applied-ai-018 commited on
Commit
6230e9d
·
verified ·
1 Parent(s): aa913b2

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/18.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step40/zero/25.attention.dense.weight/exp_avg_sq.pt +3 -0
  7. ckpts/universal/global_step40/zero/25.attention.dense.weight/fp32.pt +3 -0
  8. ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  9. ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  10. ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  11. venv/lib/python3.10/site-packages/sklearn/neighbors/_base.py +1387 -0
  12. venv/lib/python3.10/site-packages/sklearn/neighbors/_classification.py +839 -0
  13. venv/lib/python3.10/site-packages/sklearn/neighbors/_graph.py +719 -0
  14. venv/lib/python3.10/site-packages/sklearn/neighbors/_nca.py +525 -0
  15. venv/lib/python3.10/site-packages/sklearn/neighbors/_partition_nodes.cpython-310-x86_64-linux-gnu.so +0 -0
  16. venv/lib/python3.10/site-packages/sklearn/neighbors/_quad_tree.cpython-310-x86_64-linux-gnu.so +0 -0
  17. venv/lib/python3.10/site-packages/sklearn/neighbors/_regression.py +510 -0
  18. venv/lib/python3.10/site-packages/sklearn/neighbors/_unsupervised.py +175 -0
  19. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_arpack.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_array_api.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_available_if.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_bunch.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_encode.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_estimator_html_repr.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_joblib.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mask.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_metadata_requests.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mocking.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_param_validation.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_plotting.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_pprint.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_response.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_set_output.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_show_versions.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_tags.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_testing.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/class_weight.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/deprecation.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/discovery.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/estimator_checks.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/extmath.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/fixes.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/graph.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/metadata_routing.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/metaestimators.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/multiclass.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/optimize.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/parallel.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/random.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9689eb1c74eddf479143f88377890aaf72609025da1d42e38e1c3341dfdd31b
3
+ size 33555612
ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa4244869979212bc62f6130b03a693e182770b2cb2233a3e9b027d769daaefc
3
+ size 33555627
ckpts/universal/global_step40/zero/17.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:445d543dfa522ec41120f21a75f0773cdb130f313f3a7855b4c98eb1d64e3c7a
3
+ size 9387
ckpts/universal/global_step40/zero/18.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df24ce7c264f4ab09f898921658c8a326f43eda7fa3d449e3254fd6907973604
3
+ size 33555612
ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ac18b29045cef3697c1b6e55206eb56999cea21767bfd0526373ab86f73271a
3
+ size 50332749
ckpts/universal/global_step40/zero/25.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dc1337163ce023c2f71e491e66aa73a14dfbd46435f6ae0f03a8ec5c0e9b7d0
3
+ size 16778411
ckpts/universal/global_step40/zero/25.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0a311c07cdcd005b77c2a71a818f6d585a7779a10cb045bbe91e6f62c5cd6cb
3
+ size 16778317
ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e014baa072b1dc520dca57e239d50b32356e6245697cbba503b3911d071c5bf
3
+ size 33555612
ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72bf3dee9375a038147a1b688ed1b6779744207217d8e76a0e09a8f3028212db
3
+ size 33555627
ckpts/universal/global_step40/zero/26.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34e9e7ca6e93becfe7bd651e1a2265dbc9d6110bb1375aae72f8d1c0f73677b9
3
+ size 33555533
venv/lib/python3.10/site-packages/sklearn/neighbors/_base.py ADDED
@@ -0,0 +1,1387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base and mixin classes for nearest neighbors."""
2
+ # Authors: Jake Vanderplas <[email protected]>
3
+ # Fabian Pedregosa <[email protected]>
4
+ # Alexandre Gramfort <[email protected]>
5
+ # Sparseness support by Lars Buitinck
6
+ # Multi-output support by Arnaud Joly <[email protected]>
7
+ #
8
+ # License: BSD 3 clause (C) INRIA, University of Amsterdam
9
+ import itertools
10
+ import numbers
11
+ import warnings
12
+ from abc import ABCMeta, abstractmethod
13
+ from functools import partial
14
+ from numbers import Integral, Real
15
+
16
+ import numpy as np
17
+ from joblib import effective_n_jobs
18
+ from scipy.sparse import csr_matrix, issparse
19
+
20
+ from ..base import BaseEstimator, MultiOutputMixin, is_classifier
21
+ from ..exceptions import DataConversionWarning, EfficiencyWarning
22
+ from ..metrics import DistanceMetric, pairwise_distances_chunked
23
+ from ..metrics._pairwise_distances_reduction import (
24
+ ArgKmin,
25
+ RadiusNeighbors,
26
+ )
27
+ from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
28
+ from ..utils import (
29
+ _to_object_array,
30
+ check_array,
31
+ gen_even_slices,
32
+ )
33
+ from ..utils._param_validation import Interval, StrOptions, validate_params
34
+ from ..utils.fixes import parse_version, sp_base_version
35
+ from ..utils.multiclass import check_classification_targets
36
+ from ..utils.parallel import Parallel, delayed
37
+ from ..utils.validation import check_is_fitted, check_non_negative
38
+ from ._ball_tree import BallTree
39
+ from ._kd_tree import KDTree
40
+
41
+ SCIPY_METRICS = [
42
+ "braycurtis",
43
+ "canberra",
44
+ "chebyshev",
45
+ "correlation",
46
+ "cosine",
47
+ "dice",
48
+ "hamming",
49
+ "jaccard",
50
+ "mahalanobis",
51
+ "minkowski",
52
+ "rogerstanimoto",
53
+ "russellrao",
54
+ "seuclidean",
55
+ "sokalmichener",
56
+ "sokalsneath",
57
+ "sqeuclidean",
58
+ "yule",
59
+ ]
60
+ if sp_base_version < parse_version("1.11"):
61
+ # Deprecated in SciPy 1.9 and removed in SciPy 1.11
62
+ SCIPY_METRICS += ["kulsinski"]
63
+ if sp_base_version < parse_version("1.9"):
64
+ # Deprecated in SciPy 1.0 and removed in SciPy 1.9
65
+ SCIPY_METRICS += ["matching"]
66
+
67
+ VALID_METRICS = dict(
68
+ ball_tree=BallTree.valid_metrics,
69
+ kd_tree=KDTree.valid_metrics,
70
+ # The following list comes from the
71
+ # sklearn.metrics.pairwise doc string
72
+ brute=sorted(set(PAIRWISE_DISTANCE_FUNCTIONS).union(SCIPY_METRICS)),
73
+ )
74
+
75
+ VALID_METRICS_SPARSE = dict(
76
+ ball_tree=[],
77
+ kd_tree=[],
78
+ brute=(PAIRWISE_DISTANCE_FUNCTIONS.keys() - {"haversine", "nan_euclidean"}),
79
+ )
80
+
81
+
82
+ def _get_weights(dist, weights):
83
+ """Get the weights from an array of distances and a parameter ``weights``.
84
+
85
+ Assume weights have already been validated.
86
+
87
+ Parameters
88
+ ----------
89
+ dist : ndarray
90
+ The input distances.
91
+
92
+ weights : {'uniform', 'distance'}, callable or None
93
+ The kind of weighting used.
94
+
95
+ Returns
96
+ -------
97
+ weights_arr : array of the same shape as ``dist``
98
+ If ``weights == 'uniform'``, then returns None.
99
+ """
100
+ if weights in (None, "uniform"):
101
+ return None
102
+
103
+ if weights == "distance":
104
+ # if user attempts to classify a point that was zero distance from one
105
+ # or more training points, those training points are weighted as 1.0
106
+ # and the other points as 0.0
107
+ if dist.dtype is np.dtype(object):
108
+ for point_dist_i, point_dist in enumerate(dist):
109
+ # check if point_dist is iterable
110
+ # (ex: RadiusNeighborClassifier.predict may set an element of
111
+ # dist to 1e-6 to represent an 'outlier')
112
+ if hasattr(point_dist, "__contains__") and 0.0 in point_dist:
113
+ dist[point_dist_i] = point_dist == 0.0
114
+ else:
115
+ dist[point_dist_i] = 1.0 / point_dist
116
+ else:
117
+ with np.errstate(divide="ignore"):
118
+ dist = 1.0 / dist
119
+ inf_mask = np.isinf(dist)
120
+ inf_row = np.any(inf_mask, axis=1)
121
+ dist[inf_row] = inf_mask[inf_row]
122
+ return dist
123
+
124
+ if callable(weights):
125
+ return weights(dist)
126
+
127
+
128
+ def _is_sorted_by_data(graph):
129
+ """Return whether the graph's non-zero entries are sorted by data.
130
+
131
+ The non-zero entries are stored in graph.data and graph.indices.
132
+ For each row (or sample), the non-zero entries can be either:
133
+ - sorted by indices, as after graph.sort_indices();
134
+ - sorted by data, as after _check_precomputed(graph);
135
+ - not sorted.
136
+
137
+ Parameters
138
+ ----------
139
+ graph : sparse matrix of shape (n_samples, n_samples)
140
+ Neighbors graph as given by `kneighbors_graph` or
141
+ `radius_neighbors_graph`. Matrix should be of format CSR format.
142
+
143
+ Returns
144
+ -------
145
+ res : bool
146
+ Whether input graph is sorted by data.
147
+ """
148
+ assert graph.format == "csr"
149
+ out_of_order = graph.data[:-1] > graph.data[1:]
150
+ line_change = np.unique(graph.indptr[1:-1] - 1)
151
+ line_change = line_change[line_change < out_of_order.shape[0]]
152
+ return out_of_order.sum() == out_of_order[line_change].sum()
153
+
154
+
155
+ def _check_precomputed(X):
156
+ """Check precomputed distance matrix.
157
+
158
+ If the precomputed distance matrix is sparse, it checks that the non-zero
159
+ entries are sorted by distances. If not, the matrix is copied and sorted.
160
+
161
+ Parameters
162
+ ----------
163
+ X : {sparse matrix, array-like}, (n_samples, n_samples)
164
+ Distance matrix to other samples. X may be a sparse matrix, in which
165
+ case only non-zero elements may be considered neighbors.
166
+
167
+ Returns
168
+ -------
169
+ X : {sparse matrix, array-like}, (n_samples, n_samples)
170
+ Distance matrix to other samples. X may be a sparse matrix, in which
171
+ case only non-zero elements may be considered neighbors.
172
+ """
173
+ if not issparse(X):
174
+ X = check_array(X)
175
+ check_non_negative(X, whom="precomputed distance matrix.")
176
+ return X
177
+ else:
178
+ graph = X
179
+
180
+ if graph.format not in ("csr", "csc", "coo", "lil"):
181
+ raise TypeError(
182
+ "Sparse matrix in {!r} format is not supported due to "
183
+ "its handling of explicit zeros".format(graph.format)
184
+ )
185
+ copied = graph.format != "csr"
186
+ graph = check_array(graph, accept_sparse="csr")
187
+ check_non_negative(graph, whom="precomputed distance matrix.")
188
+ graph = sort_graph_by_row_values(graph, copy=not copied, warn_when_not_sorted=True)
189
+
190
+ return graph
191
+
192
+
193
+ @validate_params(
194
+ {
195
+ "graph": ["sparse matrix"],
196
+ "copy": ["boolean"],
197
+ "warn_when_not_sorted": ["boolean"],
198
+ },
199
+ prefer_skip_nested_validation=True,
200
+ )
201
+ def sort_graph_by_row_values(graph, copy=False, warn_when_not_sorted=True):
202
+ """Sort a sparse graph such that each row is stored with increasing values.
203
+
204
+ .. versionadded:: 1.2
205
+
206
+ Parameters
207
+ ----------
208
+ graph : sparse matrix of shape (n_samples, n_samples)
209
+ Distance matrix to other samples, where only non-zero elements are
210
+ considered neighbors. Matrix is converted to CSR format if not already.
211
+
212
+ copy : bool, default=False
213
+ If True, the graph is copied before sorting. If False, the sorting is
214
+ performed inplace. If the graph is not of CSR format, `copy` must be
215
+ True to allow the conversion to CSR format, otherwise an error is
216
+ raised.
217
+
218
+ warn_when_not_sorted : bool, default=True
219
+ If True, a :class:`~sklearn.exceptions.EfficiencyWarning` is raised
220
+ when the input graph is not sorted by row values.
221
+
222
+ Returns
223
+ -------
224
+ graph : sparse matrix of shape (n_samples, n_samples)
225
+ Distance matrix to other samples, where only non-zero elements are
226
+ considered neighbors. Matrix is in CSR format.
227
+
228
+ Examples
229
+ --------
230
+ >>> from scipy.sparse import csr_matrix
231
+ >>> from sklearn.neighbors import sort_graph_by_row_values
232
+ >>> X = csr_matrix(
233
+ ... [[0., 3., 1.],
234
+ ... [3., 0., 2.],
235
+ ... [1., 2., 0.]])
236
+ >>> X.data
237
+ array([3., 1., 3., 2., 1., 2.])
238
+ >>> X_ = sort_graph_by_row_values(X)
239
+ >>> X_.data
240
+ array([1., 3., 2., 3., 1., 2.])
241
+ """
242
+ if graph.format == "csr" and _is_sorted_by_data(graph):
243
+ return graph
244
+
245
+ if warn_when_not_sorted:
246
+ warnings.warn(
247
+ (
248
+ "Precomputed sparse input was not sorted by row values. Use the"
249
+ " function sklearn.neighbors.sort_graph_by_row_values to sort the input"
250
+ " by row values, with warn_when_not_sorted=False to remove this"
251
+ " warning."
252
+ ),
253
+ EfficiencyWarning,
254
+ )
255
+
256
+ if graph.format not in ("csr", "csc", "coo", "lil"):
257
+ raise TypeError(
258
+ f"Sparse matrix in {graph.format!r} format is not supported due to "
259
+ "its handling of explicit zeros"
260
+ )
261
+ elif graph.format != "csr":
262
+ if not copy:
263
+ raise ValueError(
264
+ "The input graph is not in CSR format. Use copy=True to allow "
265
+ "the conversion to CSR format."
266
+ )
267
+ graph = graph.asformat("csr")
268
+ elif copy: # csr format with copy=True
269
+ graph = graph.copy()
270
+
271
+ row_nnz = np.diff(graph.indptr)
272
+ if row_nnz.max() == row_nnz.min():
273
+ # if each sample has the same number of provided neighbors
274
+ n_samples = graph.shape[0]
275
+ distances = graph.data.reshape(n_samples, -1)
276
+
277
+ order = np.argsort(distances, kind="mergesort")
278
+ order += np.arange(n_samples)[:, None] * row_nnz[0]
279
+ order = order.ravel()
280
+ graph.data = graph.data[order]
281
+ graph.indices = graph.indices[order]
282
+
283
+ else:
284
+ for start, stop in zip(graph.indptr, graph.indptr[1:]):
285
+ order = np.argsort(graph.data[start:stop], kind="mergesort")
286
+ graph.data[start:stop] = graph.data[start:stop][order]
287
+ graph.indices[start:stop] = graph.indices[start:stop][order]
288
+
289
+ return graph
290
+
291
+
292
+ def _kneighbors_from_graph(graph, n_neighbors, return_distance):
293
+ """Decompose a nearest neighbors sparse graph into distances and indices.
294
+
295
+ Parameters
296
+ ----------
297
+ graph : sparse matrix of shape (n_samples, n_samples)
298
+ Neighbors graph as given by `kneighbors_graph` or
299
+ `radius_neighbors_graph`. Matrix should be of format CSR format.
300
+
301
+ n_neighbors : int
302
+ Number of neighbors required for each sample.
303
+
304
+ return_distance : bool
305
+ Whether or not to return the distances.
306
+
307
+ Returns
308
+ -------
309
+ neigh_dist : ndarray of shape (n_samples, n_neighbors)
310
+ Distances to nearest neighbors. Only present if `return_distance=True`.
311
+
312
+ neigh_ind : ndarray of shape (n_samples, n_neighbors)
313
+ Indices of nearest neighbors.
314
+ """
315
+ n_samples = graph.shape[0]
316
+ assert graph.format == "csr"
317
+
318
+ # number of neighbors by samples
319
+ row_nnz = np.diff(graph.indptr)
320
+ row_nnz_min = row_nnz.min()
321
+ if n_neighbors is not None and row_nnz_min < n_neighbors:
322
+ raise ValueError(
323
+ "%d neighbors per samples are required, but some samples have only"
324
+ " %d neighbors in precomputed graph matrix. Decrease number of "
325
+ "neighbors used or recompute the graph with more neighbors."
326
+ % (n_neighbors, row_nnz_min)
327
+ )
328
+
329
+ def extract(a):
330
+ # if each sample has the same number of provided neighbors
331
+ if row_nnz.max() == row_nnz_min:
332
+ return a.reshape(n_samples, -1)[:, :n_neighbors]
333
+ else:
334
+ idx = np.tile(np.arange(n_neighbors), (n_samples, 1))
335
+ idx += graph.indptr[:-1, None]
336
+ return a.take(idx, mode="clip").reshape(n_samples, n_neighbors)
337
+
338
+ if return_distance:
339
+ return extract(graph.data), extract(graph.indices)
340
+ else:
341
+ return extract(graph.indices)
342
+
343
+
344
+ def _radius_neighbors_from_graph(graph, radius, return_distance):
345
+ """Decompose a nearest neighbors sparse graph into distances and indices.
346
+
347
+ Parameters
348
+ ----------
349
+ graph : sparse matrix of shape (n_samples, n_samples)
350
+ Neighbors graph as given by `kneighbors_graph` or
351
+ `radius_neighbors_graph`. Matrix should be of format CSR format.
352
+
353
+ radius : float
354
+ Radius of neighborhoods which should be strictly positive.
355
+
356
+ return_distance : bool
357
+ Whether or not to return the distances.
358
+
359
+ Returns
360
+ -------
361
+ neigh_dist : ndarray of shape (n_samples,) of arrays
362
+ Distances to nearest neighbors. Only present if `return_distance=True`.
363
+
364
+ neigh_ind : ndarray of shape (n_samples,) of arrays
365
+ Indices of nearest neighbors.
366
+ """
367
+ assert graph.format == "csr"
368
+
369
+ no_filter_needed = bool(graph.data.max() <= radius)
370
+
371
+ if no_filter_needed:
372
+ data, indices, indptr = graph.data, graph.indices, graph.indptr
373
+ else:
374
+ mask = graph.data <= radius
375
+ if return_distance:
376
+ data = np.compress(mask, graph.data)
377
+ indices = np.compress(mask, graph.indices)
378
+ indptr = np.concatenate(([0], np.cumsum(mask)))[graph.indptr]
379
+
380
+ indices = indices.astype(np.intp, copy=no_filter_needed)
381
+
382
+ if return_distance:
383
+ neigh_dist = _to_object_array(np.split(data, indptr[1:-1]))
384
+ neigh_ind = _to_object_array(np.split(indices, indptr[1:-1]))
385
+
386
+ if return_distance:
387
+ return neigh_dist, neigh_ind
388
+ else:
389
+ return neigh_ind
390
+
391
+
392
+ class NeighborsBase(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
393
+ """Base class for nearest neighbors estimators."""
394
+
395
+ _parameter_constraints: dict = {
396
+ "n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
397
+ "radius": [Interval(Real, 0, None, closed="both"), None],
398
+ "algorithm": [StrOptions({"auto", "ball_tree", "kd_tree", "brute"})],
399
+ "leaf_size": [Interval(Integral, 1, None, closed="left")],
400
+ "p": [Interval(Real, 0, None, closed="right"), None],
401
+ "metric": [StrOptions(set(itertools.chain(*VALID_METRICS.values()))), callable],
402
+ "metric_params": [dict, None],
403
+ "n_jobs": [Integral, None],
404
+ }
405
+
406
+ @abstractmethod
407
+ def __init__(
408
+ self,
409
+ n_neighbors=None,
410
+ radius=None,
411
+ algorithm="auto",
412
+ leaf_size=30,
413
+ metric="minkowski",
414
+ p=2,
415
+ metric_params=None,
416
+ n_jobs=None,
417
+ ):
418
+ self.n_neighbors = n_neighbors
419
+ self.radius = radius
420
+ self.algorithm = algorithm
421
+ self.leaf_size = leaf_size
422
+ self.metric = metric
423
+ self.metric_params = metric_params
424
+ self.p = p
425
+ self.n_jobs = n_jobs
426
+
427
+ def _check_algorithm_metric(self):
428
+ if self.algorithm == "auto":
429
+ if self.metric == "precomputed":
430
+ alg_check = "brute"
431
+ elif (
432
+ callable(self.metric)
433
+ or self.metric in VALID_METRICS["ball_tree"]
434
+ or isinstance(self.metric, DistanceMetric)
435
+ ):
436
+ alg_check = "ball_tree"
437
+ else:
438
+ alg_check = "brute"
439
+ else:
440
+ alg_check = self.algorithm
441
+
442
+ if callable(self.metric):
443
+ if self.algorithm == "kd_tree":
444
+ # callable metric is only valid for brute force and ball_tree
445
+ raise ValueError(
446
+ "kd_tree does not support callable metric '%s'"
447
+ "Function call overhead will result"
448
+ "in very poor performance."
449
+ % self.metric
450
+ )
451
+ elif self.metric not in VALID_METRICS[alg_check] and not isinstance(
452
+ self.metric, DistanceMetric
453
+ ):
454
+ raise ValueError(
455
+ "Metric '%s' not valid. Use "
456
+ "sorted(sklearn.neighbors.VALID_METRICS['%s']) "
457
+ "to get valid options. "
458
+ "Metric can also be a callable function." % (self.metric, alg_check)
459
+ )
460
+
461
+ if self.metric_params is not None and "p" in self.metric_params:
462
+ if self.p is not None:
463
+ warnings.warn(
464
+ (
465
+ "Parameter p is found in metric_params. "
466
+ "The corresponding parameter from __init__ "
467
+ "is ignored."
468
+ ),
469
+ SyntaxWarning,
470
+ stacklevel=3,
471
+ )
472
+
473
+ def _fit(self, X, y=None):
474
+ if self._get_tags()["requires_y"]:
475
+ if not isinstance(X, (KDTree, BallTree, NeighborsBase)):
476
+ X, y = self._validate_data(
477
+ X, y, accept_sparse="csr", multi_output=True, order="C"
478
+ )
479
+
480
+ if is_classifier(self):
481
+ # Classification targets require a specific format
482
+ if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1:
483
+ if y.ndim != 1:
484
+ warnings.warn(
485
+ (
486
+ "A column-vector y was passed when a "
487
+ "1d array was expected. Please change "
488
+ "the shape of y to (n_samples,), for "
489
+ "example using ravel()."
490
+ ),
491
+ DataConversionWarning,
492
+ stacklevel=2,
493
+ )
494
+
495
+ self.outputs_2d_ = False
496
+ y = y.reshape((-1, 1))
497
+ else:
498
+ self.outputs_2d_ = True
499
+
500
+ check_classification_targets(y)
501
+ self.classes_ = []
502
+ # Using `dtype=np.intp` is necessary since `np.bincount`
503
+ # (called in _classification.py) fails when dealing
504
+ # with a float64 array on 32bit systems.
505
+ self._y = np.empty(y.shape, dtype=np.intp)
506
+ for k in range(self._y.shape[1]):
507
+ classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True)
508
+ self.classes_.append(classes)
509
+
510
+ if not self.outputs_2d_:
511
+ self.classes_ = self.classes_[0]
512
+ self._y = self._y.ravel()
513
+ else:
514
+ self._y = y
515
+
516
+ else:
517
+ if not isinstance(X, (KDTree, BallTree, NeighborsBase)):
518
+ X = self._validate_data(X, accept_sparse="csr", order="C")
519
+
520
+ self._check_algorithm_metric()
521
+ if self.metric_params is None:
522
+ self.effective_metric_params_ = {}
523
+ else:
524
+ self.effective_metric_params_ = self.metric_params.copy()
525
+
526
+ effective_p = self.effective_metric_params_.get("p", self.p)
527
+ if self.metric == "minkowski":
528
+ self.effective_metric_params_["p"] = effective_p
529
+
530
+ self.effective_metric_ = self.metric
531
+ # For minkowski distance, use more efficient methods where available
532
+ if self.metric == "minkowski":
533
+ p = self.effective_metric_params_.pop("p", 2)
534
+ w = self.effective_metric_params_.pop("w", None)
535
+
536
+ if p == 1 and w is None:
537
+ self.effective_metric_ = "manhattan"
538
+ elif p == 2 and w is None:
539
+ self.effective_metric_ = "euclidean"
540
+ elif p == np.inf and w is None:
541
+ self.effective_metric_ = "chebyshev"
542
+ else:
543
+ # Use the generic minkowski metric, possibly weighted.
544
+ self.effective_metric_params_["p"] = p
545
+ self.effective_metric_params_["w"] = w
546
+
547
+ if isinstance(X, NeighborsBase):
548
+ self._fit_X = X._fit_X
549
+ self._tree = X._tree
550
+ self._fit_method = X._fit_method
551
+ self.n_samples_fit_ = X.n_samples_fit_
552
+ return self
553
+
554
+ elif isinstance(X, BallTree):
555
+ self._fit_X = X.data
556
+ self._tree = X
557
+ self._fit_method = "ball_tree"
558
+ self.n_samples_fit_ = X.data.shape[0]
559
+ return self
560
+
561
+ elif isinstance(X, KDTree):
562
+ self._fit_X = X.data
563
+ self._tree = X
564
+ self._fit_method = "kd_tree"
565
+ self.n_samples_fit_ = X.data.shape[0]
566
+ return self
567
+
568
+ if self.metric == "precomputed":
569
+ X = _check_precomputed(X)
570
+ # Precomputed matrix X must be squared
571
+ if X.shape[0] != X.shape[1]:
572
+ raise ValueError(
573
+ "Precomputed matrix must be square."
574
+ " Input is a {}x{} matrix.".format(X.shape[0], X.shape[1])
575
+ )
576
+ self.n_features_in_ = X.shape[1]
577
+
578
+ n_samples = X.shape[0]
579
+ if n_samples == 0:
580
+ raise ValueError("n_samples must be greater than 0")
581
+
582
+ if issparse(X):
583
+ if self.algorithm not in ("auto", "brute"):
584
+ warnings.warn("cannot use tree with sparse input: using brute force")
585
+
586
+ if (
587
+ self.effective_metric_ not in VALID_METRICS_SPARSE["brute"]
588
+ and not callable(self.effective_metric_)
589
+ and not isinstance(self.effective_metric_, DistanceMetric)
590
+ ):
591
+ raise ValueError(
592
+ "Metric '%s' not valid for sparse input. "
593
+ "Use sorted(sklearn.neighbors."
594
+ "VALID_METRICS_SPARSE['brute']) "
595
+ "to get valid options. "
596
+ "Metric can also be a callable function." % (self.effective_metric_)
597
+ )
598
+ self._fit_X = X.copy()
599
+ self._tree = None
600
+ self._fit_method = "brute"
601
+ self.n_samples_fit_ = X.shape[0]
602
+ return self
603
+
604
+ self._fit_method = self.algorithm
605
+ self._fit_X = X
606
+ self.n_samples_fit_ = X.shape[0]
607
+
608
+ if self._fit_method == "auto":
609
+ # A tree approach is better for small number of neighbors or small
610
+ # number of features, with KDTree generally faster when available
611
+ if (
612
+ self.metric == "precomputed"
613
+ or self._fit_X.shape[1] > 15
614
+ or (
615
+ self.n_neighbors is not None
616
+ and self.n_neighbors >= self._fit_X.shape[0] // 2
617
+ )
618
+ ):
619
+ self._fit_method = "brute"
620
+ else:
621
+ if (
622
+ self.effective_metric_ == "minkowski"
623
+ and self.effective_metric_params_["p"] < 1
624
+ ):
625
+ self._fit_method = "brute"
626
+ elif (
627
+ self.effective_metric_ == "minkowski"
628
+ and self.effective_metric_params_.get("w") is not None
629
+ ):
630
+ # 'minkowski' with weights is not supported by KDTree but is
631
+ # supported byBallTree.
632
+ self._fit_method = "ball_tree"
633
+ elif self.effective_metric_ in VALID_METRICS["kd_tree"]:
634
+ self._fit_method = "kd_tree"
635
+ elif (
636
+ callable(self.effective_metric_)
637
+ or self.effective_metric_ in VALID_METRICS["ball_tree"]
638
+ ):
639
+ self._fit_method = "ball_tree"
640
+ else:
641
+ self._fit_method = "brute"
642
+
643
+ if (
644
+ self.effective_metric_ == "minkowski"
645
+ and self.effective_metric_params_["p"] < 1
646
+ ):
647
+ # For 0 < p < 1 Minkowski distances aren't valid distance
648
+ # metric as they do not satisfy triangular inequality:
649
+ # they are semi-metrics.
650
+ # algorithm="kd_tree" and algorithm="ball_tree" can't be used because
651
+ # KDTree and BallTree require a proper distance metric to work properly.
652
+ # However, the brute-force algorithm supports semi-metrics.
653
+ if self._fit_method == "brute":
654
+ warnings.warn(
655
+ "Mind that for 0 < p < 1, Minkowski metrics are not distance"
656
+ " metrics. Continuing the execution with `algorithm='brute'`."
657
+ )
658
+ else: # self._fit_method in ("kd_tree", "ball_tree")
659
+ raise ValueError(
660
+ f'algorithm="{self._fit_method}" does not support 0 < p < 1 for '
661
+ "the Minkowski metric. To resolve this problem either "
662
+ 'set p >= 1 or algorithm="brute".'
663
+ )
664
+
665
+ if self._fit_method == "ball_tree":
666
+ self._tree = BallTree(
667
+ X,
668
+ self.leaf_size,
669
+ metric=self.effective_metric_,
670
+ **self.effective_metric_params_,
671
+ )
672
+ elif self._fit_method == "kd_tree":
673
+ if (
674
+ self.effective_metric_ == "minkowski"
675
+ and self.effective_metric_params_.get("w") is not None
676
+ ):
677
+ raise ValueError(
678
+ "algorithm='kd_tree' is not valid for "
679
+ "metric='minkowski' with a weight parameter 'w': "
680
+ "try algorithm='ball_tree' "
681
+ "or algorithm='brute' instead."
682
+ )
683
+ self._tree = KDTree(
684
+ X,
685
+ self.leaf_size,
686
+ metric=self.effective_metric_,
687
+ **self.effective_metric_params_,
688
+ )
689
+ elif self._fit_method == "brute":
690
+ self._tree = None
691
+
692
+ return self
693
+
694
+ def _more_tags(self):
695
+ # For cross-validation routines to split data correctly
696
+ return {"pairwise": self.metric == "precomputed"}
697
+
698
+
699
+ def _tree_query_parallel_helper(tree, *args, **kwargs):
700
+ """Helper for the Parallel calls in KNeighborsMixin.kneighbors.
701
+
702
+ The Cython method tree.query is not directly picklable by cloudpickle
703
+ under PyPy.
704
+ """
705
+ return tree.query(*args, **kwargs)
706
+
707
+
708
+ class KNeighborsMixin:
709
+ """Mixin for k-neighbors searches."""
710
+
711
+ def _kneighbors_reduce_func(self, dist, start, n_neighbors, return_distance):
712
+ """Reduce a chunk of distances to the nearest neighbors.
713
+
714
+ Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
715
+
716
+ Parameters
717
+ ----------
718
+ dist : ndarray of shape (n_samples_chunk, n_samples)
719
+ The distance matrix.
720
+
721
+ start : int
722
+ The index in X which the first row of dist corresponds to.
723
+
724
+ n_neighbors : int
725
+ Number of neighbors required for each sample.
726
+
727
+ return_distance : bool
728
+ Whether or not to return the distances.
729
+
730
+ Returns
731
+ -------
732
+ dist : array of shape (n_samples_chunk, n_neighbors)
733
+ Returned only if `return_distance=True`.
734
+
735
+ neigh : array of shape (n_samples_chunk, n_neighbors)
736
+ The neighbors indices.
737
+ """
738
+ sample_range = np.arange(dist.shape[0])[:, None]
739
+ neigh_ind = np.argpartition(dist, n_neighbors - 1, axis=1)
740
+ neigh_ind = neigh_ind[:, :n_neighbors]
741
+ # argpartition doesn't guarantee sorted order, so we sort again
742
+ neigh_ind = neigh_ind[sample_range, np.argsort(dist[sample_range, neigh_ind])]
743
+ if return_distance:
744
+ if self.effective_metric_ == "euclidean":
745
+ result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind
746
+ else:
747
+ result = dist[sample_range, neigh_ind], neigh_ind
748
+ else:
749
+ result = neigh_ind
750
+ return result
751
+
752
+ def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
753
+ """Find the K-neighbors of a point.
754
+
755
+ Returns indices of and distances to the neighbors of each point.
756
+
757
+ Parameters
758
+ ----------
759
+ X : {array-like, sparse matrix}, shape (n_queries, n_features), \
760
+ or (n_queries, n_indexed) if metric == 'precomputed', default=None
761
+ The query point or points.
762
+ If not provided, neighbors of each indexed point are returned.
763
+ In this case, the query point is not considered its own neighbor.
764
+
765
+ n_neighbors : int, default=None
766
+ Number of neighbors required for each sample. The default is the
767
+ value passed to the constructor.
768
+
769
+ return_distance : bool, default=True
770
+ Whether or not to return the distances.
771
+
772
+ Returns
773
+ -------
774
+ neigh_dist : ndarray of shape (n_queries, n_neighbors)
775
+ Array representing the lengths to points, only present if
776
+ return_distance=True.
777
+
778
+ neigh_ind : ndarray of shape (n_queries, n_neighbors)
779
+ Indices of the nearest points in the population matrix.
780
+
781
+ Examples
782
+ --------
783
+ In the following example, we construct a NearestNeighbors
784
+ class from an array representing our data set and ask who's
785
+ the closest point to [1,1,1]
786
+
787
+ >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
788
+ >>> from sklearn.neighbors import NearestNeighbors
789
+ >>> neigh = NearestNeighbors(n_neighbors=1)
790
+ >>> neigh.fit(samples)
791
+ NearestNeighbors(n_neighbors=1)
792
+ >>> print(neigh.kneighbors([[1., 1., 1.]]))
793
+ (array([[0.5]]), array([[2]]))
794
+
795
+ As you can see, it returns [[0.5]], and [[2]], which means that the
796
+ element is at distance 0.5 and is the third element of samples
797
+ (indexes start at 0). You can also query for multiple points:
798
+
799
+ >>> X = [[0., 1., 0.], [1., 0., 1.]]
800
+ >>> neigh.kneighbors(X, return_distance=False)
801
+ array([[1],
802
+ [2]]...)
803
+ """
804
+ check_is_fitted(self)
805
+
806
+ if n_neighbors is None:
807
+ n_neighbors = self.n_neighbors
808
+ elif n_neighbors <= 0:
809
+ raise ValueError("Expected n_neighbors > 0. Got %d" % n_neighbors)
810
+ elif not isinstance(n_neighbors, numbers.Integral):
811
+ raise TypeError(
812
+ "n_neighbors does not take %s value, enter integer value"
813
+ % type(n_neighbors)
814
+ )
815
+
816
+ query_is_train = X is None
817
+ if query_is_train:
818
+ X = self._fit_X
819
+ # Include an extra neighbor to account for the sample itself being
820
+ # returned, which is removed later
821
+ n_neighbors += 1
822
+ else:
823
+ if self.metric == "precomputed":
824
+ X = _check_precomputed(X)
825
+ else:
826
+ X = self._validate_data(X, accept_sparse="csr", reset=False, order="C")
827
+
828
+ n_samples_fit = self.n_samples_fit_
829
+ if n_neighbors > n_samples_fit:
830
+ if query_is_train:
831
+ n_neighbors -= 1 # ok to modify inplace because an error is raised
832
+ inequality_str = "n_neighbors < n_samples_fit"
833
+ else:
834
+ inequality_str = "n_neighbors <= n_samples_fit"
835
+ raise ValueError(
836
+ f"Expected {inequality_str}, but "
837
+ f"n_neighbors = {n_neighbors}, n_samples_fit = {n_samples_fit}, "
838
+ f"n_samples = {X.shape[0]}" # include n_samples for common tests
839
+ )
840
+
841
+ n_jobs = effective_n_jobs(self.n_jobs)
842
+ chunked_results = None
843
+ use_pairwise_distances_reductions = (
844
+ self._fit_method == "brute"
845
+ and ArgKmin.is_usable_for(
846
+ X if X is not None else self._fit_X, self._fit_X, self.effective_metric_
847
+ )
848
+ )
849
+ if use_pairwise_distances_reductions:
850
+ results = ArgKmin.compute(
851
+ X=X,
852
+ Y=self._fit_X,
853
+ k=n_neighbors,
854
+ metric=self.effective_metric_,
855
+ metric_kwargs=self.effective_metric_params_,
856
+ strategy="auto",
857
+ return_distance=return_distance,
858
+ )
859
+
860
+ elif (
861
+ self._fit_method == "brute" and self.metric == "precomputed" and issparse(X)
862
+ ):
863
+ results = _kneighbors_from_graph(
864
+ X, n_neighbors=n_neighbors, return_distance=return_distance
865
+ )
866
+
867
+ elif self._fit_method == "brute":
868
+ # Joblib-based backend, which is used when user-defined callable
869
+ # are passed for metric.
870
+
871
+ # This won't be used in the future once PairwiseDistancesReductions
872
+ # support:
873
+ # - DistanceMetrics which work on supposedly binary data
874
+ # - CSR-dense and dense-CSR case if 'euclidean' in metric.
875
+ reduce_func = partial(
876
+ self._kneighbors_reduce_func,
877
+ n_neighbors=n_neighbors,
878
+ return_distance=return_distance,
879
+ )
880
+
881
+ # for efficiency, use squared euclidean distances
882
+ if self.effective_metric_ == "euclidean":
883
+ kwds = {"squared": True}
884
+ else:
885
+ kwds = self.effective_metric_params_
886
+
887
+ chunked_results = list(
888
+ pairwise_distances_chunked(
889
+ X,
890
+ self._fit_X,
891
+ reduce_func=reduce_func,
892
+ metric=self.effective_metric_,
893
+ n_jobs=n_jobs,
894
+ **kwds,
895
+ )
896
+ )
897
+
898
+ elif self._fit_method in ["ball_tree", "kd_tree"]:
899
+ if issparse(X):
900
+ raise ValueError(
901
+ "%s does not work with sparse matrices. Densify the data, "
902
+ "or set algorithm='brute'"
903
+ % self._fit_method
904
+ )
905
+ chunked_results = Parallel(n_jobs, prefer="threads")(
906
+ delayed(_tree_query_parallel_helper)(
907
+ self._tree, X[s], n_neighbors, return_distance
908
+ )
909
+ for s in gen_even_slices(X.shape[0], n_jobs)
910
+ )
911
+ else:
912
+ raise ValueError("internal: _fit_method not recognized")
913
+
914
+ if chunked_results is not None:
915
+ if return_distance:
916
+ neigh_dist, neigh_ind = zip(*chunked_results)
917
+ results = np.vstack(neigh_dist), np.vstack(neigh_ind)
918
+ else:
919
+ results = np.vstack(chunked_results)
920
+
921
+ if not query_is_train:
922
+ return results
923
+ else:
924
+ # If the query data is the same as the indexed data, we would like
925
+ # to ignore the first nearest neighbor of every sample, i.e
926
+ # the sample itself.
927
+ if return_distance:
928
+ neigh_dist, neigh_ind = results
929
+ else:
930
+ neigh_ind = results
931
+
932
+ n_queries, _ = X.shape
933
+ sample_range = np.arange(n_queries)[:, None]
934
+ sample_mask = neigh_ind != sample_range
935
+
936
+ # Corner case: When the number of duplicates are more
937
+ # than the number of neighbors, the first NN will not
938
+ # be the sample, but a duplicate.
939
+ # In that case mask the first duplicate.
940
+ dup_gr_nbrs = np.all(sample_mask, axis=1)
941
+ sample_mask[:, 0][dup_gr_nbrs] = False
942
+ neigh_ind = np.reshape(neigh_ind[sample_mask], (n_queries, n_neighbors - 1))
943
+
944
+ if return_distance:
945
+ neigh_dist = np.reshape(
946
+ neigh_dist[sample_mask], (n_queries, n_neighbors - 1)
947
+ )
948
+ return neigh_dist, neigh_ind
949
+ return neigh_ind
950
+
951
+ def kneighbors_graph(self, X=None, n_neighbors=None, mode="connectivity"):
952
+ """Compute the (weighted) graph of k-Neighbors for points in X.
953
+
954
+ Parameters
955
+ ----------
956
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
957
+ or (n_queries, n_indexed) if metric == 'precomputed', default=None
958
+ The query point or points.
959
+ If not provided, neighbors of each indexed point are returned.
960
+ In this case, the query point is not considered its own neighbor.
961
+ For ``metric='precomputed'`` the shape should be
962
+ (n_queries, n_indexed). Otherwise the shape should be
963
+ (n_queries, n_features).
964
+
965
+ n_neighbors : int, default=None
966
+ Number of neighbors for each sample. The default is the value
967
+ passed to the constructor.
968
+
969
+ mode : {'connectivity', 'distance'}, default='connectivity'
970
+ Type of returned matrix: 'connectivity' will return the
971
+ connectivity matrix with ones and zeros, in 'distance' the
972
+ edges are distances between points, type of distance
973
+ depends on the selected metric parameter in
974
+ NearestNeighbors class.
975
+
976
+ Returns
977
+ -------
978
+ A : sparse-matrix of shape (n_queries, n_samples_fit)
979
+ `n_samples_fit` is the number of samples in the fitted data.
980
+ `A[i, j]` gives the weight of the edge connecting `i` to `j`.
981
+ The matrix is of CSR format.
982
+
983
+ See Also
984
+ --------
985
+ NearestNeighbors.radius_neighbors_graph : Compute the (weighted) graph
986
+ of Neighbors for points in X.
987
+
988
+ Examples
989
+ --------
990
+ >>> X = [[0], [3], [1]]
991
+ >>> from sklearn.neighbors import NearestNeighbors
992
+ >>> neigh = NearestNeighbors(n_neighbors=2)
993
+ >>> neigh.fit(X)
994
+ NearestNeighbors(n_neighbors=2)
995
+ >>> A = neigh.kneighbors_graph(X)
996
+ >>> A.toarray()
997
+ array([[1., 0., 1.],
998
+ [0., 1., 1.],
999
+ [1., 0., 1.]])
1000
+ """
1001
+ check_is_fitted(self)
1002
+ if n_neighbors is None:
1003
+ n_neighbors = self.n_neighbors
1004
+
1005
+ # check the input only in self.kneighbors
1006
+
1007
+ # construct CSR matrix representation of the k-NN graph
1008
+ if mode == "connectivity":
1009
+ A_ind = self.kneighbors(X, n_neighbors, return_distance=False)
1010
+ n_queries = A_ind.shape[0]
1011
+ A_data = np.ones(n_queries * n_neighbors)
1012
+
1013
+ elif mode == "distance":
1014
+ A_data, A_ind = self.kneighbors(X, n_neighbors, return_distance=True)
1015
+ A_data = np.ravel(A_data)
1016
+
1017
+ else:
1018
+ raise ValueError(
1019
+ 'Unsupported mode, must be one of "connectivity", '
1020
+ f'or "distance" but got "{mode}" instead'
1021
+ )
1022
+
1023
+ n_queries = A_ind.shape[0]
1024
+ n_samples_fit = self.n_samples_fit_
1025
+ n_nonzero = n_queries * n_neighbors
1026
+ A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)
1027
+
1028
+ kneighbors_graph = csr_matrix(
1029
+ (A_data, A_ind.ravel(), A_indptr), shape=(n_queries, n_samples_fit)
1030
+ )
1031
+
1032
+ return kneighbors_graph
1033
+
1034
+
1035
+ def _tree_query_radius_parallel_helper(tree, *args, **kwargs):
1036
+ """Helper for the Parallel calls in RadiusNeighborsMixin.radius_neighbors.
1037
+
1038
+ The Cython method tree.query_radius is not directly picklable by
1039
+ cloudpickle under PyPy.
1040
+ """
1041
+ return tree.query_radius(*args, **kwargs)
1042
+
1043
+
1044
+ class RadiusNeighborsMixin:
1045
+ """Mixin for radius-based neighbors searches."""
1046
+
1047
+ def _radius_neighbors_reduce_func(self, dist, start, radius, return_distance):
1048
+ """Reduce a chunk of distances to the nearest neighbors.
1049
+
1050
+ Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`
1051
+
1052
+ Parameters
1053
+ ----------
1054
+ dist : ndarray of shape (n_samples_chunk, n_samples)
1055
+ The distance matrix.
1056
+
1057
+ start : int
1058
+ The index in X which the first row of dist corresponds to.
1059
+
1060
+ radius : float
1061
+ The radius considered when making the nearest neighbors search.
1062
+
1063
+ return_distance : bool
1064
+ Whether or not to return the distances.
1065
+
1066
+ Returns
1067
+ -------
1068
+ dist : list of ndarray of shape (n_samples_chunk,)
1069
+ Returned only if `return_distance=True`.
1070
+
1071
+ neigh : list of ndarray of shape (n_samples_chunk,)
1072
+ The neighbors indices.
1073
+ """
1074
+ neigh_ind = [np.where(d <= radius)[0] for d in dist]
1075
+
1076
+ if return_distance:
1077
+ if self.effective_metric_ == "euclidean":
1078
+ dist = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)]
1079
+ else:
1080
+ dist = [d[neigh_ind[i]] for i, d in enumerate(dist)]
1081
+ results = dist, neigh_ind
1082
+ else:
1083
+ results = neigh_ind
1084
+ return results
1085
+
1086
+ def radius_neighbors(
1087
+ self, X=None, radius=None, return_distance=True, sort_results=False
1088
+ ):
1089
+ """Find the neighbors within a given radius of a point or points.
1090
+
1091
+ Return the indices and distances of each point from the dataset
1092
+ lying in a ball with size ``radius`` around the points of the query
1093
+ array. Points lying on the boundary are included in the results.
1094
+
1095
+ The result points are *not* necessarily sorted by distance to their
1096
+ query point.
1097
+
1098
+ Parameters
1099
+ ----------
1100
+ X : {array-like, sparse matrix} of (n_samples, n_features), default=None
1101
+ The query point or points.
1102
+ If not provided, neighbors of each indexed point are returned.
1103
+ In this case, the query point is not considered its own neighbor.
1104
+
1105
+ radius : float, default=None
1106
+ Limiting distance of neighbors to return. The default is the value
1107
+ passed to the constructor.
1108
+
1109
+ return_distance : bool, default=True
1110
+ Whether or not to return the distances.
1111
+
1112
+ sort_results : bool, default=False
1113
+ If True, the distances and indices will be sorted by increasing
1114
+ distances before being returned. If False, the results may not
1115
+ be sorted. If `return_distance=False`, setting `sort_results=True`
1116
+ will result in an error.
1117
+
1118
+ .. versionadded:: 0.22
1119
+
1120
+ Returns
1121
+ -------
1122
+ neigh_dist : ndarray of shape (n_samples,) of arrays
1123
+ Array representing the distances to each point, only present if
1124
+ `return_distance=True`. The distance values are computed according
1125
+ to the ``metric`` constructor parameter.
1126
+
1127
+ neigh_ind : ndarray of shape (n_samples,) of arrays
1128
+ An array of arrays of indices of the approximate nearest points
1129
+ from the population matrix that lie within a ball of size
1130
+ ``radius`` around the query points.
1131
+
1132
+ Notes
1133
+ -----
1134
+ Because the number of neighbors of each point is not necessarily
1135
+ equal, the results for multiple query points cannot be fit in a
1136
+ standard data array.
1137
+ For efficiency, `radius_neighbors` returns arrays of objects, where
1138
+ each object is a 1D array of indices or distances.
1139
+
1140
+ Examples
1141
+ --------
1142
+ In the following example, we construct a NeighborsClassifier
1143
+ class from an array representing our data set and ask who's
1144
+ the closest point to [1, 1, 1]:
1145
+
1146
+ >>> import numpy as np
1147
+ >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
1148
+ >>> from sklearn.neighbors import NearestNeighbors
1149
+ >>> neigh = NearestNeighbors(radius=1.6)
1150
+ >>> neigh.fit(samples)
1151
+ NearestNeighbors(radius=1.6)
1152
+ >>> rng = neigh.radius_neighbors([[1., 1., 1.]])
1153
+ >>> print(np.asarray(rng[0][0]))
1154
+ [1.5 0.5]
1155
+ >>> print(np.asarray(rng[1][0]))
1156
+ [1 2]
1157
+
1158
+ The first array returned contains the distances to all points which
1159
+ are closer than 1.6, while the second array returned contains their
1160
+ indices. In general, multiple points can be queried at the same time.
1161
+ """
1162
+ check_is_fitted(self)
1163
+
1164
+ if sort_results and not return_distance:
1165
+ raise ValueError("return_distance must be True if sort_results is True.")
1166
+
1167
+ query_is_train = X is None
1168
+ if query_is_train:
1169
+ X = self._fit_X
1170
+ else:
1171
+ if self.metric == "precomputed":
1172
+ X = _check_precomputed(X)
1173
+ else:
1174
+ X = self._validate_data(X, accept_sparse="csr", reset=False, order="C")
1175
+
1176
+ if radius is None:
1177
+ radius = self.radius
1178
+
1179
+ use_pairwise_distances_reductions = (
1180
+ self._fit_method == "brute"
1181
+ and RadiusNeighbors.is_usable_for(
1182
+ X if X is not None else self._fit_X, self._fit_X, self.effective_metric_
1183
+ )
1184
+ )
1185
+
1186
+ if use_pairwise_distances_reductions:
1187
+ results = RadiusNeighbors.compute(
1188
+ X=X,
1189
+ Y=self._fit_X,
1190
+ radius=radius,
1191
+ metric=self.effective_metric_,
1192
+ metric_kwargs=self.effective_metric_params_,
1193
+ strategy="auto",
1194
+ return_distance=return_distance,
1195
+ sort_results=sort_results,
1196
+ )
1197
+
1198
+ elif (
1199
+ self._fit_method == "brute" and self.metric == "precomputed" and issparse(X)
1200
+ ):
1201
+ results = _radius_neighbors_from_graph(
1202
+ X, radius=radius, return_distance=return_distance
1203
+ )
1204
+
1205
+ elif self._fit_method == "brute":
1206
+ # Joblib-based backend, which is used when user-defined callable
1207
+ # are passed for metric.
1208
+
1209
+ # This won't be used in the future once PairwiseDistancesReductions
1210
+ # support:
1211
+ # - DistanceMetrics which work on supposedly binary data
1212
+ # - CSR-dense and dense-CSR case if 'euclidean' in metric.
1213
+
1214
+ # for efficiency, use squared euclidean distances
1215
+ if self.effective_metric_ == "euclidean":
1216
+ radius *= radius
1217
+ kwds = {"squared": True}
1218
+ else:
1219
+ kwds = self.effective_metric_params_
1220
+
1221
+ reduce_func = partial(
1222
+ self._radius_neighbors_reduce_func,
1223
+ radius=radius,
1224
+ return_distance=return_distance,
1225
+ )
1226
+
1227
+ chunked_results = pairwise_distances_chunked(
1228
+ X,
1229
+ self._fit_X,
1230
+ reduce_func=reduce_func,
1231
+ metric=self.effective_metric_,
1232
+ n_jobs=self.n_jobs,
1233
+ **kwds,
1234
+ )
1235
+ if return_distance:
1236
+ neigh_dist_chunks, neigh_ind_chunks = zip(*chunked_results)
1237
+ neigh_dist_list = sum(neigh_dist_chunks, [])
1238
+ neigh_ind_list = sum(neigh_ind_chunks, [])
1239
+ neigh_dist = _to_object_array(neigh_dist_list)
1240
+ neigh_ind = _to_object_array(neigh_ind_list)
1241
+ results = neigh_dist, neigh_ind
1242
+ else:
1243
+ neigh_ind_list = sum(chunked_results, [])
1244
+ results = _to_object_array(neigh_ind_list)
1245
+
1246
+ if sort_results:
1247
+ for ii in range(len(neigh_dist)):
1248
+ order = np.argsort(neigh_dist[ii], kind="mergesort")
1249
+ neigh_ind[ii] = neigh_ind[ii][order]
1250
+ neigh_dist[ii] = neigh_dist[ii][order]
1251
+ results = neigh_dist, neigh_ind
1252
+
1253
+ elif self._fit_method in ["ball_tree", "kd_tree"]:
1254
+ if issparse(X):
1255
+ raise ValueError(
1256
+ "%s does not work with sparse matrices. Densify the data, "
1257
+ "or set algorithm='brute'"
1258
+ % self._fit_method
1259
+ )
1260
+
1261
+ n_jobs = effective_n_jobs(self.n_jobs)
1262
+ delayed_query = delayed(_tree_query_radius_parallel_helper)
1263
+ chunked_results = Parallel(n_jobs, prefer="threads")(
1264
+ delayed_query(
1265
+ self._tree, X[s], radius, return_distance, sort_results=sort_results
1266
+ )
1267
+ for s in gen_even_slices(X.shape[0], n_jobs)
1268
+ )
1269
+ if return_distance:
1270
+ neigh_ind, neigh_dist = tuple(zip(*chunked_results))
1271
+ results = np.hstack(neigh_dist), np.hstack(neigh_ind)
1272
+ else:
1273
+ results = np.hstack(chunked_results)
1274
+ else:
1275
+ raise ValueError("internal: _fit_method not recognized")
1276
+
1277
+ if not query_is_train:
1278
+ return results
1279
+ else:
1280
+ # If the query data is the same as the indexed data, we would like
1281
+ # to ignore the first nearest neighbor of every sample, i.e
1282
+ # the sample itself.
1283
+ if return_distance:
1284
+ neigh_dist, neigh_ind = results
1285
+ else:
1286
+ neigh_ind = results
1287
+
1288
+ for ind, ind_neighbor in enumerate(neigh_ind):
1289
+ mask = ind_neighbor != ind
1290
+
1291
+ neigh_ind[ind] = ind_neighbor[mask]
1292
+ if return_distance:
1293
+ neigh_dist[ind] = neigh_dist[ind][mask]
1294
+
1295
+ if return_distance:
1296
+ return neigh_dist, neigh_ind
1297
+ return neigh_ind
1298
+
1299
+ def radius_neighbors_graph(
1300
+ self, X=None, radius=None, mode="connectivity", sort_results=False
1301
+ ):
1302
+ """Compute the (weighted) graph of Neighbors for points in X.
1303
+
1304
+ Neighborhoods are restricted the points at a distance lower than
1305
+ radius.
1306
+
1307
+ Parameters
1308
+ ----------
1309
+ X : {array-like, sparse matrix} of shape (n_samples, n_features), default=None
1310
+ The query point or points.
1311
+ If not provided, neighbors of each indexed point are returned.
1312
+ In this case, the query point is not considered its own neighbor.
1313
+
1314
+ radius : float, default=None
1315
+ Radius of neighborhoods. The default is the value passed to the
1316
+ constructor.
1317
+
1318
+ mode : {'connectivity', 'distance'}, default='connectivity'
1319
+ Type of returned matrix: 'connectivity' will return the
1320
+ connectivity matrix with ones and zeros, in 'distance' the
1321
+ edges are distances between points, type of distance
1322
+ depends on the selected metric parameter in
1323
+ NearestNeighbors class.
1324
+
1325
+ sort_results : bool, default=False
1326
+ If True, in each row of the result, the non-zero entries will be
1327
+ sorted by increasing distances. If False, the non-zero entries may
1328
+ not be sorted. Only used with mode='distance'.
1329
+
1330
+ .. versionadded:: 0.22
1331
+
1332
+ Returns
1333
+ -------
1334
+ A : sparse-matrix of shape (n_queries, n_samples_fit)
1335
+ `n_samples_fit` is the number of samples in the fitted data.
1336
+ `A[i, j]` gives the weight of the edge connecting `i` to `j`.
1337
+ The matrix is of CSR format.
1338
+
1339
+ See Also
1340
+ --------
1341
+ kneighbors_graph : Compute the (weighted) graph of k-Neighbors for
1342
+ points in X.
1343
+
1344
+ Examples
1345
+ --------
1346
+ >>> X = [[0], [3], [1]]
1347
+ >>> from sklearn.neighbors import NearestNeighbors
1348
+ >>> neigh = NearestNeighbors(radius=1.5)
1349
+ >>> neigh.fit(X)
1350
+ NearestNeighbors(radius=1.5)
1351
+ >>> A = neigh.radius_neighbors_graph(X)
1352
+ >>> A.toarray()
1353
+ array([[1., 0., 1.],
1354
+ [0., 1., 0.],
1355
+ [1., 0., 1.]])
1356
+ """
1357
+ check_is_fitted(self)
1358
+
1359
+ # check the input only in self.radius_neighbors
1360
+
1361
+ if radius is None:
1362
+ radius = self.radius
1363
+
1364
+ # construct CSR matrix representation of the NN graph
1365
+ if mode == "connectivity":
1366
+ A_ind = self.radius_neighbors(X, radius, return_distance=False)
1367
+ A_data = None
1368
+ elif mode == "distance":
1369
+ dist, A_ind = self.radius_neighbors(
1370
+ X, radius, return_distance=True, sort_results=sort_results
1371
+ )
1372
+ A_data = np.concatenate(list(dist))
1373
+ else:
1374
+ raise ValueError(
1375
+ 'Unsupported mode, must be one of "connectivity", '
1376
+ f'or "distance" but got "{mode}" instead'
1377
+ )
1378
+
1379
+ n_queries = A_ind.shape[0]
1380
+ n_samples_fit = self.n_samples_fit_
1381
+ n_neighbors = np.array([len(a) for a in A_ind])
1382
+ A_ind = np.concatenate(list(A_ind))
1383
+ if A_data is None:
1384
+ A_data = np.ones(len(A_ind))
1385
+ A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors)))
1386
+
1387
+ return csr_matrix((A_data, A_ind, A_indptr), shape=(n_queries, n_samples_fit))
venv/lib/python3.10/site-packages/sklearn/neighbors/_classification.py ADDED
@@ -0,0 +1,839 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Nearest Neighbor Classification"""
2
+
3
+ # Authors: Jake Vanderplas <[email protected]>
4
+ # Fabian Pedregosa <[email protected]>
5
+ # Alexandre Gramfort <[email protected]>
6
+ # Sparseness support by Lars Buitinck
7
+ # Multi-output support by Arnaud Joly <[email protected]>
8
+ #
9
+ # License: BSD 3 clause (C) INRIA, University of Amsterdam
10
+ import warnings
11
+ from numbers import Integral
12
+
13
+ import numpy as np
14
+
15
+ from sklearn.neighbors._base import _check_precomputed
16
+
17
+ from ..base import ClassifierMixin, _fit_context
18
+ from ..metrics._pairwise_distances_reduction import (
19
+ ArgKminClassMode,
20
+ RadiusNeighborsClassMode,
21
+ )
22
+ from ..utils._param_validation import StrOptions
23
+ from ..utils.arrayfuncs import _all_with_any_reduction_axis_1
24
+ from ..utils.extmath import weighted_mode
25
+ from ..utils.fixes import _mode
26
+ from ..utils.validation import _is_arraylike, _num_samples, check_is_fitted
27
+ from ._base import KNeighborsMixin, NeighborsBase, RadiusNeighborsMixin, _get_weights
28
+
29
+
30
+ def _adjusted_metric(metric, metric_kwargs, p=None):
31
+ metric_kwargs = metric_kwargs or {}
32
+ if metric == "minkowski":
33
+ metric_kwargs["p"] = p
34
+ if p == 2:
35
+ metric = "euclidean"
36
+ return metric, metric_kwargs
37
+
38
+
39
+ class KNeighborsClassifier(KNeighborsMixin, ClassifierMixin, NeighborsBase):
40
+ """Classifier implementing the k-nearest neighbors vote.
41
+
42
+ Read more in the :ref:`User Guide <classification>`.
43
+
44
+ Parameters
45
+ ----------
46
+ n_neighbors : int, default=5
47
+ Number of neighbors to use by default for :meth:`kneighbors` queries.
48
+
49
+ weights : {'uniform', 'distance'}, callable or None, default='uniform'
50
+ Weight function used in prediction. Possible values:
51
+
52
+ - 'uniform' : uniform weights. All points in each neighborhood
53
+ are weighted equally.
54
+ - 'distance' : weight points by the inverse of their distance.
55
+ in this case, closer neighbors of a query point will have a
56
+ greater influence than neighbors which are further away.
57
+ - [callable] : a user-defined function which accepts an
58
+ array of distances, and returns an array of the same shape
59
+ containing the weights.
60
+
61
+ Refer to the example entitled
62
+ :ref:`sphx_glr_auto_examples_neighbors_plot_classification.py`
63
+ showing the impact of the `weights` parameter on the decision
64
+ boundary.
65
+
66
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
67
+ Algorithm used to compute the nearest neighbors:
68
+
69
+ - 'ball_tree' will use :class:`BallTree`
70
+ - 'kd_tree' will use :class:`KDTree`
71
+ - 'brute' will use a brute-force search.
72
+ - 'auto' will attempt to decide the most appropriate algorithm
73
+ based on the values passed to :meth:`fit` method.
74
+
75
+ Note: fitting on sparse input will override the setting of
76
+ this parameter, using brute force.
77
+
78
+ leaf_size : int, default=30
79
+ Leaf size passed to BallTree or KDTree. This can affect the
80
+ speed of the construction and query, as well as the memory
81
+ required to store the tree. The optimal value depends on the
82
+ nature of the problem.
83
+
84
+ p : float, default=2
85
+ Power parameter for the Minkowski metric. When p = 1, this is equivalent
86
+ to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2.
87
+ For arbitrary p, minkowski_distance (l_p) is used. This parameter is expected
88
+ to be positive.
89
+
90
+ metric : str or callable, default='minkowski'
91
+ Metric to use for distance computation. Default is "minkowski", which
92
+ results in the standard Euclidean distance when p = 2. See the
93
+ documentation of `scipy.spatial.distance
94
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
95
+ the metrics listed in
96
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
97
+ values.
98
+
99
+ If metric is "precomputed", X is assumed to be a distance matrix and
100
+ must be square during fit. X may be a :term:`sparse graph`, in which
101
+ case only "nonzero" elements may be considered neighbors.
102
+
103
+ If metric is a callable function, it takes two arrays representing 1D
104
+ vectors as inputs and must return one value indicating the distance
105
+ between those vectors. This works for Scipy's metrics, but is less
106
+ efficient than passing the metric name as a string.
107
+
108
+ metric_params : dict, default=None
109
+ Additional keyword arguments for the metric function.
110
+
111
+ n_jobs : int, default=None
112
+ The number of parallel jobs to run for neighbors search.
113
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
114
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
115
+ for more details.
116
+ Doesn't affect :meth:`fit` method.
117
+
118
+ Attributes
119
+ ----------
120
+ classes_ : array of shape (n_classes,)
121
+ Class labels known to the classifier
122
+
123
+ effective_metric_ : str or callble
124
+ The distance metric used. It will be same as the `metric` parameter
125
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
126
+ 'minkowski' and `p` parameter set to 2.
127
+
128
+ effective_metric_params_ : dict
129
+ Additional keyword arguments for the metric function. For most metrics
130
+ will be same with `metric_params` parameter, but may also contain the
131
+ `p` parameter value if the `effective_metric_` attribute is set to
132
+ 'minkowski'.
133
+
134
+ n_features_in_ : int
135
+ Number of features seen during :term:`fit`.
136
+
137
+ .. versionadded:: 0.24
138
+
139
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
140
+ Names of features seen during :term:`fit`. Defined only when `X`
141
+ has feature names that are all strings.
142
+
143
+ .. versionadded:: 1.0
144
+
145
+ n_samples_fit_ : int
146
+ Number of samples in the fitted data.
147
+
148
+ outputs_2d_ : bool
149
+ False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
150
+ otherwise True.
151
+
152
+ See Also
153
+ --------
154
+ RadiusNeighborsClassifier: Classifier based on neighbors within a fixed radius.
155
+ KNeighborsRegressor: Regression based on k-nearest neighbors.
156
+ RadiusNeighborsRegressor: Regression based on neighbors within a fixed radius.
157
+ NearestNeighbors: Unsupervised learner for implementing neighbor searches.
158
+
159
+ Notes
160
+ -----
161
+ See :ref:`Nearest Neighbors <neighbors>` in the online documentation
162
+ for a discussion of the choice of ``algorithm`` and ``leaf_size``.
163
+
164
+ .. warning::
165
+
166
+ Regarding the Nearest Neighbors algorithms, if it is found that two
167
+ neighbors, neighbor `k+1` and `k`, have identical distances
168
+ but different labels, the results will depend on the ordering of the
169
+ training data.
170
+
171
+ https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
172
+
173
+ Examples
174
+ --------
175
+ >>> X = [[0], [1], [2], [3]]
176
+ >>> y = [0, 0, 1, 1]
177
+ >>> from sklearn.neighbors import KNeighborsClassifier
178
+ >>> neigh = KNeighborsClassifier(n_neighbors=3)
179
+ >>> neigh.fit(X, y)
180
+ KNeighborsClassifier(...)
181
+ >>> print(neigh.predict([[1.1]]))
182
+ [0]
183
+ >>> print(neigh.predict_proba([[0.9]]))
184
+ [[0.666... 0.333...]]
185
+ """
186
+
187
+ _parameter_constraints: dict = {**NeighborsBase._parameter_constraints}
188
+ _parameter_constraints.pop("radius")
189
+ _parameter_constraints.update(
190
+ {"weights": [StrOptions({"uniform", "distance"}), callable, None]}
191
+ )
192
+
193
+ def __init__(
194
+ self,
195
+ n_neighbors=5,
196
+ *,
197
+ weights="uniform",
198
+ algorithm="auto",
199
+ leaf_size=30,
200
+ p=2,
201
+ metric="minkowski",
202
+ metric_params=None,
203
+ n_jobs=None,
204
+ ):
205
+ super().__init__(
206
+ n_neighbors=n_neighbors,
207
+ algorithm=algorithm,
208
+ leaf_size=leaf_size,
209
+ metric=metric,
210
+ p=p,
211
+ metric_params=metric_params,
212
+ n_jobs=n_jobs,
213
+ )
214
+ self.weights = weights
215
+
216
+ @_fit_context(
217
+ # KNeighborsClassifier.metric is not validated yet
218
+ prefer_skip_nested_validation=False
219
+ )
220
+ def fit(self, X, y):
221
+ """Fit the k-nearest neighbors classifier from the training dataset.
222
+
223
+ Parameters
224
+ ----------
225
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
226
+ (n_samples, n_samples) if metric='precomputed'
227
+ Training data.
228
+
229
+ y : {array-like, sparse matrix} of shape (n_samples,) or \
230
+ (n_samples, n_outputs)
231
+ Target values.
232
+
233
+ Returns
234
+ -------
235
+ self : KNeighborsClassifier
236
+ The fitted k-nearest neighbors classifier.
237
+ """
238
+ return self._fit(X, y)
239
+
240
+ def predict(self, X):
241
+ """Predict the class labels for the provided data.
242
+
243
+ Parameters
244
+ ----------
245
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
246
+ or (n_queries, n_indexed) if metric == 'precomputed'
247
+ Test samples.
248
+
249
+ Returns
250
+ -------
251
+ y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
252
+ Class labels for each data sample.
253
+ """
254
+ check_is_fitted(self, "_fit_method")
255
+ if self.weights == "uniform":
256
+ if self._fit_method == "brute" and ArgKminClassMode.is_usable_for(
257
+ X, self._fit_X, self.metric
258
+ ):
259
+ probabilities = self.predict_proba(X)
260
+ if self.outputs_2d_:
261
+ return np.stack(
262
+ [
263
+ self.classes_[idx][np.argmax(probas, axis=1)]
264
+ for idx, probas in enumerate(probabilities)
265
+ ],
266
+ axis=1,
267
+ )
268
+ return self.classes_[np.argmax(probabilities, axis=1)]
269
+ # In that case, we do not need the distances to perform
270
+ # the weighting so we do not compute them.
271
+ neigh_ind = self.kneighbors(X, return_distance=False)
272
+ neigh_dist = None
273
+ else:
274
+ neigh_dist, neigh_ind = self.kneighbors(X)
275
+
276
+ classes_ = self.classes_
277
+ _y = self._y
278
+ if not self.outputs_2d_:
279
+ _y = self._y.reshape((-1, 1))
280
+ classes_ = [self.classes_]
281
+
282
+ n_outputs = len(classes_)
283
+ n_queries = _num_samples(X)
284
+ weights = _get_weights(neigh_dist, self.weights)
285
+ if weights is not None and _all_with_any_reduction_axis_1(weights, value=0):
286
+ raise ValueError(
287
+ "All neighbors of some sample is getting zero weights. "
288
+ "Please modify 'weights' to avoid this case if you are "
289
+ "using a user-defined function."
290
+ )
291
+
292
+ y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
293
+ for k, classes_k in enumerate(classes_):
294
+ if weights is None:
295
+ mode, _ = _mode(_y[neigh_ind, k], axis=1)
296
+ else:
297
+ mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)
298
+
299
+ mode = np.asarray(mode.ravel(), dtype=np.intp)
300
+ y_pred[:, k] = classes_k.take(mode)
301
+
302
+ if not self.outputs_2d_:
303
+ y_pred = y_pred.ravel()
304
+
305
+ return y_pred
306
+
307
+ def predict_proba(self, X):
308
+ """Return probability estimates for the test data X.
309
+
310
+ Parameters
311
+ ----------
312
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
313
+ or (n_queries, n_indexed) if metric == 'precomputed'
314
+ Test samples.
315
+
316
+ Returns
317
+ -------
318
+ p : ndarray of shape (n_queries, n_classes), or a list of n_outputs \
319
+ of such arrays if n_outputs > 1.
320
+ The class probabilities of the input samples. Classes are ordered
321
+ by lexicographic order.
322
+ """
323
+ check_is_fitted(self, "_fit_method")
324
+ if self.weights == "uniform":
325
+ # TODO: systematize this mapping of metric for
326
+ # PairwiseDistancesReductions.
327
+ metric, metric_kwargs = _adjusted_metric(
328
+ metric=self.metric, metric_kwargs=self.metric_params, p=self.p
329
+ )
330
+ if (
331
+ self._fit_method == "brute"
332
+ and ArgKminClassMode.is_usable_for(X, self._fit_X, metric)
333
+ # TODO: Implement efficient multi-output solution
334
+ and not self.outputs_2d_
335
+ ):
336
+ if self.metric == "precomputed":
337
+ X = _check_precomputed(X)
338
+ else:
339
+ X = self._validate_data(
340
+ X, accept_sparse="csr", reset=False, order="C"
341
+ )
342
+
343
+ probabilities = ArgKminClassMode.compute(
344
+ X,
345
+ self._fit_X,
346
+ k=self.n_neighbors,
347
+ weights=self.weights,
348
+ Y_labels=self._y,
349
+ unique_Y_labels=self.classes_,
350
+ metric=metric,
351
+ metric_kwargs=metric_kwargs,
352
+ # `strategy="parallel_on_X"` has in practice be shown
353
+ # to be more efficient than `strategy="parallel_on_Y``
354
+ # on many combination of datasets.
355
+ # Hence, we choose to enforce it here.
356
+ # For more information, see:
357
+ # https://github.com/scikit-learn/scikit-learn/pull/24076#issuecomment-1445258342 # noqa
358
+ # TODO: adapt the heuristic for `strategy="auto"` for
359
+ # `ArgKminClassMode` and use `strategy="auto"`.
360
+ strategy="parallel_on_X",
361
+ )
362
+ return probabilities
363
+
364
+ # In that case, we do not need the distances to perform
365
+ # the weighting so we do not compute them.
366
+ neigh_ind = self.kneighbors(X, return_distance=False)
367
+ neigh_dist = None
368
+ else:
369
+ neigh_dist, neigh_ind = self.kneighbors(X)
370
+
371
+ classes_ = self.classes_
372
+ _y = self._y
373
+ if not self.outputs_2d_:
374
+ _y = self._y.reshape((-1, 1))
375
+ classes_ = [self.classes_]
376
+
377
+ n_queries = _num_samples(X)
378
+
379
+ weights = _get_weights(neigh_dist, self.weights)
380
+ if weights is None:
381
+ weights = np.ones_like(neigh_ind)
382
+ elif _all_with_any_reduction_axis_1(weights, value=0):
383
+ raise ValueError(
384
+ "All neighbors of some sample is getting zero weights. "
385
+ "Please modify 'weights' to avoid this case if you are "
386
+ "using a user-defined function."
387
+ )
388
+
389
+ all_rows = np.arange(n_queries)
390
+ probabilities = []
391
+ for k, classes_k in enumerate(classes_):
392
+ pred_labels = _y[:, k][neigh_ind]
393
+ proba_k = np.zeros((n_queries, classes_k.size))
394
+
395
+ # a simple ':' index doesn't work right
396
+ for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors)
397
+ proba_k[all_rows, idx] += weights[:, i]
398
+
399
+ # normalize 'votes' into real [0,1] probabilities
400
+ normalizer = proba_k.sum(axis=1)[:, np.newaxis]
401
+ proba_k /= normalizer
402
+
403
+ probabilities.append(proba_k)
404
+
405
+ if not self.outputs_2d_:
406
+ probabilities = probabilities[0]
407
+
408
+ return probabilities
409
+
410
+ def _more_tags(self):
411
+ return {"multilabel": True}
412
+
413
+
414
+ class RadiusNeighborsClassifier(RadiusNeighborsMixin, ClassifierMixin, NeighborsBase):
415
+ """Classifier implementing a vote among neighbors within a given radius.
416
+
417
+ Read more in the :ref:`User Guide <classification>`.
418
+
419
+ Parameters
420
+ ----------
421
+ radius : float, default=1.0
422
+ Range of parameter space to use by default for :meth:`radius_neighbors`
423
+ queries.
424
+
425
+ weights : {'uniform', 'distance'}, callable or None, default='uniform'
426
+ Weight function used in prediction. Possible values:
427
+
428
+ - 'uniform' : uniform weights. All points in each neighborhood
429
+ are weighted equally.
430
+ - 'distance' : weight points by the inverse of their distance.
431
+ in this case, closer neighbors of a query point will have a
432
+ greater influence than neighbors which are further away.
433
+ - [callable] : a user-defined function which accepts an
434
+ array of distances, and returns an array of the same shape
435
+ containing the weights.
436
+
437
+ Uniform weights are used by default.
438
+
439
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
440
+ Algorithm used to compute the nearest neighbors:
441
+
442
+ - 'ball_tree' will use :class:`BallTree`
443
+ - 'kd_tree' will use :class:`KDTree`
444
+ - 'brute' will use a brute-force search.
445
+ - 'auto' will attempt to decide the most appropriate algorithm
446
+ based on the values passed to :meth:`fit` method.
447
+
448
+ Note: fitting on sparse input will override the setting of
449
+ this parameter, using brute force.
450
+
451
+ leaf_size : int, default=30
452
+ Leaf size passed to BallTree or KDTree. This can affect the
453
+ speed of the construction and query, as well as the memory
454
+ required to store the tree. The optimal value depends on the
455
+ nature of the problem.
456
+
457
+ p : float, default=2
458
+ Power parameter for the Minkowski metric. When p = 1, this is
459
+ equivalent to using manhattan_distance (l1), and euclidean_distance
460
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
461
+ This parameter is expected to be positive.
462
+
463
+ metric : str or callable, default='minkowski'
464
+ Metric to use for distance computation. Default is "minkowski", which
465
+ results in the standard Euclidean distance when p = 2. See the
466
+ documentation of `scipy.spatial.distance
467
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
468
+ the metrics listed in
469
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
470
+ values.
471
+
472
+ If metric is "precomputed", X is assumed to be a distance matrix and
473
+ must be square during fit. X may be a :term:`sparse graph`, in which
474
+ case only "nonzero" elements may be considered neighbors.
475
+
476
+ If metric is a callable function, it takes two arrays representing 1D
477
+ vectors as inputs and must return one value indicating the distance
478
+ between those vectors. This works for Scipy's metrics, but is less
479
+ efficient than passing the metric name as a string.
480
+
481
+ outlier_label : {manual label, 'most_frequent'}, default=None
482
+ Label for outlier samples (samples with no neighbors in given radius).
483
+
484
+ - manual label: str or int label (should be the same type as y)
485
+ or list of manual labels if multi-output is used.
486
+ - 'most_frequent' : assign the most frequent label of y to outliers.
487
+ - None : when any outlier is detected, ValueError will be raised.
488
+
489
+ The outlier label should be selected from among the unique 'Y' labels.
490
+ If it is specified with a different value a warning will be raised and
491
+ all class probabilities of outliers will be assigned to be 0.
492
+
493
+ metric_params : dict, default=None
494
+ Additional keyword arguments for the metric function.
495
+
496
+ n_jobs : int, default=None
497
+ The number of parallel jobs to run for neighbors search.
498
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
499
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
500
+ for more details.
501
+
502
+ Attributes
503
+ ----------
504
+ classes_ : ndarray of shape (n_classes,)
505
+ Class labels known to the classifier.
506
+
507
+ effective_metric_ : str or callable
508
+ The distance metric used. It will be same as the `metric` parameter
509
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
510
+ 'minkowski' and `p` parameter set to 2.
511
+
512
+ effective_metric_params_ : dict
513
+ Additional keyword arguments for the metric function. For most metrics
514
+ will be same with `metric_params` parameter, but may also contain the
515
+ `p` parameter value if the `effective_metric_` attribute is set to
516
+ 'minkowski'.
517
+
518
+ n_features_in_ : int
519
+ Number of features seen during :term:`fit`.
520
+
521
+ .. versionadded:: 0.24
522
+
523
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
524
+ Names of features seen during :term:`fit`. Defined only when `X`
525
+ has feature names that are all strings.
526
+
527
+ .. versionadded:: 1.0
528
+
529
+ n_samples_fit_ : int
530
+ Number of samples in the fitted data.
531
+
532
+ outlier_label_ : int or array-like of shape (n_class,)
533
+ Label which is given for outlier samples (samples with no neighbors
534
+ on given radius).
535
+
536
+ outputs_2d_ : bool
537
+ False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
538
+ otherwise True.
539
+
540
+ See Also
541
+ --------
542
+ KNeighborsClassifier : Classifier implementing the k-nearest neighbors
543
+ vote.
544
+ RadiusNeighborsRegressor : Regression based on neighbors within a
545
+ fixed radius.
546
+ KNeighborsRegressor : Regression based on k-nearest neighbors.
547
+ NearestNeighbors : Unsupervised learner for implementing neighbor
548
+ searches.
549
+
550
+ Notes
551
+ -----
552
+ See :ref:`Nearest Neighbors <neighbors>` in the online documentation
553
+ for a discussion of the choice of ``algorithm`` and ``leaf_size``.
554
+
555
+ https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
556
+
557
+ Examples
558
+ --------
559
+ >>> X = [[0], [1], [2], [3]]
560
+ >>> y = [0, 0, 1, 1]
561
+ >>> from sklearn.neighbors import RadiusNeighborsClassifier
562
+ >>> neigh = RadiusNeighborsClassifier(radius=1.0)
563
+ >>> neigh.fit(X, y)
564
+ RadiusNeighborsClassifier(...)
565
+ >>> print(neigh.predict([[1.5]]))
566
+ [0]
567
+ >>> print(neigh.predict_proba([[1.0]]))
568
+ [[0.66666667 0.33333333]]
569
+ """
570
+
571
+ _parameter_constraints: dict = {
572
+ **NeighborsBase._parameter_constraints,
573
+ "weights": [StrOptions({"uniform", "distance"}), callable, None],
574
+ "outlier_label": [Integral, str, "array-like", None],
575
+ }
576
+ _parameter_constraints.pop("n_neighbors")
577
+
578
+ def __init__(
579
+ self,
580
+ radius=1.0,
581
+ *,
582
+ weights="uniform",
583
+ algorithm="auto",
584
+ leaf_size=30,
585
+ p=2,
586
+ metric="minkowski",
587
+ outlier_label=None,
588
+ metric_params=None,
589
+ n_jobs=None,
590
+ ):
591
+ super().__init__(
592
+ radius=radius,
593
+ algorithm=algorithm,
594
+ leaf_size=leaf_size,
595
+ metric=metric,
596
+ p=p,
597
+ metric_params=metric_params,
598
+ n_jobs=n_jobs,
599
+ )
600
+ self.weights = weights
601
+ self.outlier_label = outlier_label
602
+
603
+ @_fit_context(
604
+ # RadiusNeighborsClassifier.metric is not validated yet
605
+ prefer_skip_nested_validation=False
606
+ )
607
+ def fit(self, X, y):
608
+ """Fit the radius neighbors classifier from the training dataset.
609
+
610
+ Parameters
611
+ ----------
612
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
613
+ (n_samples, n_samples) if metric='precomputed'
614
+ Training data.
615
+
616
+ y : {array-like, sparse matrix} of shape (n_samples,) or \
617
+ (n_samples, n_outputs)
618
+ Target values.
619
+
620
+ Returns
621
+ -------
622
+ self : RadiusNeighborsClassifier
623
+ The fitted radius neighbors classifier.
624
+ """
625
+ self._fit(X, y)
626
+
627
+ classes_ = self.classes_
628
+ _y = self._y
629
+ if not self.outputs_2d_:
630
+ _y = self._y.reshape((-1, 1))
631
+ classes_ = [self.classes_]
632
+
633
+ if self.outlier_label is None:
634
+ outlier_label_ = None
635
+
636
+ elif self.outlier_label == "most_frequent":
637
+ outlier_label_ = []
638
+ # iterate over multi-output, get the most frequent label for each
639
+ # output.
640
+ for k, classes_k in enumerate(classes_):
641
+ label_count = np.bincount(_y[:, k])
642
+ outlier_label_.append(classes_k[label_count.argmax()])
643
+
644
+ else:
645
+ if _is_arraylike(self.outlier_label) and not isinstance(
646
+ self.outlier_label, str
647
+ ):
648
+ if len(self.outlier_label) != len(classes_):
649
+ raise ValueError(
650
+ "The length of outlier_label: {} is "
651
+ "inconsistent with the output "
652
+ "length: {}".format(self.outlier_label, len(classes_))
653
+ )
654
+ outlier_label_ = self.outlier_label
655
+ else:
656
+ outlier_label_ = [self.outlier_label] * len(classes_)
657
+
658
+ for classes, label in zip(classes_, outlier_label_):
659
+ if _is_arraylike(label) and not isinstance(label, str):
660
+ # ensure the outlier label for each output is a scalar.
661
+ raise TypeError(
662
+ "The outlier_label of classes {} is "
663
+ "supposed to be a scalar, got "
664
+ "{}.".format(classes, label)
665
+ )
666
+ if np.append(classes, label).dtype != classes.dtype:
667
+ # ensure the dtype of outlier label is consistent with y.
668
+ raise TypeError(
669
+ "The dtype of outlier_label {} is "
670
+ "inconsistent with classes {} in "
671
+ "y.".format(label, classes)
672
+ )
673
+
674
+ self.outlier_label_ = outlier_label_
675
+
676
+ return self
677
+
678
+ def predict(self, X):
679
+ """Predict the class labels for the provided data.
680
+
681
+ Parameters
682
+ ----------
683
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
684
+ or (n_queries, n_indexed) if metric == 'precomputed'
685
+ Test samples.
686
+
687
+ Returns
688
+ -------
689
+ y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
690
+ Class labels for each data sample.
691
+ """
692
+
693
+ probs = self.predict_proba(X)
694
+ classes_ = self.classes_
695
+
696
+ if not self.outputs_2d_:
697
+ probs = [probs]
698
+ classes_ = [self.classes_]
699
+
700
+ n_outputs = len(classes_)
701
+ n_queries = probs[0].shape[0]
702
+ y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
703
+
704
+ for k, prob in enumerate(probs):
705
+ # iterate over multi-output, assign labels based on probabilities
706
+ # of each output.
707
+ max_prob_index = prob.argmax(axis=1)
708
+ y_pred[:, k] = classes_[k].take(max_prob_index)
709
+
710
+ outlier_zero_probs = (prob == 0).all(axis=1)
711
+ if outlier_zero_probs.any():
712
+ zero_prob_index = np.flatnonzero(outlier_zero_probs)
713
+ y_pred[zero_prob_index, k] = self.outlier_label_[k]
714
+
715
+ if not self.outputs_2d_:
716
+ y_pred = y_pred.ravel()
717
+
718
+ return y_pred
719
+
720
+ def predict_proba(self, X):
721
+ """Return probability estimates for the test data X.
722
+
723
+ Parameters
724
+ ----------
725
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
726
+ or (n_queries, n_indexed) if metric == 'precomputed'
727
+ Test samples.
728
+
729
+ Returns
730
+ -------
731
+ p : ndarray of shape (n_queries, n_classes), or a list of \
732
+ n_outputs of such arrays if n_outputs > 1.
733
+ The class probabilities of the input samples. Classes are ordered
734
+ by lexicographic order.
735
+ """
736
+ check_is_fitted(self, "_fit_method")
737
+ n_queries = _num_samples(X)
738
+
739
+ metric, metric_kwargs = _adjusted_metric(
740
+ metric=self.metric, metric_kwargs=self.metric_params, p=self.p
741
+ )
742
+
743
+ if (
744
+ self.weights == "uniform"
745
+ and self._fit_method == "brute"
746
+ and not self.outputs_2d_
747
+ and RadiusNeighborsClassMode.is_usable_for(X, self._fit_X, metric)
748
+ ):
749
+ probabilities = RadiusNeighborsClassMode.compute(
750
+ X=X,
751
+ Y=self._fit_X,
752
+ radius=self.radius,
753
+ weights=self.weights,
754
+ Y_labels=self._y,
755
+ unique_Y_labels=self.classes_,
756
+ outlier_label=self.outlier_label,
757
+ metric=metric,
758
+ metric_kwargs=metric_kwargs,
759
+ strategy="parallel_on_X",
760
+ # `strategy="parallel_on_X"` has in practice be shown
761
+ # to be more efficient than `strategy="parallel_on_Y``
762
+ # on many combination of datasets.
763
+ # Hence, we choose to enforce it here.
764
+ # For more information, see:
765
+ # https://github.com/scikit-learn/scikit-learn/pull/26828/files#r1282398471 # noqa
766
+ )
767
+ return probabilities
768
+
769
+ neigh_dist, neigh_ind = self.radius_neighbors(X)
770
+ outlier_mask = np.zeros(n_queries, dtype=bool)
771
+ outlier_mask[:] = [len(nind) == 0 for nind in neigh_ind]
772
+ outliers = np.flatnonzero(outlier_mask)
773
+ inliers = np.flatnonzero(~outlier_mask)
774
+
775
+ classes_ = self.classes_
776
+ _y = self._y
777
+ if not self.outputs_2d_:
778
+ _y = self._y.reshape((-1, 1))
779
+ classes_ = [self.classes_]
780
+
781
+ if self.outlier_label_ is None and outliers.size > 0:
782
+ raise ValueError(
783
+ "No neighbors found for test samples %r, "
784
+ "you can try using larger radius, "
785
+ "giving a label for outliers, "
786
+ "or considering removing them from your dataset." % outliers
787
+ )
788
+
789
+ weights = _get_weights(neigh_dist, self.weights)
790
+ if weights is not None:
791
+ weights = weights[inliers]
792
+
793
+ probabilities = []
794
+ # iterate over multi-output, measure probabilities of the k-th output.
795
+ for k, classes_k in enumerate(classes_):
796
+ pred_labels = np.zeros(len(neigh_ind), dtype=object)
797
+ pred_labels[:] = [_y[ind, k] for ind in neigh_ind]
798
+
799
+ proba_k = np.zeros((n_queries, classes_k.size))
800
+ proba_inl = np.zeros((len(inliers), classes_k.size))
801
+
802
+ # samples have different size of neighbors within the same radius
803
+ if weights is None:
804
+ for i, idx in enumerate(pred_labels[inliers]):
805
+ proba_inl[i, :] = np.bincount(idx, minlength=classes_k.size)
806
+ else:
807
+ for i, idx in enumerate(pred_labels[inliers]):
808
+ proba_inl[i, :] = np.bincount(
809
+ idx, weights[i], minlength=classes_k.size
810
+ )
811
+ proba_k[inliers, :] = proba_inl
812
+
813
+ if outliers.size > 0:
814
+ _outlier_label = self.outlier_label_[k]
815
+ label_index = np.flatnonzero(classes_k == _outlier_label)
816
+ if label_index.size == 1:
817
+ proba_k[outliers, label_index[0]] = 1.0
818
+ else:
819
+ warnings.warn(
820
+ "Outlier label {} is not in training "
821
+ "classes. All class probabilities of "
822
+ "outliers will be assigned with 0."
823
+ "".format(self.outlier_label_[k])
824
+ )
825
+
826
+ # normalize 'votes' into real [0,1] probabilities
827
+ normalizer = proba_k.sum(axis=1)[:, np.newaxis]
828
+ normalizer[normalizer == 0.0] = 1.0
829
+ proba_k /= normalizer
830
+
831
+ probabilities.append(proba_k)
832
+
833
+ if not self.outputs_2d_:
834
+ probabilities = probabilities[0]
835
+
836
+ return probabilities
837
+
838
+ def _more_tags(self):
839
+ return {"multilabel": True}
venv/lib/python3.10/site-packages/sklearn/neighbors/_graph.py ADDED
@@ -0,0 +1,719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Nearest Neighbors graph functions"""
2
+
3
+ # Author: Jake Vanderplas <[email protected]>
4
+ # Tom Dupre la Tour
5
+ #
6
+ # License: BSD 3 clause (C) INRIA, University of Amsterdam
7
+ import itertools
8
+
9
+ from ..base import ClassNamePrefixFeaturesOutMixin, TransformerMixin, _fit_context
10
+ from ..utils._param_validation import (
11
+ Integral,
12
+ Interval,
13
+ Real,
14
+ StrOptions,
15
+ validate_params,
16
+ )
17
+ from ..utils.validation import check_is_fitted
18
+ from ._base import VALID_METRICS, KNeighborsMixin, NeighborsBase, RadiusNeighborsMixin
19
+ from ._unsupervised import NearestNeighbors
20
+
21
+
22
+ def _check_params(X, metric, p, metric_params):
23
+ """Check the validity of the input parameters"""
24
+ params = zip(["metric", "p", "metric_params"], [metric, p, metric_params])
25
+ est_params = X.get_params()
26
+ for param_name, func_param in params:
27
+ if func_param != est_params[param_name]:
28
+ raise ValueError(
29
+ "Got %s for %s, while the estimator has %s for the same parameter."
30
+ % (func_param, param_name, est_params[param_name])
31
+ )
32
+
33
+
34
+ def _query_include_self(X, include_self, mode):
35
+ """Return the query based on include_self param"""
36
+ if include_self == "auto":
37
+ include_self = mode == "connectivity"
38
+
39
+ # it does not include each sample as its own neighbors
40
+ if not include_self:
41
+ X = None
42
+
43
+ return X
44
+
45
+
46
+ @validate_params(
47
+ {
48
+ "X": ["array-like", KNeighborsMixin],
49
+ "n_neighbors": [Interval(Integral, 1, None, closed="left")],
50
+ "mode": [StrOptions({"connectivity", "distance"})],
51
+ "metric": [StrOptions(set(itertools.chain(*VALID_METRICS.values()))), callable],
52
+ "p": [Interval(Real, 0, None, closed="right"), None],
53
+ "metric_params": [dict, None],
54
+ "include_self": ["boolean", StrOptions({"auto"})],
55
+ "n_jobs": [Integral, None],
56
+ },
57
+ prefer_skip_nested_validation=False, # metric is not validated yet
58
+ )
59
+ def kneighbors_graph(
60
+ X,
61
+ n_neighbors,
62
+ *,
63
+ mode="connectivity",
64
+ metric="minkowski",
65
+ p=2,
66
+ metric_params=None,
67
+ include_self=False,
68
+ n_jobs=None,
69
+ ):
70
+ """Compute the (weighted) graph of k-Neighbors for points in X.
71
+
72
+ Read more in the :ref:`User Guide <unsupervised_neighbors>`.
73
+
74
+ Parameters
75
+ ----------
76
+ X : array-like of shape (n_samples, n_features)
77
+ Sample data.
78
+
79
+ n_neighbors : int
80
+ Number of neighbors for each sample.
81
+
82
+ mode : {'connectivity', 'distance'}, default='connectivity'
83
+ Type of returned matrix: 'connectivity' will return the connectivity
84
+ matrix with ones and zeros, and 'distance' will return the distances
85
+ between neighbors according to the given metric.
86
+
87
+ metric : str, default='minkowski'
88
+ Metric to use for distance computation. Default is "minkowski", which
89
+ results in the standard Euclidean distance when p = 2. See the
90
+ documentation of `scipy.spatial.distance
91
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
92
+ the metrics listed in
93
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
94
+ values.
95
+
96
+ p : float, default=2
97
+ Power parameter for the Minkowski metric. When p = 1, this is equivalent
98
+ to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2.
99
+ For arbitrary p, minkowski_distance (l_p) is used. This parameter is expected
100
+ to be positive.
101
+
102
+ metric_params : dict, default=None
103
+ Additional keyword arguments for the metric function.
104
+
105
+ include_self : bool or 'auto', default=False
106
+ Whether or not to mark each sample as the first nearest neighbor to
107
+ itself. If 'auto', then True is used for mode='connectivity' and False
108
+ for mode='distance'.
109
+
110
+ n_jobs : int, default=None
111
+ The number of parallel jobs to run for neighbors search.
112
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
113
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
114
+ for more details.
115
+
116
+ Returns
117
+ -------
118
+ A : sparse matrix of shape (n_samples, n_samples)
119
+ Graph where A[i, j] is assigned the weight of edge that
120
+ connects i to j. The matrix is of CSR format.
121
+
122
+ See Also
123
+ --------
124
+ radius_neighbors_graph: Compute the (weighted) graph of Neighbors for points in X.
125
+
126
+ Examples
127
+ --------
128
+ >>> X = [[0], [3], [1]]
129
+ >>> from sklearn.neighbors import kneighbors_graph
130
+ >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
131
+ >>> A.toarray()
132
+ array([[1., 0., 1.],
133
+ [0., 1., 1.],
134
+ [1., 0., 1.]])
135
+ """
136
+ if not isinstance(X, KNeighborsMixin):
137
+ X = NearestNeighbors(
138
+ n_neighbors=n_neighbors,
139
+ metric=metric,
140
+ p=p,
141
+ metric_params=metric_params,
142
+ n_jobs=n_jobs,
143
+ ).fit(X)
144
+ else:
145
+ _check_params(X, metric, p, metric_params)
146
+
147
+ query = _query_include_self(X._fit_X, include_self, mode)
148
+ return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode)
149
+
150
+
151
+ @validate_params(
152
+ {
153
+ "X": ["array-like", RadiusNeighborsMixin],
154
+ "radius": [Interval(Real, 0, None, closed="both")],
155
+ "mode": [StrOptions({"connectivity", "distance"})],
156
+ "metric": [StrOptions(set(itertools.chain(*VALID_METRICS.values()))), callable],
157
+ "p": [Interval(Real, 0, None, closed="right"), None],
158
+ "metric_params": [dict, None],
159
+ "include_self": ["boolean", StrOptions({"auto"})],
160
+ "n_jobs": [Integral, None],
161
+ },
162
+ prefer_skip_nested_validation=False, # metric is not validated yet
163
+ )
164
+ def radius_neighbors_graph(
165
+ X,
166
+ radius,
167
+ *,
168
+ mode="connectivity",
169
+ metric="minkowski",
170
+ p=2,
171
+ metric_params=None,
172
+ include_self=False,
173
+ n_jobs=None,
174
+ ):
175
+ """Compute the (weighted) graph of Neighbors for points in X.
176
+
177
+ Neighborhoods are restricted the points at a distance lower than
178
+ radius.
179
+
180
+ Read more in the :ref:`User Guide <unsupervised_neighbors>`.
181
+
182
+ Parameters
183
+ ----------
184
+ X : array-like of shape (n_samples, n_features)
185
+ Sample data.
186
+
187
+ radius : float
188
+ Radius of neighborhoods.
189
+
190
+ mode : {'connectivity', 'distance'}, default='connectivity'
191
+ Type of returned matrix: 'connectivity' will return the connectivity
192
+ matrix with ones and zeros, and 'distance' will return the distances
193
+ between neighbors according to the given metric.
194
+
195
+ metric : str, default='minkowski'
196
+ Metric to use for distance computation. Default is "minkowski", which
197
+ results in the standard Euclidean distance when p = 2. See the
198
+ documentation of `scipy.spatial.distance
199
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
200
+ the metrics listed in
201
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
202
+ values.
203
+
204
+ p : float, default=2
205
+ Power parameter for the Minkowski metric. When p = 1, this is
206
+ equivalent to using manhattan_distance (l1), and euclidean_distance
207
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
208
+
209
+ metric_params : dict, default=None
210
+ Additional keyword arguments for the metric function.
211
+
212
+ include_self : bool or 'auto', default=False
213
+ Whether or not to mark each sample as the first nearest neighbor to
214
+ itself. If 'auto', then True is used for mode='connectivity' and False
215
+ for mode='distance'.
216
+
217
+ n_jobs : int, default=None
218
+ The number of parallel jobs to run for neighbors search.
219
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
220
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
221
+ for more details.
222
+
223
+ Returns
224
+ -------
225
+ A : sparse matrix of shape (n_samples, n_samples)
226
+ Graph where A[i, j] is assigned the weight of edge that connects
227
+ i to j. The matrix is of CSR format.
228
+
229
+ See Also
230
+ --------
231
+ kneighbors_graph: Compute the weighted graph of k-neighbors for points in X.
232
+
233
+ Examples
234
+ --------
235
+ >>> X = [[0], [3], [1]]
236
+ >>> from sklearn.neighbors import radius_neighbors_graph
237
+ >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
238
+ ... include_self=True)
239
+ >>> A.toarray()
240
+ array([[1., 0., 1.],
241
+ [0., 1., 0.],
242
+ [1., 0., 1.]])
243
+ """
244
+ if not isinstance(X, RadiusNeighborsMixin):
245
+ X = NearestNeighbors(
246
+ radius=radius,
247
+ metric=metric,
248
+ p=p,
249
+ metric_params=metric_params,
250
+ n_jobs=n_jobs,
251
+ ).fit(X)
252
+ else:
253
+ _check_params(X, metric, p, metric_params)
254
+
255
+ query = _query_include_self(X._fit_X, include_self, mode)
256
+ return X.radius_neighbors_graph(query, radius, mode)
257
+
258
+
259
+ class KNeighborsTransformer(
260
+ ClassNamePrefixFeaturesOutMixin, KNeighborsMixin, TransformerMixin, NeighborsBase
261
+ ):
262
+ """Transform X into a (weighted) graph of k nearest neighbors.
263
+
264
+ The transformed data is a sparse graph as returned by kneighbors_graph.
265
+
266
+ Read more in the :ref:`User Guide <neighbors_transformer>`.
267
+
268
+ .. versionadded:: 0.22
269
+
270
+ Parameters
271
+ ----------
272
+ mode : {'distance', 'connectivity'}, default='distance'
273
+ Type of returned matrix: 'connectivity' will return the connectivity
274
+ matrix with ones and zeros, and 'distance' will return the distances
275
+ between neighbors according to the given metric.
276
+
277
+ n_neighbors : int, default=5
278
+ Number of neighbors for each sample in the transformed sparse graph.
279
+ For compatibility reasons, as each sample is considered as its own
280
+ neighbor, one extra neighbor will be computed when mode == 'distance'.
281
+ In this case, the sparse graph contains (n_neighbors + 1) neighbors.
282
+
283
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
284
+ Algorithm used to compute the nearest neighbors:
285
+
286
+ - 'ball_tree' will use :class:`BallTree`
287
+ - 'kd_tree' will use :class:`KDTree`
288
+ - 'brute' will use a brute-force search.
289
+ - 'auto' will attempt to decide the most appropriate algorithm
290
+ based on the values passed to :meth:`fit` method.
291
+
292
+ Note: fitting on sparse input will override the setting of
293
+ this parameter, using brute force.
294
+
295
+ leaf_size : int, default=30
296
+ Leaf size passed to BallTree or KDTree. This can affect the
297
+ speed of the construction and query, as well as the memory
298
+ required to store the tree. The optimal value depends on the
299
+ nature of the problem.
300
+
301
+ metric : str or callable, default='minkowski'
302
+ Metric to use for distance computation. Default is "minkowski", which
303
+ results in the standard Euclidean distance when p = 2. See the
304
+ documentation of `scipy.spatial.distance
305
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
306
+ the metrics listed in
307
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
308
+ values.
309
+
310
+ If metric is a callable function, it takes two arrays representing 1D
311
+ vectors as inputs and must return one value indicating the distance
312
+ between those vectors. This works for Scipy's metrics, but is less
313
+ efficient than passing the metric name as a string.
314
+
315
+ Distance matrices are not supported.
316
+
317
+ p : float, default=2
318
+ Parameter for the Minkowski metric from
319
+ sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
320
+ equivalent to using manhattan_distance (l1), and euclidean_distance
321
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
322
+ This parameter is expected to be positive.
323
+
324
+ metric_params : dict, default=None
325
+ Additional keyword arguments for the metric function.
326
+
327
+ n_jobs : int, default=None
328
+ The number of parallel jobs to run for neighbors search.
329
+ If ``-1``, then the number of jobs is set to the number of CPU cores.
330
+
331
+ Attributes
332
+ ----------
333
+ effective_metric_ : str or callable
334
+ The distance metric used. It will be same as the `metric` parameter
335
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
336
+ 'minkowski' and `p` parameter set to 2.
337
+
338
+ effective_metric_params_ : dict
339
+ Additional keyword arguments for the metric function. For most metrics
340
+ will be same with `metric_params` parameter, but may also contain the
341
+ `p` parameter value if the `effective_metric_` attribute is set to
342
+ 'minkowski'.
343
+
344
+ n_features_in_ : int
345
+ Number of features seen during :term:`fit`.
346
+
347
+ .. versionadded:: 0.24
348
+
349
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
350
+ Names of features seen during :term:`fit`. Defined only when `X`
351
+ has feature names that are all strings.
352
+
353
+ .. versionadded:: 1.0
354
+
355
+ n_samples_fit_ : int
356
+ Number of samples in the fitted data.
357
+
358
+ See Also
359
+ --------
360
+ kneighbors_graph : Compute the weighted graph of k-neighbors for
361
+ points in X.
362
+ RadiusNeighborsTransformer : Transform X into a weighted graph of
363
+ neighbors nearer than a radius.
364
+
365
+ Notes
366
+ -----
367
+ For an example of using :class:`~sklearn.neighbors.KNeighborsTransformer`
368
+ in combination with :class:`~sklearn.manifold.TSNE` see
369
+ :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`.
370
+
371
+ Examples
372
+ --------
373
+ >>> from sklearn.datasets import load_wine
374
+ >>> from sklearn.neighbors import KNeighborsTransformer
375
+ >>> X, _ = load_wine(return_X_y=True)
376
+ >>> X.shape
377
+ (178, 13)
378
+ >>> transformer = KNeighborsTransformer(n_neighbors=5, mode='distance')
379
+ >>> X_dist_graph = transformer.fit_transform(X)
380
+ >>> X_dist_graph.shape
381
+ (178, 178)
382
+ """
383
+
384
+ _parameter_constraints: dict = {
385
+ **NeighborsBase._parameter_constraints,
386
+ "mode": [StrOptions({"distance", "connectivity"})],
387
+ }
388
+ _parameter_constraints.pop("radius")
389
+
390
+ def __init__(
391
+ self,
392
+ *,
393
+ mode="distance",
394
+ n_neighbors=5,
395
+ algorithm="auto",
396
+ leaf_size=30,
397
+ metric="minkowski",
398
+ p=2,
399
+ metric_params=None,
400
+ n_jobs=None,
401
+ ):
402
+ super(KNeighborsTransformer, self).__init__(
403
+ n_neighbors=n_neighbors,
404
+ radius=None,
405
+ algorithm=algorithm,
406
+ leaf_size=leaf_size,
407
+ metric=metric,
408
+ p=p,
409
+ metric_params=metric_params,
410
+ n_jobs=n_jobs,
411
+ )
412
+ self.mode = mode
413
+
414
+ @_fit_context(
415
+ # KNeighborsTransformer.metric is not validated yet
416
+ prefer_skip_nested_validation=False
417
+ )
418
+ def fit(self, X, y=None):
419
+ """Fit the k-nearest neighbors transformer from the training dataset.
420
+
421
+ Parameters
422
+ ----------
423
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
424
+ (n_samples, n_samples) if metric='precomputed'
425
+ Training data.
426
+ y : Ignored
427
+ Not used, present for API consistency by convention.
428
+
429
+ Returns
430
+ -------
431
+ self : KNeighborsTransformer
432
+ The fitted k-nearest neighbors transformer.
433
+ """
434
+ self._fit(X)
435
+ self._n_features_out = self.n_samples_fit_
436
+ return self
437
+
438
+ def transform(self, X):
439
+ """Compute the (weighted) graph of Neighbors for points in X.
440
+
441
+ Parameters
442
+ ----------
443
+ X : array-like of shape (n_samples_transform, n_features)
444
+ Sample data.
445
+
446
+ Returns
447
+ -------
448
+ Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
449
+ Xt[i, j] is assigned the weight of edge that connects i to j.
450
+ Only the neighbors have an explicit value.
451
+ The diagonal is always explicit.
452
+ The matrix is of CSR format.
453
+ """
454
+ check_is_fitted(self)
455
+ add_one = self.mode == "distance"
456
+ return self.kneighbors_graph(
457
+ X, mode=self.mode, n_neighbors=self.n_neighbors + add_one
458
+ )
459
+
460
+ def fit_transform(self, X, y=None):
461
+ """Fit to data, then transform it.
462
+
463
+ Fits transformer to X and y with optional parameters fit_params
464
+ and returns a transformed version of X.
465
+
466
+ Parameters
467
+ ----------
468
+ X : array-like of shape (n_samples, n_features)
469
+ Training set.
470
+
471
+ y : Ignored
472
+ Not used, present for API consistency by convention.
473
+
474
+ Returns
475
+ -------
476
+ Xt : sparse matrix of shape (n_samples, n_samples)
477
+ Xt[i, j] is assigned the weight of edge that connects i to j.
478
+ Only the neighbors have an explicit value.
479
+ The diagonal is always explicit.
480
+ The matrix is of CSR format.
481
+ """
482
+ return self.fit(X).transform(X)
483
+
484
+ def _more_tags(self):
485
+ return {
486
+ "_xfail_checks": {
487
+ "check_methods_sample_order_invariance": "check is not applicable."
488
+ }
489
+ }
490
+
491
+
492
+ class RadiusNeighborsTransformer(
493
+ ClassNamePrefixFeaturesOutMixin,
494
+ RadiusNeighborsMixin,
495
+ TransformerMixin,
496
+ NeighborsBase,
497
+ ):
498
+ """Transform X into a (weighted) graph of neighbors nearer than a radius.
499
+
500
+ The transformed data is a sparse graph as returned by
501
+ `radius_neighbors_graph`.
502
+
503
+ Read more in the :ref:`User Guide <neighbors_transformer>`.
504
+
505
+ .. versionadded:: 0.22
506
+
507
+ Parameters
508
+ ----------
509
+ mode : {'distance', 'connectivity'}, default='distance'
510
+ Type of returned matrix: 'connectivity' will return the connectivity
511
+ matrix with ones and zeros, and 'distance' will return the distances
512
+ between neighbors according to the given metric.
513
+
514
+ radius : float, default=1.0
515
+ Radius of neighborhood in the transformed sparse graph.
516
+
517
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
518
+ Algorithm used to compute the nearest neighbors:
519
+
520
+ - 'ball_tree' will use :class:`BallTree`
521
+ - 'kd_tree' will use :class:`KDTree`
522
+ - 'brute' will use a brute-force search.
523
+ - 'auto' will attempt to decide the most appropriate algorithm
524
+ based on the values passed to :meth:`fit` method.
525
+
526
+ Note: fitting on sparse input will override the setting of
527
+ this parameter, using brute force.
528
+
529
+ leaf_size : int, default=30
530
+ Leaf size passed to BallTree or KDTree. This can affect the
531
+ speed of the construction and query, as well as the memory
532
+ required to store the tree. The optimal value depends on the
533
+ nature of the problem.
534
+
535
+ metric : str or callable, default='minkowski'
536
+ Metric to use for distance computation. Default is "minkowski", which
537
+ results in the standard Euclidean distance when p = 2. See the
538
+ documentation of `scipy.spatial.distance
539
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
540
+ the metrics listed in
541
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
542
+ values.
543
+
544
+ If metric is a callable function, it takes two arrays representing 1D
545
+ vectors as inputs and must return one value indicating the distance
546
+ between those vectors. This works for Scipy's metrics, but is less
547
+ efficient than passing the metric name as a string.
548
+
549
+ Distance matrices are not supported.
550
+
551
+ p : float, default=2
552
+ Parameter for the Minkowski metric from
553
+ sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
554
+ equivalent to using manhattan_distance (l1), and euclidean_distance
555
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
556
+ This parameter is expected to be positive.
557
+
558
+ metric_params : dict, default=None
559
+ Additional keyword arguments for the metric function.
560
+
561
+ n_jobs : int, default=None
562
+ The number of parallel jobs to run for neighbors search.
563
+ If ``-1``, then the number of jobs is set to the number of CPU cores.
564
+
565
+ Attributes
566
+ ----------
567
+ effective_metric_ : str or callable
568
+ The distance metric used. It will be same as the `metric` parameter
569
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
570
+ 'minkowski' and `p` parameter set to 2.
571
+
572
+ effective_metric_params_ : dict
573
+ Additional keyword arguments for the metric function. For most metrics
574
+ will be same with `metric_params` parameter, but may also contain the
575
+ `p` parameter value if the `effective_metric_` attribute is set to
576
+ 'minkowski'.
577
+
578
+ n_features_in_ : int
579
+ Number of features seen during :term:`fit`.
580
+
581
+ .. versionadded:: 0.24
582
+
583
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
584
+ Names of features seen during :term:`fit`. Defined only when `X`
585
+ has feature names that are all strings.
586
+
587
+ .. versionadded:: 1.0
588
+
589
+ n_samples_fit_ : int
590
+ Number of samples in the fitted data.
591
+
592
+ See Also
593
+ --------
594
+ kneighbors_graph : Compute the weighted graph of k-neighbors for
595
+ points in X.
596
+ KNeighborsTransformer : Transform X into a weighted graph of k
597
+ nearest neighbors.
598
+
599
+ Examples
600
+ --------
601
+ >>> import numpy as np
602
+ >>> from sklearn.datasets import load_wine
603
+ >>> from sklearn.cluster import DBSCAN
604
+ >>> from sklearn.neighbors import RadiusNeighborsTransformer
605
+ >>> from sklearn.pipeline import make_pipeline
606
+ >>> X, _ = load_wine(return_X_y=True)
607
+ >>> estimator = make_pipeline(
608
+ ... RadiusNeighborsTransformer(radius=42.0, mode='distance'),
609
+ ... DBSCAN(eps=25.0, metric='precomputed'))
610
+ >>> X_clustered = estimator.fit_predict(X)
611
+ >>> clusters, counts = np.unique(X_clustered, return_counts=True)
612
+ >>> print(counts)
613
+ [ 29 15 111 11 12]
614
+ """
615
+
616
+ _parameter_constraints: dict = {
617
+ **NeighborsBase._parameter_constraints,
618
+ "mode": [StrOptions({"distance", "connectivity"})],
619
+ }
620
+ _parameter_constraints.pop("n_neighbors")
621
+
622
+ def __init__(
623
+ self,
624
+ *,
625
+ mode="distance",
626
+ radius=1.0,
627
+ algorithm="auto",
628
+ leaf_size=30,
629
+ metric="minkowski",
630
+ p=2,
631
+ metric_params=None,
632
+ n_jobs=None,
633
+ ):
634
+ super(RadiusNeighborsTransformer, self).__init__(
635
+ n_neighbors=None,
636
+ radius=radius,
637
+ algorithm=algorithm,
638
+ leaf_size=leaf_size,
639
+ metric=metric,
640
+ p=p,
641
+ metric_params=metric_params,
642
+ n_jobs=n_jobs,
643
+ )
644
+ self.mode = mode
645
+
646
+ @_fit_context(
647
+ # RadiusNeighborsTransformer.metric is not validated yet
648
+ prefer_skip_nested_validation=False
649
+ )
650
+ def fit(self, X, y=None):
651
+ """Fit the radius neighbors transformer from the training dataset.
652
+
653
+ Parameters
654
+ ----------
655
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
656
+ (n_samples, n_samples) if metric='precomputed'
657
+ Training data.
658
+
659
+ y : Ignored
660
+ Not used, present for API consistency by convention.
661
+
662
+ Returns
663
+ -------
664
+ self : RadiusNeighborsTransformer
665
+ The fitted radius neighbors transformer.
666
+ """
667
+ self._fit(X)
668
+ self._n_features_out = self.n_samples_fit_
669
+ return self
670
+
671
+ def transform(self, X):
672
+ """Compute the (weighted) graph of Neighbors for points in X.
673
+
674
+ Parameters
675
+ ----------
676
+ X : array-like of shape (n_samples_transform, n_features)
677
+ Sample data.
678
+
679
+ Returns
680
+ -------
681
+ Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
682
+ Xt[i, j] is assigned the weight of edge that connects i to j.
683
+ Only the neighbors have an explicit value.
684
+ The diagonal is always explicit.
685
+ The matrix is of CSR format.
686
+ """
687
+ check_is_fitted(self)
688
+ return self.radius_neighbors_graph(X, mode=self.mode, sort_results=True)
689
+
690
+ def fit_transform(self, X, y=None):
691
+ """Fit to data, then transform it.
692
+
693
+ Fits transformer to X and y with optional parameters fit_params
694
+ and returns a transformed version of X.
695
+
696
+ Parameters
697
+ ----------
698
+ X : array-like of shape (n_samples, n_features)
699
+ Training set.
700
+
701
+ y : Ignored
702
+ Not used, present for API consistency by convention.
703
+
704
+ Returns
705
+ -------
706
+ Xt : sparse matrix of shape (n_samples, n_samples)
707
+ Xt[i, j] is assigned the weight of edge that connects i to j.
708
+ Only the neighbors have an explicit value.
709
+ The diagonal is always explicit.
710
+ The matrix is of CSR format.
711
+ """
712
+ return self.fit(X).transform(X)
713
+
714
+ def _more_tags(self):
715
+ return {
716
+ "_xfail_checks": {
717
+ "check_methods_sample_order_invariance": "check is not applicable."
718
+ }
719
+ }
venv/lib/python3.10/site-packages/sklearn/neighbors/_nca.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Neighborhood Component Analysis
3
+ """
4
+
5
+ # Authors: William de Vazelhes <[email protected]>
6
+ # John Chiotellis <[email protected]>
7
+ # License: BSD 3 clause
8
+
9
+ import sys
10
+ import time
11
+ from numbers import Integral, Real
12
+ from warnings import warn
13
+
14
+ import numpy as np
15
+ from scipy.optimize import minimize
16
+
17
+ from ..base import (
18
+ BaseEstimator,
19
+ ClassNamePrefixFeaturesOutMixin,
20
+ TransformerMixin,
21
+ _fit_context,
22
+ )
23
+ from ..decomposition import PCA
24
+ from ..exceptions import ConvergenceWarning
25
+ from ..metrics import pairwise_distances
26
+ from ..preprocessing import LabelEncoder
27
+ from ..utils._param_validation import Interval, StrOptions
28
+ from ..utils.extmath import softmax
29
+ from ..utils.multiclass import check_classification_targets
30
+ from ..utils.random import check_random_state
31
+ from ..utils.validation import check_array, check_is_fitted
32
+
33
+
34
+ class NeighborhoodComponentsAnalysis(
35
+ ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
36
+ ):
37
+ """Neighborhood Components Analysis.
38
+
39
+ Neighborhood Component Analysis (NCA) is a machine learning algorithm for
40
+ metric learning. It learns a linear transformation in a supervised fashion
41
+ to improve the classification accuracy of a stochastic nearest neighbors
42
+ rule in the transformed space.
43
+
44
+ Read more in the :ref:`User Guide <nca>`.
45
+
46
+ Parameters
47
+ ----------
48
+ n_components : int, default=None
49
+ Preferred dimensionality of the projected space.
50
+ If None it will be set to `n_features`.
51
+
52
+ init : {'auto', 'pca', 'lda', 'identity', 'random'} or ndarray of shape \
53
+ (n_features_a, n_features_b), default='auto'
54
+ Initialization of the linear transformation. Possible options are
55
+ `'auto'`, `'pca'`, `'lda'`, `'identity'`, `'random'`, and a numpy
56
+ array of shape `(n_features_a, n_features_b)`.
57
+
58
+ - `'auto'`
59
+ Depending on `n_components`, the most reasonable initialization
60
+ will be chosen. If `n_components <= n_classes` we use `'lda'`, as
61
+ it uses labels information. If not, but
62
+ `n_components < min(n_features, n_samples)`, we use `'pca'`, as
63
+ it projects data in meaningful directions (those of higher
64
+ variance). Otherwise, we just use `'identity'`.
65
+
66
+ - `'pca'`
67
+ `n_components` principal components of the inputs passed
68
+ to :meth:`fit` will be used to initialize the transformation.
69
+ (See :class:`~sklearn.decomposition.PCA`)
70
+
71
+ - `'lda'`
72
+ `min(n_components, n_classes)` most discriminative
73
+ components of the inputs passed to :meth:`fit` will be used to
74
+ initialize the transformation. (If `n_components > n_classes`,
75
+ the rest of the components will be zero.) (See
76
+ :class:`~sklearn.discriminant_analysis.LinearDiscriminantAnalysis`)
77
+
78
+ - `'identity'`
79
+ If `n_components` is strictly smaller than the
80
+ dimensionality of the inputs passed to :meth:`fit`, the identity
81
+ matrix will be truncated to the first `n_components` rows.
82
+
83
+ - `'random'`
84
+ The initial transformation will be a random array of shape
85
+ `(n_components, n_features)`. Each value is sampled from the
86
+ standard normal distribution.
87
+
88
+ - numpy array
89
+ `n_features_b` must match the dimensionality of the inputs passed
90
+ to :meth:`fit` and n_features_a must be less than or equal to that.
91
+ If `n_components` is not `None`, `n_features_a` must match it.
92
+
93
+ warm_start : bool, default=False
94
+ If `True` and :meth:`fit` has been called before, the solution of the
95
+ previous call to :meth:`fit` is used as the initial linear
96
+ transformation (`n_components` and `init` will be ignored).
97
+
98
+ max_iter : int, default=50
99
+ Maximum number of iterations in the optimization.
100
+
101
+ tol : float, default=1e-5
102
+ Convergence tolerance for the optimization.
103
+
104
+ callback : callable, default=None
105
+ If not `None`, this function is called after every iteration of the
106
+ optimizer, taking as arguments the current solution (flattened
107
+ transformation matrix) and the number of iterations. This might be
108
+ useful in case one wants to examine or store the transformation
109
+ found after each iteration.
110
+
111
+ verbose : int, default=0
112
+ If 0, no progress messages will be printed.
113
+ If 1, progress messages will be printed to stdout.
114
+ If > 1, progress messages will be printed and the `disp`
115
+ parameter of :func:`scipy.optimize.minimize` will be set to
116
+ `verbose - 2`.
117
+
118
+ random_state : int or numpy.RandomState, default=None
119
+ A pseudo random number generator object or a seed for it if int. If
120
+ `init='random'`, `random_state` is used to initialize the random
121
+ transformation. If `init='pca'`, `random_state` is passed as an
122
+ argument to PCA when initializing the transformation. Pass an int
123
+ for reproducible results across multiple function calls.
124
+ See :term:`Glossary <random_state>`.
125
+
126
+ Attributes
127
+ ----------
128
+ components_ : ndarray of shape (n_components, n_features)
129
+ The linear transformation learned during fitting.
130
+
131
+ n_features_in_ : int
132
+ Number of features seen during :term:`fit`.
133
+
134
+ .. versionadded:: 0.24
135
+
136
+ n_iter_ : int
137
+ Counts the number of iterations performed by the optimizer.
138
+
139
+ random_state_ : numpy.RandomState
140
+ Pseudo random number generator object used during initialization.
141
+
142
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
143
+ Names of features seen during :term:`fit`. Defined only when `X`
144
+ has feature names that are all strings.
145
+
146
+ .. versionadded:: 1.0
147
+
148
+ See Also
149
+ --------
150
+ sklearn.discriminant_analysis.LinearDiscriminantAnalysis : Linear
151
+ Discriminant Analysis.
152
+ sklearn.decomposition.PCA : Principal component analysis (PCA).
153
+
154
+ References
155
+ ----------
156
+ .. [1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov.
157
+ "Neighbourhood Components Analysis". Advances in Neural Information
158
+ Processing Systems. 17, 513-520, 2005.
159
+ http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf
160
+
161
+ .. [2] Wikipedia entry on Neighborhood Components Analysis
162
+ https://en.wikipedia.org/wiki/Neighbourhood_components_analysis
163
+
164
+ Examples
165
+ --------
166
+ >>> from sklearn.neighbors import NeighborhoodComponentsAnalysis
167
+ >>> from sklearn.neighbors import KNeighborsClassifier
168
+ >>> from sklearn.datasets import load_iris
169
+ >>> from sklearn.model_selection import train_test_split
170
+ >>> X, y = load_iris(return_X_y=True)
171
+ >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
172
+ ... stratify=y, test_size=0.7, random_state=42)
173
+ >>> nca = NeighborhoodComponentsAnalysis(random_state=42)
174
+ >>> nca.fit(X_train, y_train)
175
+ NeighborhoodComponentsAnalysis(...)
176
+ >>> knn = KNeighborsClassifier(n_neighbors=3)
177
+ >>> knn.fit(X_train, y_train)
178
+ KNeighborsClassifier(...)
179
+ >>> print(knn.score(X_test, y_test))
180
+ 0.933333...
181
+ >>> knn.fit(nca.transform(X_train), y_train)
182
+ KNeighborsClassifier(...)
183
+ >>> print(knn.score(nca.transform(X_test), y_test))
184
+ 0.961904...
185
+ """
186
+
187
+ _parameter_constraints: dict = {
188
+ "n_components": [
189
+ Interval(Integral, 1, None, closed="left"),
190
+ None,
191
+ ],
192
+ "init": [
193
+ StrOptions({"auto", "pca", "lda", "identity", "random"}),
194
+ np.ndarray,
195
+ ],
196
+ "warm_start": ["boolean"],
197
+ "max_iter": [Interval(Integral, 1, None, closed="left")],
198
+ "tol": [Interval(Real, 0, None, closed="left")],
199
+ "callback": [callable, None],
200
+ "verbose": ["verbose"],
201
+ "random_state": ["random_state"],
202
+ }
203
+
204
+ def __init__(
205
+ self,
206
+ n_components=None,
207
+ *,
208
+ init="auto",
209
+ warm_start=False,
210
+ max_iter=50,
211
+ tol=1e-5,
212
+ callback=None,
213
+ verbose=0,
214
+ random_state=None,
215
+ ):
216
+ self.n_components = n_components
217
+ self.init = init
218
+ self.warm_start = warm_start
219
+ self.max_iter = max_iter
220
+ self.tol = tol
221
+ self.callback = callback
222
+ self.verbose = verbose
223
+ self.random_state = random_state
224
+
225
+ @_fit_context(prefer_skip_nested_validation=True)
226
+ def fit(self, X, y):
227
+ """Fit the model according to the given training data.
228
+
229
+ Parameters
230
+ ----------
231
+ X : array-like of shape (n_samples, n_features)
232
+ The training samples.
233
+
234
+ y : array-like of shape (n_samples,)
235
+ The corresponding training labels.
236
+
237
+ Returns
238
+ -------
239
+ self : object
240
+ Fitted estimator.
241
+ """
242
+ # Validate the inputs X and y, and converts y to numerical classes.
243
+ X, y = self._validate_data(X, y, ensure_min_samples=2)
244
+ check_classification_targets(y)
245
+ y = LabelEncoder().fit_transform(y)
246
+
247
+ # Check the preferred dimensionality of the projected space
248
+ if self.n_components is not None and self.n_components > X.shape[1]:
249
+ raise ValueError(
250
+ "The preferred dimensionality of the "
251
+ f"projected space `n_components` ({self.n_components}) cannot "
252
+ "be greater than the given data "
253
+ f"dimensionality ({X.shape[1]})!"
254
+ )
255
+ # If warm_start is enabled, check that the inputs are consistent
256
+ if (
257
+ self.warm_start
258
+ and hasattr(self, "components_")
259
+ and self.components_.shape[1] != X.shape[1]
260
+ ):
261
+ raise ValueError(
262
+ f"The new inputs dimensionality ({X.shape[1]}) does not "
263
+ "match the input dimensionality of the "
264
+ f"previously learned transformation ({self.components_.shape[1]})."
265
+ )
266
+ # Check how the linear transformation should be initialized
267
+ init = self.init
268
+ if isinstance(init, np.ndarray):
269
+ init = check_array(init)
270
+ # Assert that init.shape[1] = X.shape[1]
271
+ if init.shape[1] != X.shape[1]:
272
+ raise ValueError(
273
+ f"The input dimensionality ({init.shape[1]}) of the given "
274
+ "linear transformation `init` must match the "
275
+ f"dimensionality of the given inputs `X` ({X.shape[1]})."
276
+ )
277
+ # Assert that init.shape[0] <= init.shape[1]
278
+ if init.shape[0] > init.shape[1]:
279
+ raise ValueError(
280
+ f"The output dimensionality ({init.shape[0]}) of the given "
281
+ "linear transformation `init` cannot be "
282
+ f"greater than its input dimensionality ({init.shape[1]})."
283
+ )
284
+ # Assert that self.n_components = init.shape[0]
285
+ if self.n_components is not None and self.n_components != init.shape[0]:
286
+ raise ValueError(
287
+ "The preferred dimensionality of the "
288
+ f"projected space `n_components` ({self.n_components}) does"
289
+ " not match the output dimensionality of "
290
+ "the given linear transformation "
291
+ f"`init` ({init.shape[0]})!"
292
+ )
293
+
294
+ # Initialize the random generator
295
+ self.random_state_ = check_random_state(self.random_state)
296
+
297
+ # Measure the total training time
298
+ t_train = time.time()
299
+
300
+ # Compute a mask that stays fixed during optimization:
301
+ same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]
302
+ # (n_samples, n_samples)
303
+
304
+ # Initialize the transformation
305
+ transformation = np.ravel(self._initialize(X, y, init))
306
+
307
+ # Create a dictionary of parameters to be passed to the optimizer
308
+ disp = self.verbose - 2 if self.verbose > 1 else -1
309
+ optimizer_params = {
310
+ "method": "L-BFGS-B",
311
+ "fun": self._loss_grad_lbfgs,
312
+ "args": (X, same_class_mask, -1.0),
313
+ "jac": True,
314
+ "x0": transformation,
315
+ "tol": self.tol,
316
+ "options": dict(maxiter=self.max_iter, disp=disp),
317
+ "callback": self._callback,
318
+ }
319
+
320
+ # Call the optimizer
321
+ self.n_iter_ = 0
322
+ opt_result = minimize(**optimizer_params)
323
+
324
+ # Reshape the solution found by the optimizer
325
+ self.components_ = opt_result.x.reshape(-1, X.shape[1])
326
+ self._n_features_out = self.components_.shape[1]
327
+
328
+ # Stop timer
329
+ t_train = time.time() - t_train
330
+ if self.verbose:
331
+ cls_name = self.__class__.__name__
332
+
333
+ # Warn the user if the algorithm did not converge
334
+ if not opt_result.success:
335
+ warn(
336
+ "[{}] NCA did not converge: {}".format(
337
+ cls_name, opt_result.message
338
+ ),
339
+ ConvergenceWarning,
340
+ )
341
+
342
+ print("[{}] Training took {:8.2f}s.".format(cls_name, t_train))
343
+
344
+ return self
345
+
346
+ def transform(self, X):
347
+ """Apply the learned transformation to the given data.
348
+
349
+ Parameters
350
+ ----------
351
+ X : array-like of shape (n_samples, n_features)
352
+ Data samples.
353
+
354
+ Returns
355
+ -------
356
+ X_embedded: ndarray of shape (n_samples, n_components)
357
+ The data samples transformed.
358
+
359
+ Raises
360
+ ------
361
+ NotFittedError
362
+ If :meth:`fit` has not been called before.
363
+ """
364
+
365
+ check_is_fitted(self)
366
+ X = self._validate_data(X, reset=False)
367
+
368
+ return np.dot(X, self.components_.T)
369
+
370
+ def _initialize(self, X, y, init):
371
+ """Initialize the transformation.
372
+
373
+ Parameters
374
+ ----------
375
+ X : array-like of shape (n_samples, n_features)
376
+ The training samples.
377
+
378
+ y : array-like of shape (n_samples,)
379
+ The training labels.
380
+
381
+ init : str or ndarray of shape (n_features_a, n_features_b)
382
+ The validated initialization of the linear transformation.
383
+
384
+ Returns
385
+ -------
386
+ transformation : ndarray of shape (n_components, n_features)
387
+ The initialized linear transformation.
388
+
389
+ """
390
+
391
+ transformation = init
392
+ if self.warm_start and hasattr(self, "components_"):
393
+ transformation = self.components_
394
+ elif isinstance(init, np.ndarray):
395
+ pass
396
+ else:
397
+ n_samples, n_features = X.shape
398
+ n_components = self.n_components or n_features
399
+ if init == "auto":
400
+ n_classes = len(np.unique(y))
401
+ if n_components <= min(n_features, n_classes - 1):
402
+ init = "lda"
403
+ elif n_components < min(n_features, n_samples):
404
+ init = "pca"
405
+ else:
406
+ init = "identity"
407
+ if init == "identity":
408
+ transformation = np.eye(n_components, X.shape[1])
409
+ elif init == "random":
410
+ transformation = self.random_state_.standard_normal(
411
+ size=(n_components, X.shape[1])
412
+ )
413
+ elif init in {"pca", "lda"}:
414
+ init_time = time.time()
415
+ if init == "pca":
416
+ pca = PCA(
417
+ n_components=n_components, random_state=self.random_state_
418
+ )
419
+ if self.verbose:
420
+ print("Finding principal components... ", end="")
421
+ sys.stdout.flush()
422
+ pca.fit(X)
423
+ transformation = pca.components_
424
+ elif init == "lda":
425
+ from ..discriminant_analysis import LinearDiscriminantAnalysis
426
+
427
+ lda = LinearDiscriminantAnalysis(n_components=n_components)
428
+ if self.verbose:
429
+ print("Finding most discriminative components... ", end="")
430
+ sys.stdout.flush()
431
+ lda.fit(X, y)
432
+ transformation = lda.scalings_.T[:n_components]
433
+ if self.verbose:
434
+ print("done in {:5.2f}s".format(time.time() - init_time))
435
+ return transformation
436
+
437
+ def _callback(self, transformation):
438
+ """Called after each iteration of the optimizer.
439
+
440
+ Parameters
441
+ ----------
442
+ transformation : ndarray of shape (n_components * n_features,)
443
+ The solution computed by the optimizer in this iteration.
444
+ """
445
+ if self.callback is not None:
446
+ self.callback(transformation, self.n_iter_)
447
+
448
+ self.n_iter_ += 1
449
+
450
+ def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0):
451
+ """Compute the loss and the loss gradient w.r.t. `transformation`.
452
+
453
+ Parameters
454
+ ----------
455
+ transformation : ndarray of shape (n_components * n_features,)
456
+ The raveled linear transformation on which to compute loss and
457
+ evaluate gradient.
458
+
459
+ X : ndarray of shape (n_samples, n_features)
460
+ The training samples.
461
+
462
+ same_class_mask : ndarray of shape (n_samples, n_samples)
463
+ A mask where `mask[i, j] == 1` if `X[i]` and `X[j]` belong
464
+ to the same class, and `0` otherwise.
465
+
466
+ Returns
467
+ -------
468
+ loss : float
469
+ The loss computed for the given transformation.
470
+
471
+ gradient : ndarray of shape (n_components * n_features,)
472
+ The new (flattened) gradient of the loss.
473
+ """
474
+
475
+ if self.n_iter_ == 0:
476
+ self.n_iter_ += 1
477
+ if self.verbose:
478
+ header_fields = ["Iteration", "Objective Value", "Time(s)"]
479
+ header_fmt = "{:>10} {:>20} {:>10}"
480
+ header = header_fmt.format(*header_fields)
481
+ cls_name = self.__class__.__name__
482
+ print("[{}]".format(cls_name))
483
+ print(
484
+ "[{}] {}\n[{}] {}".format(
485
+ cls_name, header, cls_name, "-" * len(header)
486
+ )
487
+ )
488
+
489
+ t_funcall = time.time()
490
+
491
+ transformation = transformation.reshape(-1, X.shape[1])
492
+ X_embedded = np.dot(X, transformation.T) # (n_samples, n_components)
493
+
494
+ # Compute softmax distances
495
+ p_ij = pairwise_distances(X_embedded, squared=True)
496
+ np.fill_diagonal(p_ij, np.inf)
497
+ p_ij = softmax(-p_ij) # (n_samples, n_samples)
498
+
499
+ # Compute loss
500
+ masked_p_ij = p_ij * same_class_mask
501
+ p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1)
502
+ loss = np.sum(p)
503
+
504
+ # Compute gradient of loss w.r.t. `transform`
505
+ weighted_p_ij = masked_p_ij - p_ij * p
506
+ weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T
507
+ np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0))
508
+ gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X)
509
+ # time complexity of the gradient: O(n_components x n_samples x (
510
+ # n_samples + n_features))
511
+
512
+ if self.verbose:
513
+ t_funcall = time.time() - t_funcall
514
+ values_fmt = "[{}] {:>10} {:>20.6e} {:>10.2f}"
515
+ print(
516
+ values_fmt.format(
517
+ self.__class__.__name__, self.n_iter_, loss, t_funcall
518
+ )
519
+ )
520
+ sys.stdout.flush()
521
+
522
+ return sign * loss, sign * gradient.ravel()
523
+
524
+ def _more_tags(self):
525
+ return {"requires_y": True}
venv/lib/python3.10/site-packages/sklearn/neighbors/_partition_nodes.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (45.3 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/neighbors/_quad_tree.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (315 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/neighbors/_regression.py ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Nearest Neighbor Regression."""
2
+
3
+ # Authors: Jake Vanderplas <[email protected]>
4
+ # Fabian Pedregosa <[email protected]>
5
+ # Alexandre Gramfort <[email protected]>
6
+ # Sparseness support by Lars Buitinck
7
+ # Multi-output support by Arnaud Joly <[email protected]>
8
+ # Empty radius support by Andreas Bjerre-Nielsen
9
+ #
10
+ # License: BSD 3 clause (C) INRIA, University of Amsterdam,
11
+ # University of Copenhagen
12
+
13
+ import warnings
14
+
15
+ import numpy as np
16
+
17
+ from ..base import RegressorMixin, _fit_context
18
+ from ..metrics import DistanceMetric
19
+ from ..utils._param_validation import StrOptions
20
+ from ._base import KNeighborsMixin, NeighborsBase, RadiusNeighborsMixin, _get_weights
21
+
22
+
23
+ class KNeighborsRegressor(KNeighborsMixin, RegressorMixin, NeighborsBase):
24
+ """Regression based on k-nearest neighbors.
25
+
26
+ The target is predicted by local interpolation of the targets
27
+ associated of the nearest neighbors in the training set.
28
+
29
+ Read more in the :ref:`User Guide <regression>`.
30
+
31
+ .. versionadded:: 0.9
32
+
33
+ Parameters
34
+ ----------
35
+ n_neighbors : int, default=5
36
+ Number of neighbors to use by default for :meth:`kneighbors` queries.
37
+
38
+ weights : {'uniform', 'distance'}, callable or None, default='uniform'
39
+ Weight function used in prediction. Possible values:
40
+
41
+ - 'uniform' : uniform weights. All points in each neighborhood
42
+ are weighted equally.
43
+ - 'distance' : weight points by the inverse of their distance.
44
+ in this case, closer neighbors of a query point will have a
45
+ greater influence than neighbors which are further away.
46
+ - [callable] : a user-defined function which accepts an
47
+ array of distances, and returns an array of the same shape
48
+ containing the weights.
49
+
50
+ Uniform weights are used by default.
51
+
52
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
53
+ Algorithm used to compute the nearest neighbors:
54
+
55
+ - 'ball_tree' will use :class:`BallTree`
56
+ - 'kd_tree' will use :class:`KDTree`
57
+ - 'brute' will use a brute-force search.
58
+ - 'auto' will attempt to decide the most appropriate algorithm
59
+ based on the values passed to :meth:`fit` method.
60
+
61
+ Note: fitting on sparse input will override the setting of
62
+ this parameter, using brute force.
63
+
64
+ leaf_size : int, default=30
65
+ Leaf size passed to BallTree or KDTree. This can affect the
66
+ speed of the construction and query, as well as the memory
67
+ required to store the tree. The optimal value depends on the
68
+ nature of the problem.
69
+
70
+ p : float, default=2
71
+ Power parameter for the Minkowski metric. When p = 1, this is
72
+ equivalent to using manhattan_distance (l1), and euclidean_distance
73
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
74
+
75
+ metric : str, DistanceMetric object or callable, default='minkowski'
76
+ Metric to use for distance computation. Default is "minkowski", which
77
+ results in the standard Euclidean distance when p = 2. See the
78
+ documentation of `scipy.spatial.distance
79
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
80
+ the metrics listed in
81
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
82
+ values.
83
+
84
+ If metric is "precomputed", X is assumed to be a distance matrix and
85
+ must be square during fit. X may be a :term:`sparse graph`, in which
86
+ case only "nonzero" elements may be considered neighbors.
87
+
88
+ If metric is a callable function, it takes two arrays representing 1D
89
+ vectors as inputs and must return one value indicating the distance
90
+ between those vectors. This works for Scipy's metrics, but is less
91
+ efficient than passing the metric name as a string.
92
+
93
+ If metric is a DistanceMetric object, it will be passed directly to
94
+ the underlying computation routines.
95
+
96
+ metric_params : dict, default=None
97
+ Additional keyword arguments for the metric function.
98
+
99
+ n_jobs : int, default=None
100
+ The number of parallel jobs to run for neighbors search.
101
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
102
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
103
+ for more details.
104
+ Doesn't affect :meth:`fit` method.
105
+
106
+ Attributes
107
+ ----------
108
+ effective_metric_ : str or callable
109
+ The distance metric to use. It will be same as the `metric` parameter
110
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
111
+ 'minkowski' and `p` parameter set to 2.
112
+
113
+ effective_metric_params_ : dict
114
+ Additional keyword arguments for the metric function. For most metrics
115
+ will be same with `metric_params` parameter, but may also contain the
116
+ `p` parameter value if the `effective_metric_` attribute is set to
117
+ 'minkowski'.
118
+
119
+ n_features_in_ : int
120
+ Number of features seen during :term:`fit`.
121
+
122
+ .. versionadded:: 0.24
123
+
124
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
125
+ Names of features seen during :term:`fit`. Defined only when `X`
126
+ has feature names that are all strings.
127
+
128
+ .. versionadded:: 1.0
129
+
130
+ n_samples_fit_ : int
131
+ Number of samples in the fitted data.
132
+
133
+ See Also
134
+ --------
135
+ NearestNeighbors : Unsupervised learner for implementing neighbor searches.
136
+ RadiusNeighborsRegressor : Regression based on neighbors within a fixed radius.
137
+ KNeighborsClassifier : Classifier implementing the k-nearest neighbors vote.
138
+ RadiusNeighborsClassifier : Classifier implementing
139
+ a vote among neighbors within a given radius.
140
+
141
+ Notes
142
+ -----
143
+ See :ref:`Nearest Neighbors <neighbors>` in the online documentation
144
+ for a discussion of the choice of ``algorithm`` and ``leaf_size``.
145
+
146
+ .. warning::
147
+
148
+ Regarding the Nearest Neighbors algorithms, if it is found that two
149
+ neighbors, neighbor `k+1` and `k`, have identical distances but
150
+ different labels, the results will depend on the ordering of the
151
+ training data.
152
+
153
+ https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
154
+
155
+ Examples
156
+ --------
157
+ >>> X = [[0], [1], [2], [3]]
158
+ >>> y = [0, 0, 1, 1]
159
+ >>> from sklearn.neighbors import KNeighborsRegressor
160
+ >>> neigh = KNeighborsRegressor(n_neighbors=2)
161
+ >>> neigh.fit(X, y)
162
+ KNeighborsRegressor(...)
163
+ >>> print(neigh.predict([[1.5]]))
164
+ [0.5]
165
+ """
166
+
167
+ _parameter_constraints: dict = {
168
+ **NeighborsBase._parameter_constraints,
169
+ "weights": [StrOptions({"uniform", "distance"}), callable, None],
170
+ }
171
+ _parameter_constraints["metric"].append(DistanceMetric)
172
+ _parameter_constraints.pop("radius")
173
+
174
+ def __init__(
175
+ self,
176
+ n_neighbors=5,
177
+ *,
178
+ weights="uniform",
179
+ algorithm="auto",
180
+ leaf_size=30,
181
+ p=2,
182
+ metric="minkowski",
183
+ metric_params=None,
184
+ n_jobs=None,
185
+ ):
186
+ super().__init__(
187
+ n_neighbors=n_neighbors,
188
+ algorithm=algorithm,
189
+ leaf_size=leaf_size,
190
+ metric=metric,
191
+ p=p,
192
+ metric_params=metric_params,
193
+ n_jobs=n_jobs,
194
+ )
195
+ self.weights = weights
196
+
197
+ def _more_tags(self):
198
+ # For cross-validation routines to split data correctly
199
+ return {"pairwise": self.metric == "precomputed"}
200
+
201
+ @_fit_context(
202
+ # KNeighborsRegressor.metric is not validated yet
203
+ prefer_skip_nested_validation=False
204
+ )
205
+ def fit(self, X, y):
206
+ """Fit the k-nearest neighbors regressor from the training dataset.
207
+
208
+ Parameters
209
+ ----------
210
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
211
+ (n_samples, n_samples) if metric='precomputed'
212
+ Training data.
213
+
214
+ y : {array-like, sparse matrix} of shape (n_samples,) or \
215
+ (n_samples, n_outputs)
216
+ Target values.
217
+
218
+ Returns
219
+ -------
220
+ self : KNeighborsRegressor
221
+ The fitted k-nearest neighbors regressor.
222
+ """
223
+ return self._fit(X, y)
224
+
225
+ def predict(self, X):
226
+ """Predict the target for the provided data.
227
+
228
+ Parameters
229
+ ----------
230
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
231
+ or (n_queries, n_indexed) if metric == 'precomputed'
232
+ Test samples.
233
+
234
+ Returns
235
+ -------
236
+ y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int
237
+ Target values.
238
+ """
239
+ if self.weights == "uniform":
240
+ # In that case, we do not need the distances to perform
241
+ # the weighting so we do not compute them.
242
+ neigh_ind = self.kneighbors(X, return_distance=False)
243
+ neigh_dist = None
244
+ else:
245
+ neigh_dist, neigh_ind = self.kneighbors(X)
246
+
247
+ weights = _get_weights(neigh_dist, self.weights)
248
+
249
+ _y = self._y
250
+ if _y.ndim == 1:
251
+ _y = _y.reshape((-1, 1))
252
+
253
+ if weights is None:
254
+ y_pred = np.mean(_y[neigh_ind], axis=1)
255
+ else:
256
+ y_pred = np.empty((neigh_dist.shape[0], _y.shape[1]), dtype=np.float64)
257
+ denom = np.sum(weights, axis=1)
258
+
259
+ for j in range(_y.shape[1]):
260
+ num = np.sum(_y[neigh_ind, j] * weights, axis=1)
261
+ y_pred[:, j] = num / denom
262
+
263
+ if self._y.ndim == 1:
264
+ y_pred = y_pred.ravel()
265
+
266
+ return y_pred
267
+
268
+
269
+ class RadiusNeighborsRegressor(RadiusNeighborsMixin, RegressorMixin, NeighborsBase):
270
+ """Regression based on neighbors within a fixed radius.
271
+
272
+ The target is predicted by local interpolation of the targets
273
+ associated of the nearest neighbors in the training set.
274
+
275
+ Read more in the :ref:`User Guide <regression>`.
276
+
277
+ .. versionadded:: 0.9
278
+
279
+ Parameters
280
+ ----------
281
+ radius : float, default=1.0
282
+ Range of parameter space to use by default for :meth:`radius_neighbors`
283
+ queries.
284
+
285
+ weights : {'uniform', 'distance'}, callable or None, default='uniform'
286
+ Weight function used in prediction. Possible values:
287
+
288
+ - 'uniform' : uniform weights. All points in each neighborhood
289
+ are weighted equally.
290
+ - 'distance' : weight points by the inverse of their distance.
291
+ in this case, closer neighbors of a query point will have a
292
+ greater influence than neighbors which are further away.
293
+ - [callable] : a user-defined function which accepts an
294
+ array of distances, and returns an array of the same shape
295
+ containing the weights.
296
+
297
+ Uniform weights are used by default.
298
+
299
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
300
+ Algorithm used to compute the nearest neighbors:
301
+
302
+ - 'ball_tree' will use :class:`BallTree`
303
+ - 'kd_tree' will use :class:`KDTree`
304
+ - 'brute' will use a brute-force search.
305
+ - 'auto' will attempt to decide the most appropriate algorithm
306
+ based on the values passed to :meth:`fit` method.
307
+
308
+ Note: fitting on sparse input will override the setting of
309
+ this parameter, using brute force.
310
+
311
+ leaf_size : int, default=30
312
+ Leaf size passed to BallTree or KDTree. This can affect the
313
+ speed of the construction and query, as well as the memory
314
+ required to store the tree. The optimal value depends on the
315
+ nature of the problem.
316
+
317
+ p : float, default=2
318
+ Power parameter for the Minkowski metric. When p = 1, this is
319
+ equivalent to using manhattan_distance (l1), and euclidean_distance
320
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
321
+
322
+ metric : str or callable, default='minkowski'
323
+ Metric to use for distance computation. Default is "minkowski", which
324
+ results in the standard Euclidean distance when p = 2. See the
325
+ documentation of `scipy.spatial.distance
326
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
327
+ the metrics listed in
328
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
329
+ values.
330
+
331
+ If metric is "precomputed", X is assumed to be a distance matrix and
332
+ must be square during fit. X may be a :term:`sparse graph`, in which
333
+ case only "nonzero" elements may be considered neighbors.
334
+
335
+ If metric is a callable function, it takes two arrays representing 1D
336
+ vectors as inputs and must return one value indicating the distance
337
+ between those vectors. This works for Scipy's metrics, but is less
338
+ efficient than passing the metric name as a string.
339
+
340
+ metric_params : dict, default=None
341
+ Additional keyword arguments for the metric function.
342
+
343
+ n_jobs : int, default=None
344
+ The number of parallel jobs to run for neighbors search.
345
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
346
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
347
+ for more details.
348
+
349
+ Attributes
350
+ ----------
351
+ effective_metric_ : str or callable
352
+ The distance metric to use. It will be same as the `metric` parameter
353
+ or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
354
+ 'minkowski' and `p` parameter set to 2.
355
+
356
+ effective_metric_params_ : dict
357
+ Additional keyword arguments for the metric function. For most metrics
358
+ will be same with `metric_params` parameter, but may also contain the
359
+ `p` parameter value if the `effective_metric_` attribute is set to
360
+ 'minkowski'.
361
+
362
+ n_features_in_ : int
363
+ Number of features seen during :term:`fit`.
364
+
365
+ .. versionadded:: 0.24
366
+
367
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
368
+ Names of features seen during :term:`fit`. Defined only when `X`
369
+ has feature names that are all strings.
370
+
371
+ .. versionadded:: 1.0
372
+
373
+ n_samples_fit_ : int
374
+ Number of samples in the fitted data.
375
+
376
+ See Also
377
+ --------
378
+ NearestNeighbors : Unsupervised learner for implementing neighbor searches.
379
+ KNeighborsRegressor : Regression based on k-nearest neighbors.
380
+ KNeighborsClassifier : Classifier based on the k-nearest neighbors.
381
+ RadiusNeighborsClassifier : Classifier based on neighbors within a given radius.
382
+
383
+ Notes
384
+ -----
385
+ See :ref:`Nearest Neighbors <neighbors>` in the online documentation
386
+ for a discussion of the choice of ``algorithm`` and ``leaf_size``.
387
+
388
+ https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
389
+
390
+ Examples
391
+ --------
392
+ >>> X = [[0], [1], [2], [3]]
393
+ >>> y = [0, 0, 1, 1]
394
+ >>> from sklearn.neighbors import RadiusNeighborsRegressor
395
+ >>> neigh = RadiusNeighborsRegressor(radius=1.0)
396
+ >>> neigh.fit(X, y)
397
+ RadiusNeighborsRegressor(...)
398
+ >>> print(neigh.predict([[1.5]]))
399
+ [0.5]
400
+ """
401
+
402
+ _parameter_constraints: dict = {
403
+ **NeighborsBase._parameter_constraints,
404
+ "weights": [StrOptions({"uniform", "distance"}), callable, None],
405
+ }
406
+ _parameter_constraints.pop("n_neighbors")
407
+
408
+ def __init__(
409
+ self,
410
+ radius=1.0,
411
+ *,
412
+ weights="uniform",
413
+ algorithm="auto",
414
+ leaf_size=30,
415
+ p=2,
416
+ metric="minkowski",
417
+ metric_params=None,
418
+ n_jobs=None,
419
+ ):
420
+ super().__init__(
421
+ radius=radius,
422
+ algorithm=algorithm,
423
+ leaf_size=leaf_size,
424
+ p=p,
425
+ metric=metric,
426
+ metric_params=metric_params,
427
+ n_jobs=n_jobs,
428
+ )
429
+ self.weights = weights
430
+
431
+ @_fit_context(
432
+ # RadiusNeighborsRegressor.metric is not validated yet
433
+ prefer_skip_nested_validation=False
434
+ )
435
+ def fit(self, X, y):
436
+ """Fit the radius neighbors regressor from the training dataset.
437
+
438
+ Parameters
439
+ ----------
440
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
441
+ (n_samples, n_samples) if metric='precomputed'
442
+ Training data.
443
+
444
+ y : {array-like, sparse matrix} of shape (n_samples,) or \
445
+ (n_samples, n_outputs)
446
+ Target values.
447
+
448
+ Returns
449
+ -------
450
+ self : RadiusNeighborsRegressor
451
+ The fitted radius neighbors regressor.
452
+ """
453
+ return self._fit(X, y)
454
+
455
+ def predict(self, X):
456
+ """Predict the target for the provided data.
457
+
458
+ Parameters
459
+ ----------
460
+ X : {array-like, sparse matrix} of shape (n_queries, n_features), \
461
+ or (n_queries, n_indexed) if metric == 'precomputed'
462
+ Test samples.
463
+
464
+ Returns
465
+ -------
466
+ y : ndarray of shape (n_queries,) or (n_queries, n_outputs), \
467
+ dtype=double
468
+ Target values.
469
+ """
470
+ neigh_dist, neigh_ind = self.radius_neighbors(X)
471
+
472
+ weights = _get_weights(neigh_dist, self.weights)
473
+
474
+ _y = self._y
475
+ if _y.ndim == 1:
476
+ _y = _y.reshape((-1, 1))
477
+
478
+ empty_obs = np.full_like(_y[0], np.nan)
479
+
480
+ if weights is None:
481
+ y_pred = np.array(
482
+ [
483
+ np.mean(_y[ind, :], axis=0) if len(ind) else empty_obs
484
+ for (i, ind) in enumerate(neigh_ind)
485
+ ]
486
+ )
487
+
488
+ else:
489
+ y_pred = np.array(
490
+ [
491
+ (
492
+ np.average(_y[ind, :], axis=0, weights=weights[i])
493
+ if len(ind)
494
+ else empty_obs
495
+ )
496
+ for (i, ind) in enumerate(neigh_ind)
497
+ ]
498
+ )
499
+
500
+ if np.any(np.isnan(y_pred)):
501
+ empty_warning_msg = (
502
+ "One or more samples have no neighbors "
503
+ "within specified radius; predicting NaN."
504
+ )
505
+ warnings.warn(empty_warning_msg)
506
+
507
+ if self._y.ndim == 1:
508
+ y_pred = y_pred.ravel()
509
+
510
+ return y_pred
venv/lib/python3.10/site-packages/sklearn/neighbors/_unsupervised.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unsupervised nearest neighbors learner"""
2
+ from ..base import _fit_context
3
+ from ._base import KNeighborsMixin, NeighborsBase, RadiusNeighborsMixin
4
+
5
+
6
+ class NearestNeighbors(KNeighborsMixin, RadiusNeighborsMixin, NeighborsBase):
7
+ """Unsupervised learner for implementing neighbor searches.
8
+
9
+ Read more in the :ref:`User Guide <unsupervised_neighbors>`.
10
+
11
+ .. versionadded:: 0.9
12
+
13
+ Parameters
14
+ ----------
15
+ n_neighbors : int, default=5
16
+ Number of neighbors to use by default for :meth:`kneighbors` queries.
17
+
18
+ radius : float, default=1.0
19
+ Range of parameter space to use by default for :meth:`radius_neighbors`
20
+ queries.
21
+
22
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
23
+ Algorithm used to compute the nearest neighbors:
24
+
25
+ - 'ball_tree' will use :class:`BallTree`
26
+ - 'kd_tree' will use :class:`KDTree`
27
+ - 'brute' will use a brute-force search.
28
+ - 'auto' will attempt to decide the most appropriate algorithm
29
+ based on the values passed to :meth:`fit` method.
30
+
31
+ Note: fitting on sparse input will override the setting of
32
+ this parameter, using brute force.
33
+
34
+ leaf_size : int, default=30
35
+ Leaf size passed to BallTree or KDTree. This can affect the
36
+ speed of the construction and query, as well as the memory
37
+ required to store the tree. The optimal value depends on the
38
+ nature of the problem.
39
+
40
+ metric : str or callable, default='minkowski'
41
+ Metric to use for distance computation. Default is "minkowski", which
42
+ results in the standard Euclidean distance when p = 2. See the
43
+ documentation of `scipy.spatial.distance
44
+ <https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
45
+ the metrics listed in
46
+ :class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
47
+ values.
48
+
49
+ If metric is "precomputed", X is assumed to be a distance matrix and
50
+ must be square during fit. X may be a :term:`sparse graph`, in which
51
+ case only "nonzero" elements may be considered neighbors.
52
+
53
+ If metric is a callable function, it takes two arrays representing 1D
54
+ vectors as inputs and must return one value indicating the distance
55
+ between those vectors. This works for Scipy's metrics, but is less
56
+ efficient than passing the metric name as a string.
57
+
58
+ p : float (positive), default=2
59
+ Parameter for the Minkowski metric from
60
+ sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
61
+ equivalent to using manhattan_distance (l1), and euclidean_distance
62
+ (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
63
+
64
+ metric_params : dict, default=None
65
+ Additional keyword arguments for the metric function.
66
+
67
+ n_jobs : int, default=None
68
+ The number of parallel jobs to run for neighbors search.
69
+ ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
70
+ ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
71
+ for more details.
72
+
73
+ Attributes
74
+ ----------
75
+ effective_metric_ : str
76
+ Metric used to compute distances to neighbors.
77
+
78
+ effective_metric_params_ : dict
79
+ Parameters for the metric used to compute distances to neighbors.
80
+
81
+ n_features_in_ : int
82
+ Number of features seen during :term:`fit`.
83
+
84
+ .. versionadded:: 0.24
85
+
86
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
87
+ Names of features seen during :term:`fit`. Defined only when `X`
88
+ has feature names that are all strings.
89
+
90
+ .. versionadded:: 1.0
91
+
92
+ n_samples_fit_ : int
93
+ Number of samples in the fitted data.
94
+
95
+ See Also
96
+ --------
97
+ KNeighborsClassifier : Classifier implementing the k-nearest neighbors
98
+ vote.
99
+ RadiusNeighborsClassifier : Classifier implementing a vote among neighbors
100
+ within a given radius.
101
+ KNeighborsRegressor : Regression based on k-nearest neighbors.
102
+ RadiusNeighborsRegressor : Regression based on neighbors within a fixed
103
+ radius.
104
+ BallTree : Space partitioning data structure for organizing points in a
105
+ multi-dimensional space, used for nearest neighbor search.
106
+
107
+ Notes
108
+ -----
109
+ See :ref:`Nearest Neighbors <neighbors>` in the online documentation
110
+ for a discussion of the choice of ``algorithm`` and ``leaf_size``.
111
+
112
+ https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
113
+
114
+ Examples
115
+ --------
116
+ >>> import numpy as np
117
+ >>> from sklearn.neighbors import NearestNeighbors
118
+ >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]
119
+ >>> neigh = NearestNeighbors(n_neighbors=2, radius=0.4)
120
+ >>> neigh.fit(samples)
121
+ NearestNeighbors(...)
122
+ >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
123
+ array([[2, 0]]...)
124
+ >>> nbrs = neigh.radius_neighbors(
125
+ ... [[0, 0, 1.3]], 0.4, return_distance=False
126
+ ... )
127
+ >>> np.asarray(nbrs[0][0])
128
+ array(2)
129
+ """
130
+
131
+ def __init__(
132
+ self,
133
+ *,
134
+ n_neighbors=5,
135
+ radius=1.0,
136
+ algorithm="auto",
137
+ leaf_size=30,
138
+ metric="minkowski",
139
+ p=2,
140
+ metric_params=None,
141
+ n_jobs=None,
142
+ ):
143
+ super().__init__(
144
+ n_neighbors=n_neighbors,
145
+ radius=radius,
146
+ algorithm=algorithm,
147
+ leaf_size=leaf_size,
148
+ metric=metric,
149
+ p=p,
150
+ metric_params=metric_params,
151
+ n_jobs=n_jobs,
152
+ )
153
+
154
+ @_fit_context(
155
+ # NearestNeighbors.metric is not validated yet
156
+ prefer_skip_nested_validation=False
157
+ )
158
+ def fit(self, X, y=None):
159
+ """Fit the nearest neighbors estimator from the training dataset.
160
+
161
+ Parameters
162
+ ----------
163
+ X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
164
+ (n_samples, n_samples) if metric='precomputed'
165
+ Training data.
166
+
167
+ y : Ignored
168
+ Not used, present for API consistency by convention.
169
+
170
+ Returns
171
+ -------
172
+ self : NearestNeighbors
173
+ The fitted nearest neighbors estimator.
174
+ """
175
+ return self._fit(X)
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (34.3 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_arpack.cpython-310.pyc ADDED
Binary file (1.34 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_array_api.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_available_if.cpython-310.pyc ADDED
Binary file (3.18 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_bunch.cpython-310.pyc ADDED
Binary file (2.18 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_encode.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_estimator_html_repr.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_joblib.cpython-310.pyc ADDED
Binary file (669 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mask.cpython-310.pyc ADDED
Binary file (1.66 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_metadata_requests.cpython-310.pyc ADDED
Binary file (47.5 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mocking.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_param_validation.cpython-310.pyc ADDED
Binary file (28.5 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_plotting.cpython-310.pyc ADDED
Binary file (3.49 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_pprint.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_response.cpython-310.pyc ADDED
Binary file (10 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_set_output.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_show_versions.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_tags.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/_testing.cpython-310.pyc ADDED
Binary file (33.2 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/class_weight.cpython-310.pyc ADDED
Binary file (6.23 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/deprecation.cpython-310.pyc ADDED
Binary file (3.44 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/discovery.cpython-310.pyc ADDED
Binary file (7.99 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/estimator_checks.cpython-310.pyc ADDED
Binary file (104 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/extmath.cpython-310.pyc ADDED
Binary file (37.4 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/fixes.cpython-310.pyc ADDED
Binary file (9.13 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/graph.cpython-310.pyc ADDED
Binary file (4.87 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/metadata_routing.cpython-310.pyc ADDED
Binary file (824 Bytes). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/metaestimators.cpython-310.pyc ADDED
Binary file (5.12 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/multiclass.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/optimize.cpython-310.pyc ADDED
Binary file (6.48 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/parallel.cpython-310.pyc ADDED
Binary file (4.48 kB). View file
 
venv/lib/python3.10/site-packages/sklearn/utils/__pycache__/random.cpython-310.pyc ADDED
Binary file (2.69 kB). View file