peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/neighbors
/_classification.py
"""Nearest Neighbor Classification""" | |
# Authors: Jake Vanderplas <[email protected]> | |
# Fabian Pedregosa <[email protected]> | |
# Alexandre Gramfort <[email protected]> | |
# Sparseness support by Lars Buitinck | |
# Multi-output support by Arnaud Joly <[email protected]> | |
# | |
# License: BSD 3 clause (C) INRIA, University of Amsterdam | |
import warnings | |
from numbers import Integral | |
import numpy as np | |
from sklearn.neighbors._base import _check_precomputed | |
from ..base import ClassifierMixin, _fit_context | |
from ..metrics._pairwise_distances_reduction import ( | |
ArgKminClassMode, | |
RadiusNeighborsClassMode, | |
) | |
from ..utils._param_validation import StrOptions | |
from ..utils.arrayfuncs import _all_with_any_reduction_axis_1 | |
from ..utils.extmath import weighted_mode | |
from ..utils.fixes import _mode | |
from ..utils.validation import _is_arraylike, _num_samples, check_is_fitted | |
from ._base import KNeighborsMixin, NeighborsBase, RadiusNeighborsMixin, _get_weights | |
def _adjusted_metric(metric, metric_kwargs, p=None): | |
metric_kwargs = metric_kwargs or {} | |
if metric == "minkowski": | |
metric_kwargs["p"] = p | |
if p == 2: | |
metric = "euclidean" | |
return metric, metric_kwargs | |
class KNeighborsClassifier(KNeighborsMixin, ClassifierMixin, NeighborsBase): | |
"""Classifier implementing the k-nearest neighbors vote. | |
Read more in the :ref:`User Guide <classification>`. | |
Parameters | |
---------- | |
n_neighbors : int, default=5 | |
Number of neighbors to use by default for :meth:`kneighbors` queries. | |
weights : {'uniform', 'distance'}, callable or None, default='uniform' | |
Weight function used in prediction. Possible values: | |
- 'uniform' : uniform weights. All points in each neighborhood | |
are weighted equally. | |
- 'distance' : weight points by the inverse of their distance. | |
in this case, closer neighbors of a query point will have a | |
greater influence than neighbors which are further away. | |
- [callable] : a user-defined function which accepts an | |
array of distances, and returns an array of the same shape | |
containing the weights. | |
Refer to the example entitled | |
:ref:`sphx_glr_auto_examples_neighbors_plot_classification.py` | |
showing the impact of the `weights` parameter on the decision | |
boundary. | |
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' | |
Algorithm used to compute the nearest neighbors: | |
- 'ball_tree' will use :class:`BallTree` | |
- 'kd_tree' will use :class:`KDTree` | |
- 'brute' will use a brute-force search. | |
- 'auto' will attempt to decide the most appropriate algorithm | |
based on the values passed to :meth:`fit` method. | |
Note: fitting on sparse input will override the setting of | |
this parameter, using brute force. | |
leaf_size : int, default=30 | |
Leaf size passed to BallTree or KDTree. This can affect the | |
speed of the construction and query, as well as the memory | |
required to store the tree. The optimal value depends on the | |
nature of the problem. | |
p : float, default=2 | |
Power parameter for the Minkowski metric. When p = 1, this is equivalent | |
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. | |
For arbitrary p, minkowski_distance (l_p) is used. This parameter is expected | |
to be positive. | |
metric : str or callable, default='minkowski' | |
Metric to use for distance computation. Default is "minkowski", which | |
results in the standard Euclidean distance when p = 2. See the | |
documentation of `scipy.spatial.distance | |
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and | |
the metrics listed in | |
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric | |
values. | |
If metric is "precomputed", X is assumed to be a distance matrix and | |
must be square during fit. X may be a :term:`sparse graph`, in which | |
case only "nonzero" elements may be considered neighbors. | |
If metric is a callable function, it takes two arrays representing 1D | |
vectors as inputs and must return one value indicating the distance | |
between those vectors. This works for Scipy's metrics, but is less | |
efficient than passing the metric name as a string. | |
metric_params : dict, default=None | |
Additional keyword arguments for the metric function. | |
n_jobs : int, default=None | |
The number of parallel jobs to run for neighbors search. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
Doesn't affect :meth:`fit` method. | |
Attributes | |
---------- | |
classes_ : array of shape (n_classes,) | |
Class labels known to the classifier | |
effective_metric_ : str or callble | |
The distance metric used. It will be same as the `metric` parameter | |
or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to | |
'minkowski' and `p` parameter set to 2. | |
effective_metric_params_ : dict | |
Additional keyword arguments for the metric function. For most metrics | |
will be same with `metric_params` parameter, but may also contain the | |
`p` parameter value if the `effective_metric_` attribute is set to | |
'minkowski'. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_samples_fit_ : int | |
Number of samples in the fitted data. | |
outputs_2d_ : bool | |
False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit | |
otherwise True. | |
See Also | |
-------- | |
RadiusNeighborsClassifier: Classifier based on neighbors within a fixed radius. | |
KNeighborsRegressor: Regression based on k-nearest neighbors. | |
RadiusNeighborsRegressor: Regression based on neighbors within a fixed radius. | |
NearestNeighbors: Unsupervised learner for implementing neighbor searches. | |
Notes | |
----- | |
See :ref:`Nearest Neighbors <neighbors>` in the online documentation | |
for a discussion of the choice of ``algorithm`` and ``leaf_size``. | |
.. warning:: | |
Regarding the Nearest Neighbors algorithms, if it is found that two | |
neighbors, neighbor `k+1` and `k`, have identical distances | |
but different labels, the results will depend on the ordering of the | |
training data. | |
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm | |
Examples | |
-------- | |
>>> X = [[0], [1], [2], [3]] | |
>>> y = [0, 0, 1, 1] | |
>>> from sklearn.neighbors import KNeighborsClassifier | |
>>> neigh = KNeighborsClassifier(n_neighbors=3) | |
>>> neigh.fit(X, y) | |
KNeighborsClassifier(...) | |
>>> print(neigh.predict([[1.1]])) | |
[0] | |
>>> print(neigh.predict_proba([[0.9]])) | |
[[0.666... 0.333...]] | |
""" | |
_parameter_constraints: dict = {**NeighborsBase._parameter_constraints} | |
_parameter_constraints.pop("radius") | |
_parameter_constraints.update( | |
{"weights": [StrOptions({"uniform", "distance"}), callable, None]} | |
) | |
def __init__( | |
self, | |
n_neighbors=5, | |
*, | |
weights="uniform", | |
algorithm="auto", | |
leaf_size=30, | |
p=2, | |
metric="minkowski", | |
metric_params=None, | |
n_jobs=None, | |
): | |
super().__init__( | |
n_neighbors=n_neighbors, | |
algorithm=algorithm, | |
leaf_size=leaf_size, | |
metric=metric, | |
p=p, | |
metric_params=metric_params, | |
n_jobs=n_jobs, | |
) | |
self.weights = weights | |
def fit(self, X, y): | |
"""Fit the k-nearest neighbors classifier from the training dataset. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ | |
(n_samples, n_samples) if metric='precomputed' | |
Training data. | |
y : {array-like, sparse matrix} of shape (n_samples,) or \ | |
(n_samples, n_outputs) | |
Target values. | |
Returns | |
------- | |
self : KNeighborsClassifier | |
The fitted k-nearest neighbors classifier. | |
""" | |
return self._fit(X, y) | |
def predict(self, X): | |
"""Predict the class labels for the provided data. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_queries, n_features), \ | |
or (n_queries, n_indexed) if metric == 'precomputed' | |
Test samples. | |
Returns | |
------- | |
y : ndarray of shape (n_queries,) or (n_queries, n_outputs) | |
Class labels for each data sample. | |
""" | |
check_is_fitted(self, "_fit_method") | |
if self.weights == "uniform": | |
if self._fit_method == "brute" and ArgKminClassMode.is_usable_for( | |
X, self._fit_X, self.metric | |
): | |
probabilities = self.predict_proba(X) | |
if self.outputs_2d_: | |
return np.stack( | |
[ | |
self.classes_[idx][np.argmax(probas, axis=1)] | |
for idx, probas in enumerate(probabilities) | |
], | |
axis=1, | |
) | |
return self.classes_[np.argmax(probabilities, axis=1)] | |
# In that case, we do not need the distances to perform | |
# the weighting so we do not compute them. | |
neigh_ind = self.kneighbors(X, return_distance=False) | |
neigh_dist = None | |
else: | |
neigh_dist, neigh_ind = self.kneighbors(X) | |
classes_ = self.classes_ | |
_y = self._y | |
if not self.outputs_2d_: | |
_y = self._y.reshape((-1, 1)) | |
classes_ = [self.classes_] | |
n_outputs = len(classes_) | |
n_queries = _num_samples(X) | |
weights = _get_weights(neigh_dist, self.weights) | |
if weights is not None and _all_with_any_reduction_axis_1(weights, value=0): | |
raise ValueError( | |
"All neighbors of some sample is getting zero weights. " | |
"Please modify 'weights' to avoid this case if you are " | |
"using a user-defined function." | |
) | |
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype) | |
for k, classes_k in enumerate(classes_): | |
if weights is None: | |
mode, _ = _mode(_y[neigh_ind, k], axis=1) | |
else: | |
mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) | |
mode = np.asarray(mode.ravel(), dtype=np.intp) | |
y_pred[:, k] = classes_k.take(mode) | |
if not self.outputs_2d_: | |
y_pred = y_pred.ravel() | |
return y_pred | |
def predict_proba(self, X): | |
"""Return probability estimates for the test data X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_queries, n_features), \ | |
or (n_queries, n_indexed) if metric == 'precomputed' | |
Test samples. | |
Returns | |
------- | |
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs \ | |
of such arrays if n_outputs > 1. | |
The class probabilities of the input samples. Classes are ordered | |
by lexicographic order. | |
""" | |
check_is_fitted(self, "_fit_method") | |
if self.weights == "uniform": | |
# TODO: systematize this mapping of metric for | |
# PairwiseDistancesReductions. | |
metric, metric_kwargs = _adjusted_metric( | |
metric=self.metric, metric_kwargs=self.metric_params, p=self.p | |
) | |
if ( | |
self._fit_method == "brute" | |
and ArgKminClassMode.is_usable_for(X, self._fit_X, metric) | |
# TODO: Implement efficient multi-output solution | |
and not self.outputs_2d_ | |
): | |
if self.metric == "precomputed": | |
X = _check_precomputed(X) | |
else: | |
X = self._validate_data( | |
X, accept_sparse="csr", reset=False, order="C" | |
) | |
probabilities = ArgKminClassMode.compute( | |
X, | |
self._fit_X, | |
k=self.n_neighbors, | |
weights=self.weights, | |
Y_labels=self._y, | |
unique_Y_labels=self.classes_, | |
metric=metric, | |
metric_kwargs=metric_kwargs, | |
# `strategy="parallel_on_X"` has in practice be shown | |
# to be more efficient than `strategy="parallel_on_Y`` | |
# on many combination of datasets. | |
# Hence, we choose to enforce it here. | |
# For more information, see: | |
# https://github.com/scikit-learn/scikit-learn/pull/24076#issuecomment-1445258342 # noqa | |
# TODO: adapt the heuristic for `strategy="auto"` for | |
# `ArgKminClassMode` and use `strategy="auto"`. | |
strategy="parallel_on_X", | |
) | |
return probabilities | |
# In that case, we do not need the distances to perform | |
# the weighting so we do not compute them. | |
neigh_ind = self.kneighbors(X, return_distance=False) | |
neigh_dist = None | |
else: | |
neigh_dist, neigh_ind = self.kneighbors(X) | |
classes_ = self.classes_ | |
_y = self._y | |
if not self.outputs_2d_: | |
_y = self._y.reshape((-1, 1)) | |
classes_ = [self.classes_] | |
n_queries = _num_samples(X) | |
weights = _get_weights(neigh_dist, self.weights) | |
if weights is None: | |
weights = np.ones_like(neigh_ind) | |
elif _all_with_any_reduction_axis_1(weights, value=0): | |
raise ValueError( | |
"All neighbors of some sample is getting zero weights. " | |
"Please modify 'weights' to avoid this case if you are " | |
"using a user-defined function." | |
) | |
all_rows = np.arange(n_queries) | |
probabilities = [] | |
for k, classes_k in enumerate(classes_): | |
pred_labels = _y[:, k][neigh_ind] | |
proba_k = np.zeros((n_queries, classes_k.size)) | |
# a simple ':' index doesn't work right | |
for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) | |
proba_k[all_rows, idx] += weights[:, i] | |
# normalize 'votes' into real [0,1] probabilities | |
normalizer = proba_k.sum(axis=1)[:, np.newaxis] | |
proba_k /= normalizer | |
probabilities.append(proba_k) | |
if not self.outputs_2d_: | |
probabilities = probabilities[0] | |
return probabilities | |
def _more_tags(self): | |
return {"multilabel": True} | |
class RadiusNeighborsClassifier(RadiusNeighborsMixin, ClassifierMixin, NeighborsBase): | |
"""Classifier implementing a vote among neighbors within a given radius. | |
Read more in the :ref:`User Guide <classification>`. | |
Parameters | |
---------- | |
radius : float, default=1.0 | |
Range of parameter space to use by default for :meth:`radius_neighbors` | |
queries. | |
weights : {'uniform', 'distance'}, callable or None, default='uniform' | |
Weight function used in prediction. Possible values: | |
- 'uniform' : uniform weights. All points in each neighborhood | |
are weighted equally. | |
- 'distance' : weight points by the inverse of their distance. | |
in this case, closer neighbors of a query point will have a | |
greater influence than neighbors which are further away. | |
- [callable] : a user-defined function which accepts an | |
array of distances, and returns an array of the same shape | |
containing the weights. | |
Uniform weights are used by default. | |
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto' | |
Algorithm used to compute the nearest neighbors: | |
- 'ball_tree' will use :class:`BallTree` | |
- 'kd_tree' will use :class:`KDTree` | |
- 'brute' will use a brute-force search. | |
- 'auto' will attempt to decide the most appropriate algorithm | |
based on the values passed to :meth:`fit` method. | |
Note: fitting on sparse input will override the setting of | |
this parameter, using brute force. | |
leaf_size : int, default=30 | |
Leaf size passed to BallTree or KDTree. This can affect the | |
speed of the construction and query, as well as the memory | |
required to store the tree. The optimal value depends on the | |
nature of the problem. | |
p : float, default=2 | |
Power parameter for the Minkowski metric. When p = 1, this is | |
equivalent to using manhattan_distance (l1), and euclidean_distance | |
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. | |
This parameter is expected to be positive. | |
metric : str or callable, default='minkowski' | |
Metric to use for distance computation. Default is "minkowski", which | |
results in the standard Euclidean distance when p = 2. See the | |
documentation of `scipy.spatial.distance | |
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and | |
the metrics listed in | |
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric | |
values. | |
If metric is "precomputed", X is assumed to be a distance matrix and | |
must be square during fit. X may be a :term:`sparse graph`, in which | |
case only "nonzero" elements may be considered neighbors. | |
If metric is a callable function, it takes two arrays representing 1D | |
vectors as inputs and must return one value indicating the distance | |
between those vectors. This works for Scipy's metrics, but is less | |
efficient than passing the metric name as a string. | |
outlier_label : {manual label, 'most_frequent'}, default=None | |
Label for outlier samples (samples with no neighbors in given radius). | |
- manual label: str or int label (should be the same type as y) | |
or list of manual labels if multi-output is used. | |
- 'most_frequent' : assign the most frequent label of y to outliers. | |
- None : when any outlier is detected, ValueError will be raised. | |
The outlier label should be selected from among the unique 'Y' labels. | |
If it is specified with a different value a warning will be raised and | |
all class probabilities of outliers will be assigned to be 0. | |
metric_params : dict, default=None | |
Additional keyword arguments for the metric function. | |
n_jobs : int, default=None | |
The number of parallel jobs to run for neighbors search. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
Attributes | |
---------- | |
classes_ : ndarray of shape (n_classes,) | |
Class labels known to the classifier. | |
effective_metric_ : str or callable | |
The distance metric used. It will be same as the `metric` parameter | |
or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to | |
'minkowski' and `p` parameter set to 2. | |
effective_metric_params_ : dict | |
Additional keyword arguments for the metric function. For most metrics | |
will be same with `metric_params` parameter, but may also contain the | |
`p` parameter value if the `effective_metric_` attribute is set to | |
'minkowski'. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
n_samples_fit_ : int | |
Number of samples in the fitted data. | |
outlier_label_ : int or array-like of shape (n_class,) | |
Label which is given for outlier samples (samples with no neighbors | |
on given radius). | |
outputs_2d_ : bool | |
False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit | |
otherwise True. | |
See Also | |
-------- | |
KNeighborsClassifier : Classifier implementing the k-nearest neighbors | |
vote. | |
RadiusNeighborsRegressor : Regression based on neighbors within a | |
fixed radius. | |
KNeighborsRegressor : Regression based on k-nearest neighbors. | |
NearestNeighbors : Unsupervised learner for implementing neighbor | |
searches. | |
Notes | |
----- | |
See :ref:`Nearest Neighbors <neighbors>` in the online documentation | |
for a discussion of the choice of ``algorithm`` and ``leaf_size``. | |
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm | |
Examples | |
-------- | |
>>> X = [[0], [1], [2], [3]] | |
>>> y = [0, 0, 1, 1] | |
>>> from sklearn.neighbors import RadiusNeighborsClassifier | |
>>> neigh = RadiusNeighborsClassifier(radius=1.0) | |
>>> neigh.fit(X, y) | |
RadiusNeighborsClassifier(...) | |
>>> print(neigh.predict([[1.5]])) | |
[0] | |
>>> print(neigh.predict_proba([[1.0]])) | |
[[0.66666667 0.33333333]] | |
""" | |
_parameter_constraints: dict = { | |
**NeighborsBase._parameter_constraints, | |
"weights": [StrOptions({"uniform", "distance"}), callable, None], | |
"outlier_label": [Integral, str, "array-like", None], | |
} | |
_parameter_constraints.pop("n_neighbors") | |
def __init__( | |
self, | |
radius=1.0, | |
*, | |
weights="uniform", | |
algorithm="auto", | |
leaf_size=30, | |
p=2, | |
metric="minkowski", | |
outlier_label=None, | |
metric_params=None, | |
n_jobs=None, | |
): | |
super().__init__( | |
radius=radius, | |
algorithm=algorithm, | |
leaf_size=leaf_size, | |
metric=metric, | |
p=p, | |
metric_params=metric_params, | |
n_jobs=n_jobs, | |
) | |
self.weights = weights | |
self.outlier_label = outlier_label | |
def fit(self, X, y): | |
"""Fit the radius neighbors classifier from the training dataset. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \ | |
(n_samples, n_samples) if metric='precomputed' | |
Training data. | |
y : {array-like, sparse matrix} of shape (n_samples,) or \ | |
(n_samples, n_outputs) | |
Target values. | |
Returns | |
------- | |
self : RadiusNeighborsClassifier | |
The fitted radius neighbors classifier. | |
""" | |
self._fit(X, y) | |
classes_ = self.classes_ | |
_y = self._y | |
if not self.outputs_2d_: | |
_y = self._y.reshape((-1, 1)) | |
classes_ = [self.classes_] | |
if self.outlier_label is None: | |
outlier_label_ = None | |
elif self.outlier_label == "most_frequent": | |
outlier_label_ = [] | |
# iterate over multi-output, get the most frequent label for each | |
# output. | |
for k, classes_k in enumerate(classes_): | |
label_count = np.bincount(_y[:, k]) | |
outlier_label_.append(classes_k[label_count.argmax()]) | |
else: | |
if _is_arraylike(self.outlier_label) and not isinstance( | |
self.outlier_label, str | |
): | |
if len(self.outlier_label) != len(classes_): | |
raise ValueError( | |
"The length of outlier_label: {} is " | |
"inconsistent with the output " | |
"length: {}".format(self.outlier_label, len(classes_)) | |
) | |
outlier_label_ = self.outlier_label | |
else: | |
outlier_label_ = [self.outlier_label] * len(classes_) | |
for classes, label in zip(classes_, outlier_label_): | |
if _is_arraylike(label) and not isinstance(label, str): | |
# ensure the outlier label for each output is a scalar. | |
raise TypeError( | |
"The outlier_label of classes {} is " | |
"supposed to be a scalar, got " | |
"{}.".format(classes, label) | |
) | |
if np.append(classes, label).dtype != classes.dtype: | |
# ensure the dtype of outlier label is consistent with y. | |
raise TypeError( | |
"The dtype of outlier_label {} is " | |
"inconsistent with classes {} in " | |
"y.".format(label, classes) | |
) | |
self.outlier_label_ = outlier_label_ | |
return self | |
def predict(self, X): | |
"""Predict the class labels for the provided data. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_queries, n_features), \ | |
or (n_queries, n_indexed) if metric == 'precomputed' | |
Test samples. | |
Returns | |
------- | |
y : ndarray of shape (n_queries,) or (n_queries, n_outputs) | |
Class labels for each data sample. | |
""" | |
probs = self.predict_proba(X) | |
classes_ = self.classes_ | |
if not self.outputs_2d_: | |
probs = [probs] | |
classes_ = [self.classes_] | |
n_outputs = len(classes_) | |
n_queries = probs[0].shape[0] | |
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype) | |
for k, prob in enumerate(probs): | |
# iterate over multi-output, assign labels based on probabilities | |
# of each output. | |
max_prob_index = prob.argmax(axis=1) | |
y_pred[:, k] = classes_[k].take(max_prob_index) | |
outlier_zero_probs = (prob == 0).all(axis=1) | |
if outlier_zero_probs.any(): | |
zero_prob_index = np.flatnonzero(outlier_zero_probs) | |
y_pred[zero_prob_index, k] = self.outlier_label_[k] | |
if not self.outputs_2d_: | |
y_pred = y_pred.ravel() | |
return y_pred | |
def predict_proba(self, X): | |
"""Return probability estimates for the test data X. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_queries, n_features), \ | |
or (n_queries, n_indexed) if metric == 'precomputed' | |
Test samples. | |
Returns | |
------- | |
p : ndarray of shape (n_queries, n_classes), or a list of \ | |
n_outputs of such arrays if n_outputs > 1. | |
The class probabilities of the input samples. Classes are ordered | |
by lexicographic order. | |
""" | |
check_is_fitted(self, "_fit_method") | |
n_queries = _num_samples(X) | |
metric, metric_kwargs = _adjusted_metric( | |
metric=self.metric, metric_kwargs=self.metric_params, p=self.p | |
) | |
if ( | |
self.weights == "uniform" | |
and self._fit_method == "brute" | |
and not self.outputs_2d_ | |
and RadiusNeighborsClassMode.is_usable_for(X, self._fit_X, metric) | |
): | |
probabilities = RadiusNeighborsClassMode.compute( | |
X=X, | |
Y=self._fit_X, | |
radius=self.radius, | |
weights=self.weights, | |
Y_labels=self._y, | |
unique_Y_labels=self.classes_, | |
outlier_label=self.outlier_label, | |
metric=metric, | |
metric_kwargs=metric_kwargs, | |
strategy="parallel_on_X", | |
# `strategy="parallel_on_X"` has in practice be shown | |
# to be more efficient than `strategy="parallel_on_Y`` | |
# on many combination of datasets. | |
# Hence, we choose to enforce it here. | |
# For more information, see: | |
# https://github.com/scikit-learn/scikit-learn/pull/26828/files#r1282398471 # noqa | |
) | |
return probabilities | |
neigh_dist, neigh_ind = self.radius_neighbors(X) | |
outlier_mask = np.zeros(n_queries, dtype=bool) | |
outlier_mask[:] = [len(nind) == 0 for nind in neigh_ind] | |
outliers = np.flatnonzero(outlier_mask) | |
inliers = np.flatnonzero(~outlier_mask) | |
classes_ = self.classes_ | |
_y = self._y | |
if not self.outputs_2d_: | |
_y = self._y.reshape((-1, 1)) | |
classes_ = [self.classes_] | |
if self.outlier_label_ is None and outliers.size > 0: | |
raise ValueError( | |
"No neighbors found for test samples %r, " | |
"you can try using larger radius, " | |
"giving a label for outliers, " | |
"or considering removing them from your dataset." % outliers | |
) | |
weights = _get_weights(neigh_dist, self.weights) | |
if weights is not None: | |
weights = weights[inliers] | |
probabilities = [] | |
# iterate over multi-output, measure probabilities of the k-th output. | |
for k, classes_k in enumerate(classes_): | |
pred_labels = np.zeros(len(neigh_ind), dtype=object) | |
pred_labels[:] = [_y[ind, k] for ind in neigh_ind] | |
proba_k = np.zeros((n_queries, classes_k.size)) | |
proba_inl = np.zeros((len(inliers), classes_k.size)) | |
# samples have different size of neighbors within the same radius | |
if weights is None: | |
for i, idx in enumerate(pred_labels[inliers]): | |
proba_inl[i, :] = np.bincount(idx, minlength=classes_k.size) | |
else: | |
for i, idx in enumerate(pred_labels[inliers]): | |
proba_inl[i, :] = np.bincount( | |
idx, weights[i], minlength=classes_k.size | |
) | |
proba_k[inliers, :] = proba_inl | |
if outliers.size > 0: | |
_outlier_label = self.outlier_label_[k] | |
label_index = np.flatnonzero(classes_k == _outlier_label) | |
if label_index.size == 1: | |
proba_k[outliers, label_index[0]] = 1.0 | |
else: | |
warnings.warn( | |
"Outlier label {} is not in training " | |
"classes. All class probabilities of " | |
"outliers will be assigned with 0." | |
"".format(self.outlier_label_[k]) | |
) | |
# normalize 'votes' into real [0,1] probabilities | |
normalizer = proba_k.sum(axis=1)[:, np.newaxis] | |
normalizer[normalizer == 0.0] = 1.0 | |
proba_k /= normalizer | |
probabilities.append(proba_k) | |
if not self.outputs_2d_: | |
probabilities = probabilities[0] | |
return probabilities | |
def _more_tags(self): | |
return {"multilabel": True} | |