_inf_sign = ignore_inf_sign | |
self.nan_ok = nan_ok | |
if isinstance(self.arg_spec, np.ndarray): | |
self.is_complex = np.issubdtype(self.arg_spec.dtype, np.complexfloating) | |
else: | |
self.is_complex = any( | |
[isinstance(arg, ComplexArg) for arg in self.arg_spec] | |
) | |
self.ignore_inf_sign = ignore_inf_sign | |
self.distinguish_nan_and_inf = distinguish_nan_and_inf | |
if not name or name == '<lambda>': | |
name = getattr(scipy_func, '__name__', None) | |
if not name or name == '<lambda>': | |
name = getattr(mpmath_func, '__name__', None) | |
self.name = name | |
self.param_filter = param_filter | |
def check(self): | |
np.random.seed(1234) | |
# Generate values for the arguments | |
argarr = get_args(self.arg_spec, self.n) | |
# Check | |
old_dps, old_prec = mpmath.mp.dps, mpmath.mp.prec | |
try: | |
if self.dps is not None: | |
dps_list = [self.dps] | |
else: | |
dps_list = [20] | |
if self.prec is not None: | |
mpmath.mp.prec = self.prec | |
# Proper casting of mpmath input and output types. Using | |
# native mpmath types as inputs gives improved precision | |
# in some cases. | |
if np.issubdtype(argarr.dtype, np.complexfloating): | |
pytype = mpc2complex | |
def mptype(x): | |
return mpmath.mpc(complex(x)) | |
else: | |
def mptype(x): | |
return mpmath.mpf(float(x)) | |
def pytype(x): | |
if abs(x.imag) > 1e-16*(1 + abs(x.real)): | |
return np.nan | |
else: | |
return mpf2float(x.real) | |
# Try out different dps until one (or none) works | |
for j, dps in enumerate(dps_list): | |
mpmath.mp.dps = dps | |
try: | |
assert_func_equal( | |
self.scipy_func, | |
lambda *a: pytype(self.mpmath_func(*map(mptype, a))), | |
argarr, | |
vectorized=False, | |
rtol=self.rtol, | |
atol=self.atol, | |
ignore_inf_sign=self.ignore_inf_sign, | |
distinguish_nan_and_inf=self.distinguish_nan_and_inf, | |
nan_ok=self.nan_ok, | |
param_filter=self.param_filter | |
) | |
break | |
except AssertionError: | |
if j >= len(dps_list)-1: | |
# reraise the Exception | |
tp, value, tb = sys.exc_info() | |
if value.__traceback__ is not tb: | |
raise value.with_traceback(tb) | |
raise value | |
finally: | |
mpmath.mp.dps, mpmath.mp.prec = old_dps, old_prec | |
def __repr__(self): | |
if self.is_complex: | |
return f"<MpmathData: {self.name} (complex)>" | |
else: | |
return f"<MpmathData: {self.name}>" | |
def assert_mpmath_equal(*a, **kw): | |
d = MpmathData(*a, **kw) | |
d.check() | |
def nonfunctional_tooslow(func): | |
return pytest.mark.skip( | |
reason=" Test not yet functional (too slow), needs more work." | |
)(func) | |
# ------------------------------------------------------------------------------ | |
# Tools for dealing with mpmath quirks | |
# ------------------------------------------------------------------------------ | |
def mpf2float(x): | |
""" | |
Convert an mpf to the nearest floating point number. Just using | |
float directly doesn't work because of results like this: | |
with mp.workdps(50): | |
float(mpf("0.99999999999999999")) = 0.9999999999999999 | |
""" | |
return float(mpmath.nstr(x, 17, min_fixed=0, max_fixed=0)) | |
def mpc2complex(x): | |
return complex(mpf2float(x.real), mpf2float(x.imag)) | |
def trace_args(func): | |
def tofloat(x): | |
if isinstance(x, mpmath.mpc): | |
return complex(x) | |
else: | |
return float(x) | |
def wrap(*a, **kw): | |
sys.stderr.write(f"{tuple(map(tofloat, a))!r}: ") | |
sys.stderr.flush() | |
try: | |
r = func(*a, **kw) | |
sys.stderr.write("-> %r" % r) | |
finally: | |
sys.stderr.write("\n") | |
sys.stderr.flush() | |
return r | |
return wrap | |
try: | |
import signal | |
POSIX = ('setitimer' in dir(signal)) | |
except ImportError: | |
POSIX = False | |
class TimeoutError(Exception): | |
pass | |
def time_limited(timeout=0.5, return_val=np.nan, use_sigalrm=True): | |
""" | |
Decorator for setting a timeout for pure-Python functions. | |
If the function does not return within `timeout` seconds, the | |
value `return_val` is returned instead. | |
On POSIX this uses SIGALRM by default. On non-POSIX, settrace is | |
used. Do not use this with threads: the SIGALRM implementation | |
does probably not work well. The settrace implementation only | |
traces the current thread. | |
The settrace implementation slows down execution speed. Slowdown | |
by a factor around 10 is probably typical. | |
""" | |
if POSIX and use_sigalrm: | |
def sigalrm_handler(signum, frame): | |
raise TimeoutError() | |
def deco(func): | |
def wrap(*a, **kw): | |
old_handler = signal.signal(signal.SIGALRM, sigalrm_handler) | |
signal.setitimer(signal.ITIMER_REAL, timeout) | |
try: | |
return func(*a, **kw) | |
except TimeoutError: | |
return return_val | |
finally: | |
signal.setitimer(signal.ITIMER_REAL, 0) | |
signal.signal(signal.SIGALRM, old_handler) | |
return wrap | |
else: | |
def deco(func): | |
def wrap(*a, **kw): | |
start_time = time.time() | |
def trace(frame, event, arg): | |
if time.time() - start_time > timeout: | |
raise TimeoutError() | |
return trace | |
sys.settrace(trace) | |
try: | |
return func(*a, **kw) | |
except TimeoutError: | |
sys.settrace(None) | |
return return_val | |
finally: | |
sys.settrace(None) | |
return wrap | |
return deco | |
def exception_to_nan(func): | |
"""Decorate function to return nan if it raises an exception""" | |
def wrap(*a, **kw): | |
try: | |
return func(*a, **kw) | |
except Exception: | |
return np.nan | |
return wrap | |
def inf_to_nan(func): | |
"""Decorate function to return nan if it returns inf""" | |
def wrap(*a, **kw): | |
v = func(*a, **kw) | |
if not np.isfinite(v): | |
return np.nan | |
return v | |
return wrap | |
def mp_assert_allclose(res, std, atol=0, rtol=1e-17): | |
""" | |
Compare lists of mpmath.mpf's or mpmath.mpc's directly so that it | |
can be done to higher precision than double. | |
""" | |
failures = [] | |
for k, (resval, stdval) in enumerate(zip_longest(res, std)): | |
if resval is None or stdval is None: | |
raise ValueError('Lengths of inputs res and std are not equal.') | |
if mpmath.fabs(resval - stdval) > atol + rtol*mpmath.fabs(stdval): | |
failures.append((k, resval, stdval)) | |
nfail = len(failures) | |
if nfail > 0: | |
ndigits = int(abs(np.log10(rtol))) | |
msg = [""] | |
msg.append(f"Bad results ({nfail} out of {k + 1}) for the following points:") | |
for k, resval, stdval in failures: | |
resrep = mpmath.nstr(resval, ndigits, min_fixed=0, max_fixed=0) | |
stdrep = mpmath.nstr(stdval, ndigits, min_fixed=0, max_fixed=0) | |
if stdval == 0: | |
rdiff = "inf" | |
else: | |
rdiff = mpmath.fabs((resval - stdval)/stdval) | |
rdiff = mpmath.nstr(rdiff, 3) | |
msg.append(f"{k}: {resrep} != {stdrep} (rdiff {rdiff})") | |
assert_(False, "\n".join(msg)) | |