peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/base.py
| """Base classes for all estimators.""" | |
| # Author: Gael Varoquaux <[email protected]> | |
| # License: BSD 3 clause | |
| import copy | |
| import functools | |
| import inspect | |
| import platform | |
| import re | |
| import warnings | |
| from collections import defaultdict | |
| import numpy as np | |
| from . import __version__ | |
| from ._config import config_context, get_config | |
| from .exceptions import InconsistentVersionWarning | |
| from .utils import _IS_32BIT | |
| from .utils._estimator_html_repr import _HTMLDocumentationLinkMixin, estimator_html_repr | |
| from .utils._metadata_requests import _MetadataRequester, _routing_enabled | |
| from .utils._param_validation import validate_parameter_constraints | |
| from .utils._set_output import _SetOutputMixin | |
| from .utils._tags import ( | |
| _DEFAULT_TAGS, | |
| ) | |
| from .utils.validation import ( | |
| _check_feature_names_in, | |
| _check_y, | |
| _generate_get_feature_names_out, | |
| _get_feature_names, | |
| _is_fitted, | |
| _num_features, | |
| check_array, | |
| check_is_fitted, | |
| check_X_y, | |
| ) | |
| def clone(estimator, *, safe=True): | |
| """Construct a new unfitted estimator with the same parameters. | |
| Clone does a deep copy of the model in an estimator | |
| without actually copying attached data. It returns a new estimator | |
| with the same parameters that has not been fitted on any data. | |
| .. versionchanged:: 1.3 | |
| Delegates to `estimator.__sklearn_clone__` if the method exists. | |
| Parameters | |
| ---------- | |
| estimator : {list, tuple, set} of estimator instance or a single \ | |
| estimator instance | |
| The estimator or group of estimators to be cloned. | |
| safe : bool, default=True | |
| If safe is False, clone will fall back to a deep copy on objects | |
| that are not estimators. Ignored if `estimator.__sklearn_clone__` | |
| exists. | |
| Returns | |
| ------- | |
| estimator : object | |
| The deep copy of the input, an estimator if input is an estimator. | |
| Notes | |
| ----- | |
| If the estimator's `random_state` parameter is an integer (or if the | |
| estimator doesn't have a `random_state` parameter), an *exact clone* is | |
| returned: the clone and the original estimator will give the exact same | |
| results. Otherwise, *statistical clone* is returned: the clone might | |
| return different results from the original estimator. More details can be | |
| found in :ref:`randomness`. | |
| Examples | |
| -------- | |
| >>> from sklearn.base import clone | |
| >>> from sklearn.linear_model import LogisticRegression | |
| >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]] | |
| >>> y = [0, 0, 1, 1] | |
| >>> classifier = LogisticRegression().fit(X, y) | |
| >>> cloned_classifier = clone(classifier) | |
| >>> hasattr(classifier, "classes_") | |
| True | |
| >>> hasattr(cloned_classifier, "classes_") | |
| False | |
| >>> classifier is cloned_classifier | |
| False | |
| """ | |
| if hasattr(estimator, "__sklearn_clone__") and not inspect.isclass(estimator): | |
| return estimator.__sklearn_clone__() | |
| return _clone_parametrized(estimator, safe=safe) | |
| def _clone_parametrized(estimator, *, safe=True): | |
| """Default implementation of clone. See :func:`sklearn.base.clone` for details.""" | |
| estimator_type = type(estimator) | |
| if estimator_type is dict: | |
| return {k: clone(v, safe=safe) for k, v in estimator.items()} | |
| elif estimator_type in (list, tuple, set, frozenset): | |
| return estimator_type([clone(e, safe=safe) for e in estimator]) | |
| elif not hasattr(estimator, "get_params") or isinstance(estimator, type): | |
| if not safe: | |
| return copy.deepcopy(estimator) | |
| else: | |
| if isinstance(estimator, type): | |
| raise TypeError( | |
| "Cannot clone object. " | |
| + "You should provide an instance of " | |
| + "scikit-learn estimator instead of a class." | |
| ) | |
| else: | |
| raise TypeError( | |
| "Cannot clone object '%s' (type %s): " | |
| "it does not seem to be a scikit-learn " | |
| "estimator as it does not implement a " | |
| "'get_params' method." % (repr(estimator), type(estimator)) | |
| ) | |
| klass = estimator.__class__ | |
| new_object_params = estimator.get_params(deep=False) | |
| for name, param in new_object_params.items(): | |
| new_object_params[name] = clone(param, safe=False) | |
| new_object = klass(**new_object_params) | |
| try: | |
| new_object._metadata_request = copy.deepcopy(estimator._metadata_request) | |
| except AttributeError: | |
| pass | |
| params_set = new_object.get_params(deep=False) | |
| # quick sanity check of the parameters of the clone | |
| for name in new_object_params: | |
| param1 = new_object_params[name] | |
| param2 = params_set[name] | |
| if param1 is not param2: | |
| raise RuntimeError( | |
| "Cannot clone object %s, as the constructor " | |
| "either does not set or modifies parameter %s" % (estimator, name) | |
| ) | |
| # _sklearn_output_config is used by `set_output` to configure the output | |
| # container of an estimator. | |
| if hasattr(estimator, "_sklearn_output_config"): | |
| new_object._sklearn_output_config = copy.deepcopy( | |
| estimator._sklearn_output_config | |
| ) | |
| return new_object | |
| class BaseEstimator(_HTMLDocumentationLinkMixin, _MetadataRequester): | |
| """Base class for all estimators in scikit-learn. | |
| Inheriting from this class provides default implementations of: | |
| - setting and getting parameters used by `GridSearchCV` and friends; | |
| - textual and HTML representation displayed in terminals and IDEs; | |
| - estimator serialization; | |
| - parameters validation; | |
| - data validation; | |
| - feature names validation. | |
| Read more in the :ref:`User Guide <rolling_your_own_estimator>`. | |
| Notes | |
| ----- | |
| All estimators should specify all the parameters that can be set | |
| at the class level in their ``__init__`` as explicit keyword | |
| arguments (no ``*args`` or ``**kwargs``). | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator | |
| >>> class MyEstimator(BaseEstimator): | |
| ... def __init__(self, *, param=1): | |
| ... self.param = param | |
| ... def fit(self, X, y=None): | |
| ... self.is_fitted_ = True | |
| ... return self | |
| ... def predict(self, X): | |
| ... return np.full(shape=X.shape[0], fill_value=self.param) | |
| >>> estimator = MyEstimator(param=2) | |
| >>> estimator.get_params() | |
| {'param': 2} | |
| >>> X = np.array([[1, 2], [2, 3], [3, 4]]) | |
| >>> y = np.array([1, 0, 1]) | |
| >>> estimator.fit(X, y).predict(X) | |
| array([2, 2, 2]) | |
| >>> estimator.set_params(param=3).fit(X, y).predict(X) | |
| array([3, 3, 3]) | |
| """ | |
| def _get_param_names(cls): | |
| """Get parameter names for the estimator""" | |
| # fetch the constructor or the original constructor before | |
| # deprecation wrapping if any | |
| init = getattr(cls.__init__, "deprecated_original", cls.__init__) | |
| if init is object.__init__: | |
| # No explicit constructor to introspect | |
| return [] | |
| # introspect the constructor arguments to find the model parameters | |
| # to represent | |
| init_signature = inspect.signature(init) | |
| # Consider the constructor parameters excluding 'self' | |
| parameters = [ | |
| p | |
| for p in init_signature.parameters.values() | |
| if p.name != "self" and p.kind != p.VAR_KEYWORD | |
| ] | |
| for p in parameters: | |
| if p.kind == p.VAR_POSITIONAL: | |
| raise RuntimeError( | |
| "scikit-learn estimators should always " | |
| "specify their parameters in the signature" | |
| " of their __init__ (no varargs)." | |
| " %s with constructor %s doesn't " | |
| " follow this convention." % (cls, init_signature) | |
| ) | |
| # Extract and sort argument names excluding 'self' | |
| return sorted([p.name for p in parameters]) | |
| def get_params(self, deep=True): | |
| """ | |
| Get parameters for this estimator. | |
| Parameters | |
| ---------- | |
| deep : bool, default=True | |
| If True, will return the parameters for this estimator and | |
| contained subobjects that are estimators. | |
| Returns | |
| ------- | |
| params : dict | |
| Parameter names mapped to their values. | |
| """ | |
| out = dict() | |
| for key in self._get_param_names(): | |
| value = getattr(self, key) | |
| if deep and hasattr(value, "get_params") and not isinstance(value, type): | |
| deep_items = value.get_params().items() | |
| out.update((key + "__" + k, val) for k, val in deep_items) | |
| out[key] = value | |
| return out | |
| def set_params(self, **params): | |
| """Set the parameters of this estimator. | |
| The method works on simple estimators as well as on nested objects | |
| (such as :class:`~sklearn.pipeline.Pipeline`). The latter have | |
| parameters of the form ``<component>__<parameter>`` so that it's | |
| possible to update each component of a nested object. | |
| Parameters | |
| ---------- | |
| **params : dict | |
| Estimator parameters. | |
| Returns | |
| ------- | |
| self : estimator instance | |
| Estimator instance. | |
| """ | |
| if not params: | |
| # Simple optimization to gain speed (inspect is slow) | |
| return self | |
| valid_params = self.get_params(deep=True) | |
| nested_params = defaultdict(dict) # grouped by prefix | |
| for key, value in params.items(): | |
| key, delim, sub_key = key.partition("__") | |
| if key not in valid_params: | |
| local_valid_params = self._get_param_names() | |
| raise ValueError( | |
| f"Invalid parameter {key!r} for estimator {self}. " | |
| f"Valid parameters are: {local_valid_params!r}." | |
| ) | |
| if delim: | |
| nested_params[key][sub_key] = value | |
| else: | |
| setattr(self, key, value) | |
| valid_params[key] = value | |
| for key, sub_params in nested_params.items(): | |
| valid_params[key].set_params(**sub_params) | |
| return self | |
| def __sklearn_clone__(self): | |
| return _clone_parametrized(self) | |
| def __repr__(self, N_CHAR_MAX=700): | |
| # N_CHAR_MAX is the (approximate) maximum number of non-blank | |
| # characters to render. We pass it as an optional parameter to ease | |
| # the tests. | |
| from .utils._pprint import _EstimatorPrettyPrinter | |
| N_MAX_ELEMENTS_TO_SHOW = 30 # number of elements to show in sequences | |
| # use ellipsis for sequences with a lot of elements | |
| pp = _EstimatorPrettyPrinter( | |
| compact=True, | |
| indent=1, | |
| indent_at_name=True, | |
| n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW, | |
| ) | |
| repr_ = pp.pformat(self) | |
| # Use bruteforce ellipsis when there are a lot of non-blank characters | |
| n_nonblank = len("".join(repr_.split())) | |
| if n_nonblank > N_CHAR_MAX: | |
| lim = N_CHAR_MAX // 2 # apprx number of chars to keep on both ends | |
| regex = r"^(\s*\S){%d}" % lim | |
| # The regex '^(\s*\S){%d}' % n | |
| # matches from the start of the string until the nth non-blank | |
| # character: | |
| # - ^ matches the start of string | |
| # - (pattern){n} matches n repetitions of pattern | |
| # - \s*\S matches a non-blank char following zero or more blanks | |
| left_lim = re.match(regex, repr_).end() | |
| right_lim = re.match(regex, repr_[::-1]).end() | |
| if "\n" in repr_[left_lim:-right_lim]: | |
| # The left side and right side aren't on the same line. | |
| # To avoid weird cuts, e.g.: | |
| # categoric...ore', | |
| # we need to start the right side with an appropriate newline | |
| # character so that it renders properly as: | |
| # categoric... | |
| # handle_unknown='ignore', | |
| # so we add [^\n]*\n which matches until the next \n | |
| regex += r"[^\n]*\n" | |
| right_lim = re.match(regex, repr_[::-1]).end() | |
| ellipsis = "..." | |
| if left_lim + len(ellipsis) < len(repr_) - right_lim: | |
| # Only add ellipsis if it results in a shorter repr | |
| repr_ = repr_[:left_lim] + "..." + repr_[-right_lim:] | |
| return repr_ | |
| def __getstate__(self): | |
| if getattr(self, "__slots__", None): | |
| raise TypeError( | |
| "You cannot use `__slots__` in objects inheriting from " | |
| "`sklearn.base.BaseEstimator`." | |
| ) | |
| try: | |
| state = super().__getstate__() | |
| if state is None: | |
| # For Python 3.11+, empty instance (no `__slots__`, | |
| # and `__dict__`) will return a state equal to `None`. | |
| state = self.__dict__.copy() | |
| except AttributeError: | |
| # Python < 3.11 | |
| state = self.__dict__.copy() | |
| if type(self).__module__.startswith("sklearn."): | |
| return dict(state.items(), _sklearn_version=__version__) | |
| else: | |
| return state | |
| def __setstate__(self, state): | |
| if type(self).__module__.startswith("sklearn."): | |
| pickle_version = state.pop("_sklearn_version", "pre-0.18") | |
| if pickle_version != __version__: | |
| warnings.warn( | |
| InconsistentVersionWarning( | |
| estimator_name=self.__class__.__name__, | |
| current_sklearn_version=__version__, | |
| original_sklearn_version=pickle_version, | |
| ), | |
| ) | |
| try: | |
| super().__setstate__(state) | |
| except AttributeError: | |
| self.__dict__.update(state) | |
| def _more_tags(self): | |
| return _DEFAULT_TAGS | |
| def _get_tags(self): | |
| collected_tags = {} | |
| for base_class in reversed(inspect.getmro(self.__class__)): | |
| if hasattr(base_class, "_more_tags"): | |
| # need the if because mixins might not have _more_tags | |
| # but might do redundant work in estimators | |
| # (i.e. calling more tags on BaseEstimator multiple times) | |
| more_tags = base_class._more_tags(self) | |
| collected_tags.update(more_tags) | |
| return collected_tags | |
| def _check_n_features(self, X, reset): | |
| """Set the `n_features_in_` attribute, or check against it. | |
| Parameters | |
| ---------- | |
| X : {ndarray, sparse matrix} of shape (n_samples, n_features) | |
| The input samples. | |
| reset : bool | |
| If True, the `n_features_in_` attribute is set to `X.shape[1]`. | |
| If False and the attribute exists, then check that it is equal to | |
| `X.shape[1]`. If False and the attribute does *not* exist, then | |
| the check is skipped. | |
| .. note:: | |
| It is recommended to call reset=True in `fit` and in the first | |
| call to `partial_fit`. All other methods that validate `X` | |
| should set `reset=False`. | |
| """ | |
| try: | |
| n_features = _num_features(X) | |
| except TypeError as e: | |
| if not reset and hasattr(self, "n_features_in_"): | |
| raise ValueError( | |
| "X does not contain any features, but " | |
| f"{self.__class__.__name__} is expecting " | |
| f"{self.n_features_in_} features" | |
| ) from e | |
| # If the number of features is not defined and reset=True, | |
| # then we skip this check | |
| return | |
| if reset: | |
| self.n_features_in_ = n_features | |
| return | |
| if not hasattr(self, "n_features_in_"): | |
| # Skip this check if the expected number of expected input features | |
| # was not recorded by calling fit first. This is typically the case | |
| # for stateless transformers. | |
| return | |
| if n_features != self.n_features_in_: | |
| raise ValueError( | |
| f"X has {n_features} features, but {self.__class__.__name__} " | |
| f"is expecting {self.n_features_in_} features as input." | |
| ) | |
| def _check_feature_names(self, X, *, reset): | |
| """Set or check the `feature_names_in_` attribute. | |
| .. versionadded:: 1.0 | |
| Parameters | |
| ---------- | |
| X : {ndarray, dataframe} of shape (n_samples, n_features) | |
| The input samples. | |
| reset : bool | |
| Whether to reset the `feature_names_in_` attribute. | |
| If False, the input will be checked for consistency with | |
| feature names of data provided when reset was last True. | |
| .. note:: | |
| It is recommended to call `reset=True` in `fit` and in the first | |
| call to `partial_fit`. All other methods that validate `X` | |
| should set `reset=False`. | |
| """ | |
| if reset: | |
| feature_names_in = _get_feature_names(X) | |
| if feature_names_in is not None: | |
| self.feature_names_in_ = feature_names_in | |
| elif hasattr(self, "feature_names_in_"): | |
| # Delete the attribute when the estimator is fitted on a new dataset | |
| # that has no feature names. | |
| delattr(self, "feature_names_in_") | |
| return | |
| fitted_feature_names = getattr(self, "feature_names_in_", None) | |
| X_feature_names = _get_feature_names(X) | |
| if fitted_feature_names is None and X_feature_names is None: | |
| # no feature names seen in fit and in X | |
| return | |
| if X_feature_names is not None and fitted_feature_names is None: | |
| warnings.warn( | |
| f"X has feature names, but {self.__class__.__name__} was fitted without" | |
| " feature names" | |
| ) | |
| return | |
| if X_feature_names is None and fitted_feature_names is not None: | |
| warnings.warn( | |
| "X does not have valid feature names, but" | |
| f" {self.__class__.__name__} was fitted with feature names" | |
| ) | |
| return | |
| # validate the feature names against the `feature_names_in_` attribute | |
| if len(fitted_feature_names) != len(X_feature_names) or np.any( | |
| fitted_feature_names != X_feature_names | |
| ): | |
| message = ( | |
| "The feature names should match those that were passed during fit.\n" | |
| ) | |
| fitted_feature_names_set = set(fitted_feature_names) | |
| X_feature_names_set = set(X_feature_names) | |
| unexpected_names = sorted(X_feature_names_set - fitted_feature_names_set) | |
| missing_names = sorted(fitted_feature_names_set - X_feature_names_set) | |
| def add_names(names): | |
| output = "" | |
| max_n_names = 5 | |
| for i, name in enumerate(names): | |
| if i >= max_n_names: | |
| output += "- ...\n" | |
| break | |
| output += f"- {name}\n" | |
| return output | |
| if unexpected_names: | |
| message += "Feature names unseen at fit time:\n" | |
| message += add_names(unexpected_names) | |
| if missing_names: | |
| message += "Feature names seen at fit time, yet now missing:\n" | |
| message += add_names(missing_names) | |
| if not missing_names and not unexpected_names: | |
| message += ( | |
| "Feature names must be in the same order as they were in fit.\n" | |
| ) | |
| raise ValueError(message) | |
| def _validate_data( | |
| self, | |
| X="no_validation", | |
| y="no_validation", | |
| reset=True, | |
| validate_separately=False, | |
| cast_to_ndarray=True, | |
| **check_params, | |
| ): | |
| """Validate input data and set or check the `n_features_in_` attribute. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix, dataframe} of shape \ | |
| (n_samples, n_features), default='no validation' | |
| The input samples. | |
| If `'no_validation'`, no validation is performed on `X`. This is | |
| useful for meta-estimator which can delegate input validation to | |
| their underlying estimator(s). In that case `y` must be passed and | |
| the only accepted `check_params` are `multi_output` and | |
| `y_numeric`. | |
| y : array-like of shape (n_samples,), default='no_validation' | |
| The targets. | |
| - If `None`, `check_array` is called on `X`. If the estimator's | |
| requires_y tag is True, then an error will be raised. | |
| - If `'no_validation'`, `check_array` is called on `X` and the | |
| estimator's requires_y tag is ignored. This is a default | |
| placeholder and is never meant to be explicitly set. In that case | |
| `X` must be passed. | |
| - Otherwise, only `y` with `_check_y` or both `X` and `y` are | |
| checked with either `check_array` or `check_X_y` depending on | |
| `validate_separately`. | |
| reset : bool, default=True | |
| Whether to reset the `n_features_in_` attribute. | |
| If False, the input will be checked for consistency with data | |
| provided when reset was last True. | |
| .. note:: | |
| It is recommended to call reset=True in `fit` and in the first | |
| call to `partial_fit`. All other methods that validate `X` | |
| should set `reset=False`. | |
| validate_separately : False or tuple of dicts, default=False | |
| Only used if y is not None. | |
| If False, call validate_X_y(). Else, it must be a tuple of kwargs | |
| to be used for calling check_array() on X and y respectively. | |
| `estimator=self` is automatically added to these dicts to generate | |
| more informative error message in case of invalid input data. | |
| cast_to_ndarray : bool, default=True | |
| Cast `X` and `y` to ndarray with checks in `check_params`. If | |
| `False`, `X` and `y` are unchanged and only `feature_names_in_` and | |
| `n_features_in_` are checked. | |
| **check_params : kwargs | |
| Parameters passed to :func:`sklearn.utils.check_array` or | |
| :func:`sklearn.utils.check_X_y`. Ignored if validate_separately | |
| is not False. | |
| `estimator=self` is automatically added to these params to generate | |
| more informative error message in case of invalid input data. | |
| Returns | |
| ------- | |
| out : {ndarray, sparse matrix} or tuple of these | |
| The validated input. A tuple is returned if both `X` and `y` are | |
| validated. | |
| """ | |
| self._check_feature_names(X, reset=reset) | |
| if y is None and self._get_tags()["requires_y"]: | |
| raise ValueError( | |
| f"This {self.__class__.__name__} estimator " | |
| "requires y to be passed, but the target y is None." | |
| ) | |
| no_val_X = isinstance(X, str) and X == "no_validation" | |
| no_val_y = y is None or isinstance(y, str) and y == "no_validation" | |
| if no_val_X and no_val_y: | |
| raise ValueError("Validation should be done on X, y or both.") | |
| default_check_params = {"estimator": self} | |
| check_params = {**default_check_params, **check_params} | |
| if not cast_to_ndarray: | |
| if not no_val_X and no_val_y: | |
| out = X | |
| elif no_val_X and not no_val_y: | |
| out = y | |
| else: | |
| out = X, y | |
| elif not no_val_X and no_val_y: | |
| out = check_array(X, input_name="X", **check_params) | |
| elif no_val_X and not no_val_y: | |
| out = _check_y(y, **check_params) | |
| else: | |
| if validate_separately: | |
| # We need this because some estimators validate X and y | |
| # separately, and in general, separately calling check_array() | |
| # on X and y isn't equivalent to just calling check_X_y() | |
| # :( | |
| check_X_params, check_y_params = validate_separately | |
| if "estimator" not in check_X_params: | |
| check_X_params = {**default_check_params, **check_X_params} | |
| X = check_array(X, input_name="X", **check_X_params) | |
| if "estimator" not in check_y_params: | |
| check_y_params = {**default_check_params, **check_y_params} | |
| y = check_array(y, input_name="y", **check_y_params) | |
| else: | |
| X, y = check_X_y(X, y, **check_params) | |
| out = X, y | |
| if not no_val_X and check_params.get("ensure_2d", True): | |
| self._check_n_features(X, reset=reset) | |
| return out | |
| def _validate_params(self): | |
| """Validate types and values of constructor parameters | |
| The expected type and values must be defined in the `_parameter_constraints` | |
| class attribute, which is a dictionary `param_name: list of constraints`. See | |
| the docstring of `validate_parameter_constraints` for a description of the | |
| accepted constraints. | |
| """ | |
| validate_parameter_constraints( | |
| self._parameter_constraints, | |
| self.get_params(deep=False), | |
| caller_name=self.__class__.__name__, | |
| ) | |
| def _repr_html_(self): | |
| """HTML representation of estimator. | |
| This is redundant with the logic of `_repr_mimebundle_`. The latter | |
| should be favorted in the long term, `_repr_html_` is only | |
| implemented for consumers who do not interpret `_repr_mimbundle_`. | |
| """ | |
| if get_config()["display"] != "diagram": | |
| raise AttributeError( | |
| "_repr_html_ is only defined when the " | |
| "'display' configuration option is set to " | |
| "'diagram'" | |
| ) | |
| return self._repr_html_inner | |
| def _repr_html_inner(self): | |
| """This function is returned by the @property `_repr_html_` to make | |
| `hasattr(estimator, "_repr_html_") return `True` or `False` depending | |
| on `get_config()["display"]`. | |
| """ | |
| return estimator_html_repr(self) | |
| def _repr_mimebundle_(self, **kwargs): | |
| """Mime bundle used by jupyter kernels to display estimator""" | |
| output = {"text/plain": repr(self)} | |
| if get_config()["display"] == "diagram": | |
| output["text/html"] = estimator_html_repr(self) | |
| return output | |
| class ClassifierMixin: | |
| """Mixin class for all classifiers in scikit-learn. | |
| This mixin defines the following functionality: | |
| - `_estimator_type` class attribute defaulting to `"classifier"`; | |
| - `score` method that default to :func:`~sklearn.metrics.accuracy_score`. | |
| - enforce that `fit` requires `y` to be passed through the `requires_y` tag. | |
| Read more in the :ref:`User Guide <rolling_your_own_estimator>`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, ClassifierMixin | |
| >>> # Mixin classes should always be on the left-hand side for a correct MRO | |
| >>> class MyEstimator(ClassifierMixin, BaseEstimator): | |
| ... def __init__(self, *, param=1): | |
| ... self.param = param | |
| ... def fit(self, X, y=None): | |
| ... self.is_fitted_ = True | |
| ... return self | |
| ... def predict(self, X): | |
| ... return np.full(shape=X.shape[0], fill_value=self.param) | |
| >>> estimator = MyEstimator(param=1) | |
| >>> X = np.array([[1, 2], [2, 3], [3, 4]]) | |
| >>> y = np.array([1, 0, 1]) | |
| >>> estimator.fit(X, y).predict(X) | |
| array([1, 1, 1]) | |
| >>> estimator.score(X, y) | |
| 0.66... | |
| """ | |
| _estimator_type = "classifier" | |
| def score(self, X, y, sample_weight=None): | |
| """ | |
| Return the mean accuracy on the given test data and labels. | |
| In multi-label classification, this is the subset accuracy | |
| which is a harsh metric since you require for each sample that | |
| each label set be correctly predicted. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Test samples. | |
| y : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| True labels for `X`. | |
| sample_weight : array-like of shape (n_samples,), default=None | |
| Sample weights. | |
| Returns | |
| ------- | |
| score : float | |
| Mean accuracy of ``self.predict(X)`` w.r.t. `y`. | |
| """ | |
| from .metrics import accuracy_score | |
| return accuracy_score(y, self.predict(X), sample_weight=sample_weight) | |
| def _more_tags(self): | |
| return {"requires_y": True} | |
| class RegressorMixin: | |
| """Mixin class for all regression estimators in scikit-learn. | |
| This mixin defines the following functionality: | |
| - `_estimator_type` class attribute defaulting to `"regressor"`; | |
| - `score` method that default to :func:`~sklearn.metrics.r2_score`. | |
| - enforce that `fit` requires `y` to be passed through the `requires_y` tag. | |
| Read more in the :ref:`User Guide <rolling_your_own_estimator>`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, RegressorMixin | |
| >>> # Mixin classes should always be on the left-hand side for a correct MRO | |
| >>> class MyEstimator(RegressorMixin, BaseEstimator): | |
| ... def __init__(self, *, param=1): | |
| ... self.param = param | |
| ... def fit(self, X, y=None): | |
| ... self.is_fitted_ = True | |
| ... return self | |
| ... def predict(self, X): | |
| ... return np.full(shape=X.shape[0], fill_value=self.param) | |
| >>> estimator = MyEstimator(param=0) | |
| >>> X = np.array([[1, 2], [2, 3], [3, 4]]) | |
| >>> y = np.array([-1, 0, 1]) | |
| >>> estimator.fit(X, y).predict(X) | |
| array([0, 0, 0]) | |
| >>> estimator.score(X, y) | |
| 0.0 | |
| """ | |
| _estimator_type = "regressor" | |
| def score(self, X, y, sample_weight=None): | |
| """Return the coefficient of determination of the prediction. | |
| The coefficient of determination :math:`R^2` is defined as | |
| :math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual | |
| sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v` | |
| is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``. | |
| The best possible score is 1.0 and it can be negative (because the | |
| model can be arbitrarily worse). A constant model that always predicts | |
| the expected value of `y`, disregarding the input features, would get | |
| a :math:`R^2` score of 0.0. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Test samples. For some estimators this may be a precomputed | |
| kernel matrix or a list of generic objects instead with shape | |
| ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted`` | |
| is the number of samples used in the fitting for the estimator. | |
| y : array-like of shape (n_samples,) or (n_samples, n_outputs) | |
| True values for `X`. | |
| sample_weight : array-like of shape (n_samples,), default=None | |
| Sample weights. | |
| Returns | |
| ------- | |
| score : float | |
| :math:`R^2` of ``self.predict(X)`` w.r.t. `y`. | |
| Notes | |
| ----- | |
| The :math:`R^2` score used when calling ``score`` on a regressor uses | |
| ``multioutput='uniform_average'`` from version 0.23 to keep consistent | |
| with default value of :func:`~sklearn.metrics.r2_score`. | |
| This influences the ``score`` method of all the multioutput | |
| regressors (except for | |
| :class:`~sklearn.multioutput.MultiOutputRegressor`). | |
| """ | |
| from .metrics import r2_score | |
| y_pred = self.predict(X) | |
| return r2_score(y, y_pred, sample_weight=sample_weight) | |
| def _more_tags(self): | |
| return {"requires_y": True} | |
| class ClusterMixin: | |
| """Mixin class for all cluster estimators in scikit-learn. | |
| - `_estimator_type` class attribute defaulting to `"clusterer"`; | |
| - `fit_predict` method returning the cluster labels associated to each sample. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, ClusterMixin | |
| >>> class MyClusterer(ClusterMixin, BaseEstimator): | |
| ... def fit(self, X, y=None): | |
| ... self.labels_ = np.ones(shape=(len(X),), dtype=np.int64) | |
| ... return self | |
| >>> X = [[1, 2], [2, 3], [3, 4]] | |
| >>> MyClusterer().fit_predict(X) | |
| array([1, 1, 1]) | |
| """ | |
| _estimator_type = "clusterer" | |
| def fit_predict(self, X, y=None, **kwargs): | |
| """ | |
| Perform clustering on `X` and returns cluster labels. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Input data. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| **kwargs : dict | |
| Arguments to be passed to ``fit``. | |
| .. versionadded:: 1.4 | |
| Returns | |
| ------- | |
| labels : ndarray of shape (n_samples,), dtype=np.int64 | |
| Cluster labels. | |
| """ | |
| # non-optimized default implementation; override when a better | |
| # method is possible for a given clustering algorithm | |
| self.fit(X, **kwargs) | |
| return self.labels_ | |
| def _more_tags(self): | |
| return {"preserves_dtype": []} | |
| class BiclusterMixin: | |
| """Mixin class for all bicluster estimators in scikit-learn. | |
| This mixin defines the following functionality: | |
| - `biclusters_` property that returns the row and column indicators; | |
| - `get_indices` method that returns the row and column indices of a bicluster; | |
| - `get_shape` method that returns the shape of a bicluster; | |
| - `get_submatrix` method that returns the submatrix corresponding to a bicluster. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, BiclusterMixin | |
| >>> class DummyBiClustering(BiclusterMixin, BaseEstimator): | |
| ... def fit(self, X, y=None): | |
| ... self.rows_ = np.ones(shape=(1, X.shape[0]), dtype=bool) | |
| ... self.columns_ = np.ones(shape=(1, X.shape[1]), dtype=bool) | |
| ... return self | |
| >>> X = np.array([[1, 1], [2, 1], [1, 0], | |
| ... [4, 7], [3, 5], [3, 6]]) | |
| >>> bicluster = DummyBiClustering().fit(X) | |
| >>> hasattr(bicluster, "biclusters_") | |
| True | |
| >>> bicluster.get_indices(0) | |
| (array([0, 1, 2, 3, 4, 5]), array([0, 1])) | |
| """ | |
| def biclusters_(self): | |
| """Convenient way to get row and column indicators together. | |
| Returns the ``rows_`` and ``columns_`` members. | |
| """ | |
| return self.rows_, self.columns_ | |
| def get_indices(self, i): | |
| """Row and column indices of the `i`'th bicluster. | |
| Only works if ``rows_`` and ``columns_`` attributes exist. | |
| Parameters | |
| ---------- | |
| i : int | |
| The index of the cluster. | |
| Returns | |
| ------- | |
| row_ind : ndarray, dtype=np.intp | |
| Indices of rows in the dataset that belong to the bicluster. | |
| col_ind : ndarray, dtype=np.intp | |
| Indices of columns in the dataset that belong to the bicluster. | |
| """ | |
| rows = self.rows_[i] | |
| columns = self.columns_[i] | |
| return np.nonzero(rows)[0], np.nonzero(columns)[0] | |
| def get_shape(self, i): | |
| """Shape of the `i`'th bicluster. | |
| Parameters | |
| ---------- | |
| i : int | |
| The index of the cluster. | |
| Returns | |
| ------- | |
| n_rows : int | |
| Number of rows in the bicluster. | |
| n_cols : int | |
| Number of columns in the bicluster. | |
| """ | |
| indices = self.get_indices(i) | |
| return tuple(len(i) for i in indices) | |
| def get_submatrix(self, i, data): | |
| """Return the submatrix corresponding to bicluster `i`. | |
| Parameters | |
| ---------- | |
| i : int | |
| The index of the cluster. | |
| data : array-like of shape (n_samples, n_features) | |
| The data. | |
| Returns | |
| ------- | |
| submatrix : ndarray of shape (n_rows, n_cols) | |
| The submatrix corresponding to bicluster `i`. | |
| Notes | |
| ----- | |
| Works with sparse matrices. Only works if ``rows_`` and | |
| ``columns_`` attributes exist. | |
| """ | |
| from .utils.validation import check_array | |
| data = check_array(data, accept_sparse="csr") | |
| row_ind, col_ind = self.get_indices(i) | |
| return data[row_ind[:, np.newaxis], col_ind] | |
| class TransformerMixin(_SetOutputMixin): | |
| """Mixin class for all transformers in scikit-learn. | |
| This mixin defines the following functionality: | |
| - a `fit_transform` method that delegates to `fit` and `transform`; | |
| - a `set_output` method to output `X` as a specific container type. | |
| If :term:`get_feature_names_out` is defined, then :class:`BaseEstimator` will | |
| automatically wrap `transform` and `fit_transform` to follow the `set_output` | |
| API. See the :ref:`developer_api_set_output` for details. | |
| :class:`OneToOneFeatureMixin` and | |
| :class:`ClassNamePrefixFeaturesOutMixin` are helpful mixins for | |
| defining :term:`get_feature_names_out`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, TransformerMixin | |
| >>> class MyTransformer(TransformerMixin, BaseEstimator): | |
| ... def __init__(self, *, param=1): | |
| ... self.param = param | |
| ... def fit(self, X, y=None): | |
| ... return self | |
| ... def transform(self, X): | |
| ... return np.full(shape=len(X), fill_value=self.param) | |
| >>> transformer = MyTransformer() | |
| >>> X = [[1, 2], [2, 3], [3, 4]] | |
| >>> transformer.fit_transform(X) | |
| array([1, 1, 1]) | |
| """ | |
| def fit_transform(self, X, y=None, **fit_params): | |
| """ | |
| Fit to data, then transform it. | |
| Fits transformer to `X` and `y` with optional parameters `fit_params` | |
| and returns a transformed version of `X`. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Input samples. | |
| y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ | |
| default=None | |
| Target values (None for unsupervised transformations). | |
| **fit_params : dict | |
| Additional fit parameters. | |
| Returns | |
| ------- | |
| X_new : ndarray array of shape (n_samples, n_features_new) | |
| Transformed array. | |
| """ | |
| # non-optimized default implementation; override when a better | |
| # method is possible for a given clustering algorithm | |
| # we do not route parameters here, since consumers don't route. But | |
| # since it's possible for a `transform` method to also consume | |
| # metadata, we check if that's the case, and we raise a warning telling | |
| # users that they should implement a custom `fit_transform` method | |
| # to forward metadata to `transform` as well. | |
| # | |
| # For that, we calculate routing and check if anything would be routed | |
| # to `transform` if we were to route them. | |
| if _routing_enabled(): | |
| transform_params = self.get_metadata_routing().consumes( | |
| method="transform", params=fit_params.keys() | |
| ) | |
| if transform_params: | |
| warnings.warn( | |
| ( | |
| f"This object ({self.__class__.__name__}) has a `transform`" | |
| " method which consumes metadata, but `fit_transform` does not" | |
| " forward metadata to `transform`. Please implement a custom" | |
| " `fit_transform` method to forward metadata to `transform` as" | |
| " well. Alternatively, you can explicitly do" | |
| " `set_transform_request`and set all values to `False` to" | |
| " disable metadata routed to `transform`, if that's an option." | |
| ), | |
| UserWarning, | |
| ) | |
| if y is None: | |
| # fit method of arity 1 (unsupervised transformation) | |
| return self.fit(X, **fit_params).transform(X) | |
| else: | |
| # fit method of arity 2 (supervised transformation) | |
| return self.fit(X, y, **fit_params).transform(X) | |
| class OneToOneFeatureMixin: | |
| """Provides `get_feature_names_out` for simple transformers. | |
| This mixin assumes there's a 1-to-1 correspondence between input features | |
| and output features, such as :class:`~sklearn.preprocessing.StandardScaler`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import OneToOneFeatureMixin | |
| >>> class MyEstimator(OneToOneFeatureMixin): | |
| ... def fit(self, X, y=None): | |
| ... self.n_features_in_ = X.shape[1] | |
| ... return self | |
| >>> X = np.array([[1, 2], [3, 4]]) | |
| >>> MyEstimator().fit(X).get_feature_names_out() | |
| array(['x0', 'x1'], dtype=object) | |
| """ | |
| def get_feature_names_out(self, input_features=None): | |
| """Get output feature names for transformation. | |
| Parameters | |
| ---------- | |
| input_features : array-like of str or None, default=None | |
| Input features. | |
| - If `input_features` is `None`, then `feature_names_in_` is | |
| used as feature names in. If `feature_names_in_` is not defined, | |
| then the following input feature names are generated: | |
| `["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
| - If `input_features` is an array-like, then `input_features` must | |
| match `feature_names_in_` if `feature_names_in_` is defined. | |
| Returns | |
| ------- | |
| feature_names_out : ndarray of str objects | |
| Same as input features. | |
| """ | |
| check_is_fitted(self, "n_features_in_") | |
| return _check_feature_names_in(self, input_features) | |
| class ClassNamePrefixFeaturesOutMixin: | |
| """Mixin class for transformers that generate their own names by prefixing. | |
| This mixin is useful when the transformer needs to generate its own feature | |
| names out, such as :class:`~sklearn.decomposition.PCA`. For example, if | |
| :class:`~sklearn.decomposition.PCA` outputs 3 features, then the generated feature | |
| names out are: `["pca0", "pca1", "pca2"]`. | |
| This mixin assumes that a `_n_features_out` attribute is defined when the | |
| transformer is fitted. `_n_features_out` is the number of output features | |
| that the transformer will return in `transform` of `fit_transform`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import ClassNamePrefixFeaturesOutMixin | |
| >>> class MyEstimator(ClassNamePrefixFeaturesOutMixin): | |
| ... def fit(self, X, y=None): | |
| ... self._n_features_out = X.shape[1] | |
| ... return self | |
| >>> X = np.array([[1, 2], [3, 4]]) | |
| >>> MyEstimator().fit(X).get_feature_names_out() | |
| array(['myestimator0', 'myestimator1'], dtype=object) | |
| """ | |
| def get_feature_names_out(self, input_features=None): | |
| """Get output feature names for transformation. | |
| The feature names out will prefixed by the lowercased class name. For | |
| example, if the transformer outputs 3 features, then the feature names | |
| out are: `["class_name0", "class_name1", "class_name2"]`. | |
| Parameters | |
| ---------- | |
| input_features : array-like of str or None, default=None | |
| Only used to validate feature names with the names seen in `fit`. | |
| Returns | |
| ------- | |
| feature_names_out : ndarray of str objects | |
| Transformed feature names. | |
| """ | |
| check_is_fitted(self, "_n_features_out") | |
| return _generate_get_feature_names_out( | |
| self, self._n_features_out, input_features=input_features | |
| ) | |
| class DensityMixin: | |
| """Mixin class for all density estimators in scikit-learn. | |
| This mixin defines the following functionality: | |
| - `_estimator_type` class attribute defaulting to `"DensityEstimator"`; | |
| - `score` method that default that do no-op. | |
| Examples | |
| -------- | |
| >>> from sklearn.base import DensityMixin | |
| >>> class MyEstimator(DensityMixin): | |
| ... def fit(self, X, y=None): | |
| ... self.is_fitted_ = True | |
| ... return self | |
| >>> estimator = MyEstimator() | |
| >>> hasattr(estimator, "score") | |
| True | |
| """ | |
| _estimator_type = "DensityEstimator" | |
| def score(self, X, y=None): | |
| """Return the score of the model on the data `X`. | |
| Parameters | |
| ---------- | |
| X : array-like of shape (n_samples, n_features) | |
| Test samples. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| Returns | |
| ------- | |
| score : float | |
| """ | |
| pass | |
| class OutlierMixin: | |
| """Mixin class for all outlier detection estimators in scikit-learn. | |
| This mixin defines the following functionality: | |
| - `_estimator_type` class attribute defaulting to `outlier_detector`; | |
| - `fit_predict` method that default to `fit` and `predict`. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.base import BaseEstimator, OutlierMixin | |
| >>> class MyEstimator(OutlierMixin): | |
| ... def fit(self, X, y=None): | |
| ... self.is_fitted_ = True | |
| ... return self | |
| ... def predict(self, X): | |
| ... return np.ones(shape=len(X)) | |
| >>> estimator = MyEstimator() | |
| >>> X = np.array([[1, 2], [2, 3], [3, 4]]) | |
| >>> estimator.fit_predict(X) | |
| array([1., 1., 1.]) | |
| """ | |
| _estimator_type = "outlier_detector" | |
| def fit_predict(self, X, y=None, **kwargs): | |
| """Perform fit on X and returns labels for X. | |
| Returns -1 for outliers and 1 for inliers. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| The input samples. | |
| y : Ignored | |
| Not used, present for API consistency by convention. | |
| **kwargs : dict | |
| Arguments to be passed to ``fit``. | |
| .. versionadded:: 1.4 | |
| Returns | |
| ------- | |
| y : ndarray of shape (n_samples,) | |
| 1 for inliers, -1 for outliers. | |
| """ | |
| # we do not route parameters here, since consumers don't route. But | |
| # since it's possible for a `predict` method to also consume | |
| # metadata, we check if that's the case, and we raise a warning telling | |
| # users that they should implement a custom `fit_predict` method | |
| # to forward metadata to `predict` as well. | |
| # | |
| # For that, we calculate routing and check if anything would be routed | |
| # to `predict` if we were to route them. | |
| if _routing_enabled(): | |
| transform_params = self.get_metadata_routing().consumes( | |
| method="predict", params=kwargs.keys() | |
| ) | |
| if transform_params: | |
| warnings.warn( | |
| ( | |
| f"This object ({self.__class__.__name__}) has a `predict` " | |
| "method which consumes metadata, but `fit_predict` does not " | |
| "forward metadata to `predict`. Please implement a custom " | |
| "`fit_predict` method to forward metadata to `predict` as well." | |
| "Alternatively, you can explicitly do `set_predict_request`" | |
| "and set all values to `False` to disable metadata routed to " | |
| "`predict`, if that's an option." | |
| ), | |
| UserWarning, | |
| ) | |
| # override for transductive outlier detectors like LocalOulierFactor | |
| return self.fit(X, **kwargs).predict(X) | |
| class MetaEstimatorMixin: | |
| """Mixin class for all meta estimators in scikit-learn. | |
| This mixin defines the following functionality: | |
| - define `_required_parameters` that specify the mandatory `estimator` parameter. | |
| Examples | |
| -------- | |
| >>> from sklearn.base import MetaEstimatorMixin | |
| >>> from sklearn.datasets import load_iris | |
| >>> from sklearn.linear_model import LogisticRegression | |
| >>> class MyEstimator(MetaEstimatorMixin): | |
| ... def __init__(self, *, estimator=None): | |
| ... self.estimator = estimator | |
| ... def fit(self, X, y=None): | |
| ... if self.estimator is None: | |
| ... self.estimator_ = LogisticRegression() | |
| ... else: | |
| ... self.estimator_ = self.estimator | |
| ... return self | |
| >>> X, y = load_iris(return_X_y=True) | |
| >>> estimator = MyEstimator().fit(X, y) | |
| >>> estimator.estimator_ | |
| LogisticRegression() | |
| """ | |
| _required_parameters = ["estimator"] | |
| class MultiOutputMixin: | |
| """Mixin to mark estimators that support multioutput.""" | |
| def _more_tags(self): | |
| return {"multioutput": True} | |
| class _UnstableArchMixin: | |
| """Mark estimators that are non-determinstic on 32bit or PowerPC""" | |
| def _more_tags(self): | |
| return { | |
| "non_deterministic": _IS_32BIT or platform.machine().startswith( | |
| ("ppc", "powerpc") | |
| ) | |
| } | |
| def is_classifier(estimator): | |
| """Return True if the given estimator is (probably) a classifier. | |
| Parameters | |
| ---------- | |
| estimator : object | |
| Estimator object to test. | |
| Returns | |
| ------- | |
| out : bool | |
| True if estimator is a classifier and False otherwise. | |
| Examples | |
| -------- | |
| >>> from sklearn.base import is_classifier | |
| >>> from sklearn.svm import SVC, SVR | |
| >>> classifier = SVC() | |
| >>> regressor = SVR() | |
| >>> is_classifier(classifier) | |
| True | |
| >>> is_classifier(regressor) | |
| False | |
| """ | |
| return getattr(estimator, "_estimator_type", None) == "classifier" | |
| def is_regressor(estimator): | |
| """Return True if the given estimator is (probably) a regressor. | |
| Parameters | |
| ---------- | |
| estimator : estimator instance | |
| Estimator object to test. | |
| Returns | |
| ------- | |
| out : bool | |
| True if estimator is a regressor and False otherwise. | |
| Examples | |
| -------- | |
| >>> from sklearn.base import is_regressor | |
| >>> from sklearn.svm import SVC, SVR | |
| >>> classifier = SVC() | |
| >>> regressor = SVR() | |
| >>> is_regressor(classifier) | |
| False | |
| >>> is_regressor(regressor) | |
| True | |
| """ | |
| return getattr(estimator, "_estimator_type", None) == "regressor" | |
| def is_outlier_detector(estimator): | |
| """Return True if the given estimator is (probably) an outlier detector. | |
| Parameters | |
| ---------- | |
| estimator : estimator instance | |
| Estimator object to test. | |
| Returns | |
| ------- | |
| out : bool | |
| True if estimator is an outlier detector and False otherwise. | |
| """ | |
| return getattr(estimator, "_estimator_type", None) == "outlier_detector" | |
| def _fit_context(*, prefer_skip_nested_validation): | |
| """Decorator to run the fit methods of estimators within context managers. | |
| Parameters | |
| ---------- | |
| prefer_skip_nested_validation : bool | |
| If True, the validation of parameters of inner estimators or functions | |
| called during fit will be skipped. | |
| This is useful to avoid validating many times the parameters passed by the | |
| user from the public facing API. It's also useful to avoid validating | |
| parameters that we pass internally to inner functions that are guaranteed to | |
| be valid by the test suite. | |
| It should be set to True for most estimators, except for those that receive | |
| non-validated objects as parameters, such as meta-estimators that are given | |
| estimator objects. | |
| Returns | |
| ------- | |
| decorated_fit : method | |
| The decorated fit method. | |
| """ | |
| def decorator(fit_method): | |
| def wrapper(estimator, *args, **kwargs): | |
| global_skip_validation = get_config()["skip_parameter_validation"] | |
| # we don't want to validate again for each call to partial_fit | |
| partial_fit_and_fitted = ( | |
| fit_method.__name__ == "partial_fit" and _is_fitted(estimator) | |
| ) | |
| if not global_skip_validation and not partial_fit_and_fitted: | |
| estimator._validate_params() | |
| with config_context( | |
| skip_parameter_validation=( | |
| prefer_skip_nested_validation or global_skip_validation | |
| ) | |
| ): | |
| return fit_method(estimator, *args, **kwargs) | |
| return wrapper | |
| return decorator | |