peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/sem
/evaluate.py
| # Natural Language Toolkit: Models for first-order languages with lambda | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Ewan Klein <[email protected]>, | |
| # URL: <https://www.nltk.org> | |
| # For license information, see LICENSE.TXT | |
| # TODO: | |
| # - fix tracing | |
| # - fix iterator-based approach to existentials | |
| """ | |
| This module provides data structures for representing first-order | |
| models. | |
| """ | |
| import inspect | |
| import re | |
| import sys | |
| import textwrap | |
| from pprint import pformat | |
| from nltk.decorators import decorator # this used in code that is commented out | |
| from nltk.sem.logic import ( | |
| AbstractVariableExpression, | |
| AllExpression, | |
| AndExpression, | |
| ApplicationExpression, | |
| EqualityExpression, | |
| ExistsExpression, | |
| Expression, | |
| IffExpression, | |
| ImpExpression, | |
| IndividualVariableExpression, | |
| IotaExpression, | |
| LambdaExpression, | |
| NegatedExpression, | |
| OrExpression, | |
| Variable, | |
| is_indvar, | |
| ) | |
| class Error(Exception): | |
| pass | |
| class Undefined(Error): | |
| pass | |
| def trace(f, *args, **kw): | |
| argspec = inspect.getfullargspec(f) | |
| d = dict(zip(argspec[0], args)) | |
| if d.pop("trace", None): | |
| print() | |
| for item in d.items(): | |
| print("%s => %s" % item) | |
| return f(*args, **kw) | |
| def is_rel(s): | |
| """ | |
| Check whether a set represents a relation (of any arity). | |
| :param s: a set containing tuples of str elements | |
| :type s: set | |
| :rtype: bool | |
| """ | |
| # we have the empty relation, i.e. set() | |
| if len(s) == 0: | |
| return True | |
| # all the elements are tuples of the same length | |
| elif all(isinstance(el, tuple) for el in s) and len(max(s)) == len(min(s)): | |
| return True | |
| else: | |
| raise ValueError("Set %r contains sequences of different lengths" % s) | |
| def set2rel(s): | |
| """ | |
| Convert a set containing individuals (strings or numbers) into a set of | |
| unary tuples. Any tuples of strings already in the set are passed through | |
| unchanged. | |
| For example: | |
| - set(['a', 'b']) => set([('a',), ('b',)]) | |
| - set([3, 27]) => set([('3',), ('27',)]) | |
| :type s: set | |
| :rtype: set of tuple of str | |
| """ | |
| new = set() | |
| for elem in s: | |
| if isinstance(elem, str): | |
| new.add((elem,)) | |
| elif isinstance(elem, int): | |
| new.add(str(elem)) | |
| else: | |
| new.add(elem) | |
| return new | |
| def arity(rel): | |
| """ | |
| Check the arity of a relation. | |
| :type rel: set of tuples | |
| :rtype: int of tuple of str | |
| """ | |
| if len(rel) == 0: | |
| return 0 | |
| return len(list(rel)[0]) | |
| class Valuation(dict): | |
| """ | |
| A dictionary which represents a model-theoretic Valuation of non-logical constants. | |
| Keys are strings representing the constants to be interpreted, and values correspond | |
| to individuals (represented as strings) and n-ary relations (represented as sets of tuples | |
| of strings). | |
| An instance of ``Valuation`` will raise a KeyError exception (i.e., | |
| just behave like a standard dictionary) if indexed with an expression that | |
| is not in its list of symbols. | |
| """ | |
| def __init__(self, xs): | |
| """ | |
| :param xs: a list of (symbol, value) pairs. | |
| """ | |
| super().__init__() | |
| for (sym, val) in xs: | |
| if isinstance(val, str) or isinstance(val, bool): | |
| self[sym] = val | |
| elif isinstance(val, set): | |
| self[sym] = set2rel(val) | |
| else: | |
| msg = textwrap.fill( | |
| "Error in initializing Valuation. " | |
| "Unrecognized value for symbol '%s':\n%s" % (sym, val), | |
| width=66, | |
| ) | |
| raise ValueError(msg) | |
| def __getitem__(self, key): | |
| if key in self: | |
| return dict.__getitem__(self, key) | |
| else: | |
| raise Undefined("Unknown expression: '%s'" % key) | |
| def __str__(self): | |
| return pformat(self) | |
| def domain(self): | |
| """Set-theoretic domain of the value-space of a Valuation.""" | |
| dom = [] | |
| for val in self.values(): | |
| if isinstance(val, str): | |
| dom.append(val) | |
| elif not isinstance(val, bool): | |
| dom.extend( | |
| [elem for tuple_ in val for elem in tuple_ if elem is not None] | |
| ) | |
| return set(dom) | |
| def symbols(self): | |
| """The non-logical constants which the Valuation recognizes.""" | |
| return sorted(self.keys()) | |
| def fromstring(cls, s): | |
| return read_valuation(s) | |
| ########################################## | |
| # REs used by the _read_valuation function | |
| ########################################## | |
| _VAL_SPLIT_RE = re.compile(r"\s*=+>\s*") | |
| _ELEMENT_SPLIT_RE = re.compile(r"\s*,\s*") | |
| _TUPLES_RE = re.compile( | |
| r"""\s* | |
| (\([^)]+\)) # tuple-expression | |
| \s*""", | |
| re.VERBOSE, | |
| ) | |
| def _read_valuation_line(s): | |
| """ | |
| Read a line in a valuation file. | |
| Lines are expected to be of the form:: | |
| noosa => n | |
| girl => {g1, g2} | |
| chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)} | |
| :param s: input line | |
| :type s: str | |
| :return: a pair (symbol, value) | |
| :rtype: tuple | |
| """ | |
| pieces = _VAL_SPLIT_RE.split(s) | |
| symbol = pieces[0] | |
| value = pieces[1] | |
| # check whether the value is meant to be a set | |
| if value.startswith("{"): | |
| value = value[1:-1] | |
| tuple_strings = _TUPLES_RE.findall(value) | |
| # are the set elements tuples? | |
| if tuple_strings: | |
| set_elements = [] | |
| for ts in tuple_strings: | |
| ts = ts[1:-1] | |
| element = tuple(_ELEMENT_SPLIT_RE.split(ts)) | |
| set_elements.append(element) | |
| else: | |
| set_elements = _ELEMENT_SPLIT_RE.split(value) | |
| value = set(set_elements) | |
| return symbol, value | |
| def read_valuation(s, encoding=None): | |
| """ | |
| Convert a valuation string into a valuation. | |
| :param s: a valuation string | |
| :type s: str | |
| :param encoding: the encoding of the input string, if it is binary | |
| :type encoding: str | |
| :return: a ``nltk.sem`` valuation | |
| :rtype: Valuation | |
| """ | |
| if encoding is not None: | |
| s = s.decode(encoding) | |
| statements = [] | |
| for linenum, line in enumerate(s.splitlines()): | |
| line = line.strip() | |
| if line.startswith("#") or line == "": | |
| continue | |
| try: | |
| statements.append(_read_valuation_line(line)) | |
| except ValueError as e: | |
| raise ValueError(f"Unable to parse line {linenum}: {line}") from e | |
| return Valuation(statements) | |
| class Assignment(dict): | |
| r""" | |
| A dictionary which represents an assignment of values to variables. | |
| An assignment can only assign values from its domain. | |
| If an unknown expression *a* is passed to a model *M*\ 's | |
| interpretation function *i*, *i* will first check whether *M*\ 's | |
| valuation assigns an interpretation to *a* as a constant, and if | |
| this fails, *i* will delegate the interpretation of *a* to | |
| *g*. *g* only assigns values to individual variables (i.e., | |
| members of the class ``IndividualVariableExpression`` in the ``logic`` | |
| module. If a variable is not assigned a value by *g*, it will raise | |
| an ``Undefined`` exception. | |
| A variable *Assignment* is a mapping from individual variables to | |
| entities in the domain. Individual variables are usually indicated | |
| with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally | |
| followed by an integer (e.g., ``'x0'``, ``'y332'``). Assignments are | |
| created using the ``Assignment`` constructor, which also takes the | |
| domain as a parameter. | |
| >>> from nltk.sem.evaluate import Assignment | |
| >>> dom = set(['u1', 'u2', 'u3', 'u4']) | |
| >>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')]) | |
| >>> g3 == {'x': 'u1', 'y': 'u2'} | |
| True | |
| There is also a ``print`` format for assignments which uses a notation | |
| closer to that in logic textbooks: | |
| >>> print(g3) | |
| g[u1/x][u2/y] | |
| It is also possible to update an assignment using the ``add`` method: | |
| >>> dom = set(['u1', 'u2', 'u3', 'u4']) | |
| >>> g4 = Assignment(dom) | |
| >>> g4.add('x', 'u1') | |
| {'x': 'u1'} | |
| With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary: | |
| >>> g4.purge() | |
| >>> g4 | |
| {} | |
| :param domain: the domain of discourse | |
| :type domain: set | |
| :param assign: a list of (varname, value) associations | |
| :type assign: list | |
| """ | |
| def __init__(self, domain, assign=None): | |
| super().__init__() | |
| self.domain = domain | |
| if assign: | |
| for (var, val) in assign: | |
| assert val in self.domain, "'{}' is not in the domain: {}".format( | |
| val, | |
| self.domain, | |
| ) | |
| assert is_indvar(var), ( | |
| "Wrong format for an Individual Variable: '%s'" % var | |
| ) | |
| self[var] = val | |
| self.variant = None | |
| self._addvariant() | |
| def __getitem__(self, key): | |
| if key in self: | |
| return dict.__getitem__(self, key) | |
| else: | |
| raise Undefined("Not recognized as a variable: '%s'" % key) | |
| def copy(self): | |
| new = Assignment(self.domain) | |
| new.update(self) | |
| return new | |
| def purge(self, var=None): | |
| """ | |
| Remove one or all keys (i.e. logic variables) from an | |
| assignment, and update ``self.variant``. | |
| :param var: a Variable acting as a key for the assignment. | |
| """ | |
| if var: | |
| del self[var] | |
| else: | |
| self.clear() | |
| self._addvariant() | |
| return None | |
| def __str__(self): | |
| """ | |
| Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]' | |
| """ | |
| gstring = "g" | |
| # Deterministic output for unit testing. | |
| variant = sorted(self.variant) | |
| for (val, var) in variant: | |
| gstring += f"[{val}/{var}]" | |
| return gstring | |
| def _addvariant(self): | |
| """ | |
| Create a more pretty-printable version of the assignment. | |
| """ | |
| list_ = [] | |
| for item in self.items(): | |
| pair = (item[1], item[0]) | |
| list_.append(pair) | |
| self.variant = list_ | |
| return None | |
| def add(self, var, val): | |
| """ | |
| Add a new variable-value pair to the assignment, and update | |
| ``self.variant``. | |
| """ | |
| assert val in self.domain, f"{val} is not in the domain {self.domain}" | |
| assert is_indvar(var), "Wrong format for an Individual Variable: '%s'" % var | |
| self[var] = val | |
| self._addvariant() | |
| return self | |
| class Model: | |
| """ | |
| A first order model is a domain *D* of discourse and a valuation *V*. | |
| A domain *D* is a set, and a valuation *V* is a map that associates | |
| expressions with values in the model. | |
| The domain of *V* should be a subset of *D*. | |
| Construct a new ``Model``. | |
| :type domain: set | |
| :param domain: A set of entities representing the domain of discourse of the model. | |
| :type valuation: Valuation | |
| :param valuation: the valuation of the model. | |
| :param prop: If this is set, then we are building a propositional\ | |
| model and don't require the domain of *V* to be subset of *D*. | |
| """ | |
| def __init__(self, domain, valuation): | |
| assert isinstance(domain, set) | |
| self.domain = domain | |
| self.valuation = valuation | |
| if not domain.issuperset(valuation.domain): | |
| raise Error( | |
| "The valuation domain, %s, must be a subset of the model's domain, %s" | |
| % (valuation.domain, domain) | |
| ) | |
| def __repr__(self): | |
| return f"({self.domain!r}, {self.valuation!r})" | |
| def __str__(self): | |
| return f"Domain = {self.domain},\nValuation = \n{self.valuation}" | |
| def evaluate(self, expr, g, trace=None): | |
| """ | |
| Read input expressions, and provide a handler for ``satisfy`` | |
| that blocks further propagation of the ``Undefined`` error. | |
| :param expr: An ``Expression`` of ``logic``. | |
| :type g: Assignment | |
| :param g: an assignment to individual variables. | |
| :rtype: bool or 'Undefined' | |
| """ | |
| try: | |
| parsed = Expression.fromstring(expr) | |
| value = self.satisfy(parsed, g, trace=trace) | |
| if trace: | |
| print() | |
| print(f"'{expr}' evaluates to {value} under M, {g}") | |
| return value | |
| except Undefined: | |
| if trace: | |
| print() | |
| print(f"'{expr}' is undefined under M, {g}") | |
| return "Undefined" | |
| def satisfy(self, parsed, g, trace=None): | |
| """ | |
| Recursive interpretation function for a formula of first-order logic. | |
| Raises an ``Undefined`` error when ``parsed`` is an atomic string | |
| but is not a symbol or an individual variable. | |
| :return: Returns a truth value or ``Undefined`` if ``parsed`` is\ | |
| complex, and calls the interpretation function ``i`` if ``parsed``\ | |
| is atomic. | |
| :param parsed: An expression of ``logic``. | |
| :type g: Assignment | |
| :param g: an assignment to individual variables. | |
| """ | |
| if isinstance(parsed, ApplicationExpression): | |
| function, arguments = parsed.uncurry() | |
| if isinstance(function, AbstractVariableExpression): | |
| # It's a predicate expression ("P(x,y)"), so used uncurried arguments | |
| funval = self.satisfy(function, g) | |
| argvals = tuple(self.satisfy(arg, g) for arg in arguments) | |
| return argvals in funval | |
| else: | |
| # It must be a lambda expression, so use curried form | |
| funval = self.satisfy(parsed.function, g) | |
| argval = self.satisfy(parsed.argument, g) | |
| return funval[argval] | |
| elif isinstance(parsed, NegatedExpression): | |
| return not self.satisfy(parsed.term, g) | |
| elif isinstance(parsed, AndExpression): | |
| return self.satisfy(parsed.first, g) and self.satisfy(parsed.second, g) | |
| elif isinstance(parsed, OrExpression): | |
| return self.satisfy(parsed.first, g) or self.satisfy(parsed.second, g) | |
| elif isinstance(parsed, ImpExpression): | |
| return (not self.satisfy(parsed.first, g)) or self.satisfy(parsed.second, g) | |
| elif isinstance(parsed, IffExpression): | |
| return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g) | |
| elif isinstance(parsed, EqualityExpression): | |
| return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g) | |
| elif isinstance(parsed, AllExpression): | |
| new_g = g.copy() | |
| for u in self.domain: | |
| new_g.add(parsed.variable.name, u) | |
| if not self.satisfy(parsed.term, new_g): | |
| return False | |
| return True | |
| elif isinstance(parsed, ExistsExpression): | |
| new_g = g.copy() | |
| for u in self.domain: | |
| new_g.add(parsed.variable.name, u) | |
| if self.satisfy(parsed.term, new_g): | |
| return True | |
| return False | |
| elif isinstance(parsed, IotaExpression): | |
| new_g = g.copy() | |
| for u in self.domain: | |
| new_g.add(parsed.variable.name, u) | |
| if self.satisfy(parsed.term, new_g): | |
| return True | |
| return False | |
| elif isinstance(parsed, LambdaExpression): | |
| cf = {} | |
| var = parsed.variable.name | |
| for u in self.domain: | |
| val = self.satisfy(parsed.term, g.add(var, u)) | |
| # NB the dict would be a lot smaller if we do this: | |
| # if val: cf[u] = val | |
| # But then need to deal with cases where f(a) should yield | |
| # a function rather than just False. | |
| cf[u] = val | |
| return cf | |
| else: | |
| return self.i(parsed, g, trace) | |
| # @decorator(trace_eval) | |
| def i(self, parsed, g, trace=False): | |
| """ | |
| An interpretation function. | |
| Assuming that ``parsed`` is atomic: | |
| - if ``parsed`` is a non-logical constant, calls the valuation *V* | |
| - else if ``parsed`` is an individual variable, calls assignment *g* | |
| - else returns ``Undefined``. | |
| :param parsed: an ``Expression`` of ``logic``. | |
| :type g: Assignment | |
| :param g: an assignment to individual variables. | |
| :return: a semantic value | |
| """ | |
| # If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols | |
| # and also be an IndividualVariableExpression. We want to catch this first case. | |
| # So there is a procedural consequence to the ordering of clauses here: | |
| if parsed.variable.name in self.valuation.symbols: | |
| return self.valuation[parsed.variable.name] | |
| elif isinstance(parsed, IndividualVariableExpression): | |
| return g[parsed.variable.name] | |
| else: | |
| raise Undefined("Can't find a value for %s" % parsed) | |
| def satisfiers(self, parsed, varex, g, trace=None, nesting=0): | |
| """ | |
| Generate the entities from the model's domain that satisfy an open formula. | |
| :param parsed: an open formula | |
| :type parsed: Expression | |
| :param varex: the relevant free individual variable in ``parsed``. | |
| :type varex: VariableExpression or str | |
| :param g: a variable assignment | |
| :type g: Assignment | |
| :return: a set of the entities that satisfy ``parsed``. | |
| """ | |
| spacer = " " | |
| indent = spacer + (spacer * nesting) | |
| candidates = [] | |
| if isinstance(varex, str): | |
| var = Variable(varex) | |
| else: | |
| var = varex | |
| if var in parsed.free(): | |
| if trace: | |
| print() | |
| print( | |
| (spacer * nesting) | |
| + f"Open formula is '{parsed}' with assignment {g}" | |
| ) | |
| for u in self.domain: | |
| new_g = g.copy() | |
| new_g.add(var.name, u) | |
| if trace and trace > 1: | |
| lowtrace = trace - 1 | |
| else: | |
| lowtrace = 0 | |
| value = self.satisfy(parsed, new_g, lowtrace) | |
| if trace: | |
| print(indent + "(trying assignment %s)" % new_g) | |
| # parsed == False under g[u/var]? | |
| if value == False: | |
| if trace: | |
| print(indent + f"value of '{parsed}' under {new_g} is False") | |
| # so g[u/var] is a satisfying assignment | |
| else: | |
| candidates.append(u) | |
| if trace: | |
| print(indent + f"value of '{parsed}' under {new_g} is {value}") | |
| result = {c for c in candidates} | |
| # var isn't free in parsed | |
| else: | |
| raise Undefined(f"{var.name} is not free in {parsed}") | |
| return result | |
| # ////////////////////////////////////////////////////////////////////// | |
| # Demo.. | |
| # ////////////////////////////////////////////////////////////////////// | |
| # number of spacer chars | |
| mult = 30 | |
| # Demo 1: Propositional Logic | |
| ################# | |
| def propdemo(trace=None): | |
| """Example of a propositional model.""" | |
| global val1, dom1, m1, g1 | |
| val1 = Valuation([("P", True), ("Q", True), ("R", False)]) | |
| dom1 = set() | |
| m1 = Model(dom1, val1) | |
| g1 = Assignment(dom1) | |
| print() | |
| print("*" * mult) | |
| print("Propositional Formulas Demo") | |
| print("*" * mult) | |
| print("(Propositional constants treated as nullary predicates)") | |
| print() | |
| print("Model m1:\n", m1) | |
| print("*" * mult) | |
| sentences = [ | |
| "(P & Q)", | |
| "(P & R)", | |
| "- P", | |
| "- R", | |
| "- - P", | |
| "- (P & R)", | |
| "(P | R)", | |
| "(R | P)", | |
| "(R | R)", | |
| "(- P | R)", | |
| "(P | - P)", | |
| "(P -> Q)", | |
| "(P -> R)", | |
| "(R -> P)", | |
| "(P <-> P)", | |
| "(R <-> R)", | |
| "(P <-> R)", | |
| ] | |
| for sent in sentences: | |
| if trace: | |
| print() | |
| m1.evaluate(sent, g1, trace) | |
| else: | |
| print(f"The value of '{sent}' is: {m1.evaluate(sent, g1)}") | |
| # Demo 2: FOL Model | |
| ############# | |
| def folmodel(quiet=False, trace=None): | |
| """Example of a first-order model.""" | |
| global val2, v2, dom2, m2, g2 | |
| v2 = [ | |
| ("adam", "b1"), | |
| ("betty", "g1"), | |
| ("fido", "d1"), | |
| ("girl", {"g1", "g2"}), | |
| ("boy", {"b1", "b2"}), | |
| ("dog", {"d1"}), | |
| ("love", {("b1", "g1"), ("b2", "g2"), ("g1", "b1"), ("g2", "b1")}), | |
| ] | |
| val2 = Valuation(v2) | |
| dom2 = val2.domain | |
| m2 = Model(dom2, val2) | |
| g2 = Assignment(dom2, [("x", "b1"), ("y", "g2")]) | |
| if not quiet: | |
| print() | |
| print("*" * mult) | |
| print("Models Demo") | |
| print("*" * mult) | |
| print("Model m2:\n", "-" * 14, "\n", m2) | |
| print("Variable assignment = ", g2) | |
| exprs = ["adam", "boy", "love", "walks", "x", "y", "z"] | |
| parsed_exprs = [Expression.fromstring(e) for e in exprs] | |
| print() | |
| for parsed in parsed_exprs: | |
| try: | |
| print( | |
| "The interpretation of '%s' in m2 is %s" | |
| % (parsed, m2.i(parsed, g2)) | |
| ) | |
| except Undefined: | |
| print("The interpretation of '%s' in m2 is Undefined" % parsed) | |
| applications = [ | |
| ("boy", ("adam")), | |
| ("walks", ("adam",)), | |
| ("love", ("adam", "y")), | |
| ("love", ("y", "adam")), | |
| ] | |
| for (fun, args) in applications: | |
| try: | |
| funval = m2.i(Expression.fromstring(fun), g2) | |
| argsval = tuple(m2.i(Expression.fromstring(arg), g2) for arg in args) | |
| print(f"{fun}({args}) evaluates to {argsval in funval}") | |
| except Undefined: | |
| print(f"{fun}({args}) evaluates to Undefined") | |
| # Demo 3: FOL | |
| ######### | |
| def foldemo(trace=None): | |
| """ | |
| Interpretation of closed expressions in a first-order model. | |
| """ | |
| folmodel(quiet=True) | |
| print() | |
| print("*" * mult) | |
| print("FOL Formulas Demo") | |
| print("*" * mult) | |
| formulas = [ | |
| "love (adam, betty)", | |
| "(adam = mia)", | |
| "\\x. (boy(x) | girl(x))", | |
| "\\x. boy(x)(adam)", | |
| "\\x y. love(x, y)", | |
| "\\x y. love(x, y)(adam)(betty)", | |
| "\\x y. love(x, y)(adam, betty)", | |
| "\\x y. (boy(x) & love(x, y))", | |
| "\\x. exists y. (boy(x) & love(x, y))", | |
| "exists z1. boy(z1)", | |
| "exists x. (boy(x) & -(x = adam))", | |
| "exists x. (boy(x) & all y. love(y, x))", | |
| "all x. (boy(x) | girl(x))", | |
| "all x. (girl(x) -> exists y. boy(y) & love(x, y))", # Every girl loves exists boy. | |
| "exists x. (boy(x) & all y. (girl(y) -> love(y, x)))", # There is exists boy that every girl loves. | |
| "exists x. (boy(x) & all y. (girl(y) -> love(x, y)))", # exists boy loves every girl. | |
| "all x. (dog(x) -> - girl(x))", | |
| "exists x. exists y. (love(x, y) & love(x, y))", | |
| ] | |
| for fmla in formulas: | |
| g2.purge() | |
| if trace: | |
| m2.evaluate(fmla, g2, trace) | |
| else: | |
| print(f"The value of '{fmla}' is: {m2.evaluate(fmla, g2)}") | |
| # Demo 3: Satisfaction | |
| ############# | |
| def satdemo(trace=None): | |
| """Satisfiers of an open formula in a first order model.""" | |
| print() | |
| print("*" * mult) | |
| print("Satisfiers Demo") | |
| print("*" * mult) | |
| folmodel(quiet=True) | |
| formulas = [ | |
| "boy(x)", | |
| "(x = x)", | |
| "(boy(x) | girl(x))", | |
| "(boy(x) & girl(x))", | |
| "love(adam, x)", | |
| "love(x, adam)", | |
| "-(x = adam)", | |
| "exists z22. love(x, z22)", | |
| "exists y. love(y, x)", | |
| "all y. (girl(y) -> love(x, y))", | |
| "all y. (girl(y) -> love(y, x))", | |
| "all y. (girl(y) -> (boy(x) & love(y, x)))", | |
| "(boy(x) & all y. (girl(y) -> love(x, y)))", | |
| "(boy(x) & all y. (girl(y) -> love(y, x)))", | |
| "(boy(x) & exists y. (girl(y) & love(y, x)))", | |
| "(girl(x) -> dog(x))", | |
| "all y. (dog(y) -> (x = y))", | |
| "exists y. love(y, x)", | |
| "exists y. (love(adam, y) & love(y, x))", | |
| ] | |
| if trace: | |
| print(m2) | |
| for fmla in formulas: | |
| print(fmla) | |
| Expression.fromstring(fmla) | |
| parsed = [Expression.fromstring(fmla) for fmla in formulas] | |
| for p in parsed: | |
| g2.purge() | |
| print( | |
| "The satisfiers of '{}' are: {}".format(p, m2.satisfiers(p, "x", g2, trace)) | |
| ) | |
| def demo(num=0, trace=None): | |
| """ | |
| Run exists demos. | |
| - num = 1: propositional logic demo | |
| - num = 2: first order model demo (only if trace is set) | |
| - num = 3: first order sentences demo | |
| - num = 4: satisfaction of open formulas demo | |
| - any other value: run all the demos | |
| :param trace: trace = 1, or trace = 2 for more verbose tracing | |
| """ | |
| demos = {1: propdemo, 2: folmodel, 3: foldemo, 4: satdemo} | |
| try: | |
| demos[num](trace=trace) | |
| except KeyError: | |
| for num in demos: | |
| demos[num](trace=trace) | |
| if __name__ == "__main__": | |
| demo(2, trace=0) | |