peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_testutils.py
import os | |
import functools | |
import operator | |
from scipy._lib import _pep440 | |
import numpy as np | |
from numpy.testing import assert_ | |
import pytest | |
import scipy.special as sc | |
__all__ = ['with_special_errors', 'assert_func_equal', 'FuncData'] | |
#------------------------------------------------------------------------------ | |
# Check if a module is present to be used in tests | |
#------------------------------------------------------------------------------ | |
class MissingModule: | |
def __init__(self, name): | |
self.name = name | |
def check_version(module, min_ver): | |
if type(module) == MissingModule: | |
return pytest.mark.skip(reason=f"{module.name} is not installed") | |
return pytest.mark.skipif( | |
_pep440.parse(module.__version__) < _pep440.Version(min_ver), | |
reason=f"{module.__name__} version >= {min_ver} required" | |
) | |
#------------------------------------------------------------------------------ | |
# Enable convergence and loss of precision warnings -- turn off one by one | |
#------------------------------------------------------------------------------ | |
def with_special_errors(func): | |
""" | |
Enable special function errors (such as underflow, overflow, | |
loss of precision, etc.) | |
""" | |
def wrapper(*a, **kw): | |
with sc.errstate(all='raise'): | |
res = func(*a, **kw) | |
return res | |
return wrapper | |
#------------------------------------------------------------------------------ | |
# Comparing function values at many data points at once, with helpful | |
# error reports | |
#------------------------------------------------------------------------------ | |
def assert_func_equal(func, results, points, rtol=None, atol=None, | |
param_filter=None, knownfailure=None, | |
vectorized=True, dtype=None, nan_ok=False, | |
ignore_inf_sign=False, distinguish_nan_and_inf=True): | |
if hasattr(points, 'next'): | |
# it's a generator | |
points = list(points) | |
points = np.asarray(points) | |
if points.ndim == 1: | |
points = points[:,None] | |
nparams = points.shape[1] | |
if hasattr(results, '__name__'): | |
# function | |
data = points | |
result_columns = None | |
result_func = results | |
else: | |
# dataset | |
data = np.c_[points, results] | |
result_columns = list(range(nparams, data.shape[1])) | |
result_func = None | |
fdata = FuncData(func, data, list(range(nparams)), | |
result_columns=result_columns, result_func=result_func, | |
rtol=rtol, atol=atol, param_filter=param_filter, | |
knownfailure=knownfailure, nan_ok=nan_ok, vectorized=vectorized, | |
ignore_inf_sign=ignore_inf_sign, | |
distinguish_nan_and_inf=distinguish_nan_and_inf) | |
fdata.check() | |
class FuncData: | |
""" | |
Data set for checking a special function. | |
Parameters | |
---------- | |
func : function | |
Function to test | |
data : numpy array | |
columnar data to use for testing | |
param_columns : int or tuple of ints | |
Columns indices in which the parameters to `func` lie. | |
Can be imaginary integers to indicate that the parameter | |
should be cast to complex. | |
result_columns : int or tuple of ints, optional | |
Column indices for expected results from `func`. | |
result_func : callable, optional | |
Function to call to obtain results. | |
rtol : float, optional | |
Required relative tolerance. Default is 5*eps. | |
atol : float, optional | |
Required absolute tolerance. Default is 5*tiny. | |
param_filter : function, or tuple of functions/Nones, optional | |
Filter functions to exclude some parameter ranges. | |
If omitted, no filtering is done. | |
knownfailure : str, optional | |
Known failure error message to raise when the test is run. | |
If omitted, no exception is raised. | |
nan_ok : bool, optional | |
If nan is always an accepted result. | |
vectorized : bool, optional | |
Whether all functions passed in are vectorized. | |
ignore_inf_sign : bool, optional | |
Whether to ignore signs of infinities. | |
(Doesn't matter for complex-valued functions.) | |
distinguish_nan_and_inf : bool, optional | |
If True, treat numbers which contain nans or infs as | |
equal. Sets ignore_inf_sign to be True. | |
""" | |
def __init__(self, func, data, param_columns, result_columns=None, | |
result_func=None, rtol=None, atol=None, param_filter=None, | |
knownfailure=None, dataname=None, nan_ok=False, vectorized=True, | |
ignore_inf_sign=False, distinguish_nan_and_inf=True): | |
self.func = func | |
self.data = data | |
self.dataname = dataname | |
if not hasattr(param_columns, '__len__'): | |
param_columns = (param_columns,) | |
self.param_columns = tuple(param_columns) | |
if result_columns is not None: | |
if not hasattr(result_columns, '__len__'): | |
result_columns = (result_columns,) | |
self.result_columns = tuple(result_columns) | |
if result_func is not None: | |
message = "Only result_func or result_columns should be provided" | |
raise ValueError(message) | |
elif result_func is not None: | |
self.result_columns = None | |
else: | |
raise ValueError("Either result_func or result_columns should be provided") | |
self.result_func = result_func | |
self.rtol = rtol | |
self.atol = atol | |
if not hasattr(param_filter, '__len__'): | |
param_filter = (param_filter,) | |
self.param_filter = param_filter | |
self.knownfailure = knownfailure | |
self.nan_ok = nan_ok | |
self.vectorized = vectorized | |
self.ignore_inf_sign = ignore_inf_sign | |
self.distinguish_nan_and_inf = distinguish_nan_and_inf | |
if not self.distinguish_nan_and_inf: | |
self.ignore_inf_sign = True | |
def get_tolerances(self, dtype): | |
if not np.issubdtype(dtype, np.inexact): | |
dtype = np.dtype(float) | |
info = np.finfo(dtype) | |
rtol, atol = self.rtol, self.atol | |
if rtol is None: | |
rtol = 5*info.eps | |
if atol is None: | |
atol = 5*info.tiny | |
return rtol, atol | |
def check(self, data=None, dtype=None, dtypes=None): | |
"""Check the special function against the data.""" | |
__tracebackhide__ = operator.methodcaller( | |
'errisinstance', AssertionError | |
) | |
if self.knownfailure: | |
pytest.xfail(reason=self.knownfailure) | |
if data is None: | |
data = self.data | |
if dtype is None: | |
dtype = data.dtype | |
else: | |
data = data.astype(dtype) | |
rtol, atol = self.get_tolerances(dtype) | |
# Apply given filter functions | |
if self.param_filter: | |
param_mask = np.ones((data.shape[0],), np.bool_) | |
for j, filter in zip(self.param_columns, self.param_filter): | |
if filter: | |
param_mask &= list(filter(data[:,j])) | |
data = data[param_mask] | |
# Pick parameters from the correct columns | |
params = [] | |
for idx, j in enumerate(self.param_columns): | |
if np.iscomplexobj(j): | |
j = int(j.imag) | |
params.append(data[:,j].astype(complex)) | |
elif dtypes and idx < len(dtypes): | |
params.append(data[:, j].astype(dtypes[idx])) | |
else: | |
params.append(data[:,j]) | |
# Helper for evaluating results | |
def eval_func_at_params(func, skip_mask=None): | |
if self.vectorized: | |
got = func(*params) | |
else: | |
got = [] | |
for j in range(len(params[0])): | |
if skip_mask is not None and skip_mask[j]: | |
got.append(np.nan) | |
continue | |
got.append(func(*tuple([params[i][j] for i in range(len(params))]))) | |
got = np.asarray(got) | |
if not isinstance(got, tuple): | |
got = (got,) | |
return got | |
# Evaluate function to be tested | |
got = eval_func_at_params(self.func) | |
# Grab the correct results | |
if self.result_columns is not None: | |
# Correct results passed in with the data | |
wanted = tuple([data[:,icol] for icol in self.result_columns]) | |
else: | |
# Function producing correct results passed in | |
skip_mask = None | |
if self.nan_ok and len(got) == 1: | |
# Don't spend time evaluating what doesn't need to be evaluated | |
skip_mask = np.isnan(got[0]) | |
wanted = eval_func_at_params(self.result_func, skip_mask=skip_mask) | |
# Check the validity of each output returned | |
assert_(len(got) == len(wanted)) | |
for output_num, (x, y) in enumerate(zip(got, wanted)): | |
if np.issubdtype(x.dtype, np.complexfloating) or self.ignore_inf_sign: | |
pinf_x = np.isinf(x) | |
pinf_y = np.isinf(y) | |
minf_x = np.isinf(x) | |
minf_y = np.isinf(y) | |
else: | |
pinf_x = np.isposinf(x) | |
pinf_y = np.isposinf(y) | |
minf_x = np.isneginf(x) | |
minf_y = np.isneginf(y) | |
nan_x = np.isnan(x) | |
nan_y = np.isnan(y) | |
with np.errstate(all='ignore'): | |
abs_y = np.absolute(y) | |
abs_y[~np.isfinite(abs_y)] = 0 | |
diff = np.absolute(x - y) | |
diff[~np.isfinite(diff)] = 0 | |
rdiff = diff / np.absolute(y) | |
rdiff[~np.isfinite(rdiff)] = 0 | |
tol_mask = (diff <= atol + rtol*abs_y) | |
pinf_mask = (pinf_x == pinf_y) | |
minf_mask = (minf_x == minf_y) | |
nan_mask = (nan_x == nan_y) | |
bad_j = ~(tol_mask & pinf_mask & minf_mask & nan_mask) | |
point_count = bad_j.size | |
if self.nan_ok: | |
bad_j &= ~nan_x | |
bad_j &= ~nan_y | |
point_count -= (nan_x | nan_y).sum() | |
if not self.distinguish_nan_and_inf and not self.nan_ok: | |
# If nan's are okay we've already covered all these cases | |
inf_x = np.isinf(x) | |
inf_y = np.isinf(y) | |
both_nonfinite = (inf_x & nan_y) | (nan_x & inf_y) | |
bad_j &= ~both_nonfinite | |
point_count -= both_nonfinite.sum() | |
if np.any(bad_j): | |
# Some bad results: inform what, where, and how bad | |
msg = [""] | |
msg.append("Max |adiff|: %g" % diff[bad_j].max()) | |
msg.append("Max |rdiff|: %g" % rdiff[bad_j].max()) | |
msg.append("Bad results (%d out of %d) for the following points " | |
"(in output %d):" | |
% (np.sum(bad_j), point_count, output_num,)) | |
for j in np.nonzero(bad_j)[0]: | |
j = int(j) | |
def fmt(x): | |
return '%30s' % np.array2string(x[j], precision=18) | |
a = " ".join(map(fmt, params)) | |
b = " ".join(map(fmt, got)) | |
c = " ".join(map(fmt, wanted)) | |
d = fmt(rdiff) | |
msg.append(f"{a} => {b} != {c} (rdiff {d})") | |
assert_(False, "\n".join(msg)) | |
def __repr__(self): | |
"""Pretty-printing, esp. for Nose output""" | |
if np.any(list(map(np.iscomplexobj, self.param_columns))): | |
is_complex = " (complex)" | |
else: | |
is_complex = "" | |
if self.dataname: | |
return "<Data for {}{}: {}>".format(self.func.__name__, is_complex, | |
os.path.basename(self.dataname)) | |
else: | |
return f"<Data for {self.func.__name__}{is_complex}>" | |