peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/impute
/_base.py
# Authors: Nicolas Tresegnie <[email protected]> | |
# Sergey Feldman <[email protected]> | |
# License: BSD 3 clause | |
import numbers | |
import warnings | |
from collections import Counter | |
from functools import partial | |
import numpy as np | |
import numpy.ma as ma | |
from scipy import sparse as sp | |
from ..base import BaseEstimator, TransformerMixin, _fit_context | |
from ..utils import _is_pandas_na, is_scalar_nan | |
from ..utils._mask import _get_mask | |
from ..utils._param_validation import MissingValues, StrOptions | |
from ..utils.fixes import _mode | |
from ..utils.sparsefuncs import _get_median | |
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted | |
def _check_inputs_dtype(X, missing_values): | |
if _is_pandas_na(missing_values): | |
# Allow using `pd.NA` as missing values to impute numerical arrays. | |
return | |
if X.dtype.kind in ("f", "i", "u") and not isinstance(missing_values, numbers.Real): | |
raise ValueError( | |
"'X' and 'missing_values' types are expected to be" | |
" both numerical. Got X.dtype={} and " | |
" type(missing_values)={}.".format(X.dtype, type(missing_values)) | |
) | |
def _most_frequent(array, extra_value, n_repeat): | |
"""Compute the most frequent value in a 1d array extended with | |
[extra_value] * n_repeat, where extra_value is assumed to be not part | |
of the array.""" | |
# Compute the most frequent value in array only | |
if array.size > 0: | |
if array.dtype == object: | |
# scipy.stats.mode is slow with object dtype array. | |
# Python Counter is more efficient | |
counter = Counter(array) | |
most_frequent_count = counter.most_common(1)[0][1] | |
# tie breaking similarly to scipy.stats.mode | |
most_frequent_value = min( | |
value | |
for value, count in counter.items() | |
if count == most_frequent_count | |
) | |
else: | |
mode = _mode(array) | |
most_frequent_value = mode[0][0] | |
most_frequent_count = mode[1][0] | |
else: | |
most_frequent_value = 0 | |
most_frequent_count = 0 | |
# Compare to array + [extra_value] * n_repeat | |
if most_frequent_count == 0 and n_repeat == 0: | |
return np.nan | |
elif most_frequent_count < n_repeat: | |
return extra_value | |
elif most_frequent_count > n_repeat: | |
return most_frequent_value | |
elif most_frequent_count == n_repeat: | |
# tie breaking similarly to scipy.stats.mode | |
return min(most_frequent_value, extra_value) | |
class _BaseImputer(TransformerMixin, BaseEstimator): | |
"""Base class for all imputers. | |
It adds automatically support for `add_indicator`. | |
""" | |
_parameter_constraints: dict = { | |
"missing_values": [MissingValues()], | |
"add_indicator": ["boolean"], | |
"keep_empty_features": ["boolean"], | |
} | |
def __init__( | |
self, *, missing_values=np.nan, add_indicator=False, keep_empty_features=False | |
): | |
self.missing_values = missing_values | |
self.add_indicator = add_indicator | |
self.keep_empty_features = keep_empty_features | |
def _fit_indicator(self, X): | |
"""Fit a MissingIndicator.""" | |
if self.add_indicator: | |
self.indicator_ = MissingIndicator( | |
missing_values=self.missing_values, error_on_new=False | |
) | |
self.indicator_._fit(X, precomputed=True) | |
else: | |
self.indicator_ = None | |
def _transform_indicator(self, X): | |
"""Compute the indicator mask.' | |
Note that X must be the original data as passed to the imputer before | |
any imputation, since imputation may be done inplace in some cases. | |
""" | |
if self.add_indicator: | |
if not hasattr(self, "indicator_"): | |
raise ValueError( | |
"Make sure to call _fit_indicator before _transform_indicator" | |
) | |
return self.indicator_.transform(X) | |
def _concatenate_indicator(self, X_imputed, X_indicator): | |
"""Concatenate indicator mask with the imputed data.""" | |
if not self.add_indicator: | |
return X_imputed | |
if sp.issparse(X_imputed): | |
# sp.hstack may result in different formats between sparse arrays and | |
# matrices; specify the format to keep consistent behavior | |
hstack = partial(sp.hstack, format=X_imputed.format) | |
else: | |
hstack = np.hstack | |
if X_indicator is None: | |
raise ValueError( | |
"Data from the missing indicator are not provided. Call " | |
"_fit_indicator and _transform_indicator in the imputer " | |
"implementation." | |
) | |
return hstack((X_imputed, X_indicator)) | |
def _concatenate_indicator_feature_names_out(self, names, input_features): | |
if not self.add_indicator: | |
return names | |
indicator_names = self.indicator_.get_feature_names_out(input_features) | |
return np.concatenate([names, indicator_names]) | |
def _more_tags(self): | |
return {"allow_nan": is_scalar_nan(self.missing_values)} | |
class SimpleImputer(_BaseImputer): | |
"""Univariate imputer for completing missing values with simple strategies. | |
Replace missing values using a descriptive statistic (e.g. mean, median, or | |
most frequent) along each column, or using a constant value. | |
Read more in the :ref:`User Guide <impute>`. | |
.. versionadded:: 0.20 | |
`SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer` | |
estimator which is now removed. | |
Parameters | |
---------- | |
missing_values : int, float, str, np.nan, None or pandas.NA, default=np.nan | |
The placeholder for the missing values. All occurrences of | |
`missing_values` will be imputed. For pandas' dataframes with | |
nullable integer dtypes with missing values, `missing_values` | |
can be set to either `np.nan` or `pd.NA`. | |
strategy : str, default='mean' | |
The imputation strategy. | |
- If "mean", then replace missing values using the mean along | |
each column. Can only be used with numeric data. | |
- If "median", then replace missing values using the median along | |
each column. Can only be used with numeric data. | |
- If "most_frequent", then replace missing using the most frequent | |
value along each column. Can be used with strings or numeric data. | |
If there is more than one such value, only the smallest is returned. | |
- If "constant", then replace missing values with fill_value. Can be | |
used with strings or numeric data. | |
.. versionadded:: 0.20 | |
strategy="constant" for fixed value imputation. | |
fill_value : str or numerical value, default=None | |
When strategy == "constant", `fill_value` is used to replace all | |
occurrences of missing_values. For string or object data types, | |
`fill_value` must be a string. | |
If `None`, `fill_value` will be 0 when imputing numerical | |
data and "missing_value" for strings or object data types. | |
copy : bool, default=True | |
If True, a copy of X will be created. If False, imputation will | |
be done in-place whenever possible. Note that, in the following cases, | |
a new copy will always be made, even if `copy=False`: | |
- If `X` is not an array of floating values; | |
- If `X` is encoded as a CSR matrix; | |
- If `add_indicator=True`. | |
add_indicator : bool, default=False | |
If True, a :class:`MissingIndicator` transform will stack onto output | |
of the imputer's transform. This allows a predictive estimator | |
to account for missingness despite imputation. If a feature has no | |
missing values at fit/train time, the feature won't appear on | |
the missing indicator even if there are missing values at | |
transform/test time. | |
keep_empty_features : bool, default=False | |
If True, features that consist exclusively of missing values when | |
`fit` is called are returned in results when `transform` is called. | |
The imputed value is always `0` except when `strategy="constant"` | |
in which case `fill_value` will be used instead. | |
.. versionadded:: 1.2 | |
Attributes | |
---------- | |
statistics_ : array of shape (n_features,) | |
The imputation fill value for each feature. | |
Computing statistics can result in `np.nan` values. | |
During :meth:`transform`, features corresponding to `np.nan` | |
statistics will be discarded. | |
indicator_ : :class:`~sklearn.impute.MissingIndicator` | |
Indicator used to add binary indicators for missing values. | |
`None` if `add_indicator=False`. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
IterativeImputer : Multivariate imputer that estimates values to impute for | |
each feature with missing values from all the others. | |
KNNImputer : Multivariate imputer that estimates missing features using | |
nearest samples. | |
Notes | |
----- | |
Columns which only contained missing values at :meth:`fit` are discarded | |
upon :meth:`transform` if strategy is not `"constant"`. | |
In a prediction context, simple imputation usually performs poorly when | |
associated with a weak learner. However, with a powerful learner, it can | |
lead to as good or better performance than complex imputation such as | |
:class:`~sklearn.impute.IterativeImputer` or :class:`~sklearn.impute.KNNImputer`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.impute import SimpleImputer | |
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') | |
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]]) | |
SimpleImputer() | |
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]] | |
>>> print(imp_mean.transform(X)) | |
[[ 7. 2. 3. ] | |
[ 4. 3.5 6. ] | |
[10. 3.5 9. ]] | |
For a more detailed example see | |
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`. | |
""" | |
_parameter_constraints: dict = { | |
**_BaseImputer._parameter_constraints, | |
"strategy": [StrOptions({"mean", "median", "most_frequent", "constant"})], | |
"fill_value": "no_validation", # any object is valid | |
"copy": ["boolean"], | |
} | |
def __init__( | |
self, | |
*, | |
missing_values=np.nan, | |
strategy="mean", | |
fill_value=None, | |
copy=True, | |
add_indicator=False, | |
keep_empty_features=False, | |
): | |
super().__init__( | |
missing_values=missing_values, | |
add_indicator=add_indicator, | |
keep_empty_features=keep_empty_features, | |
) | |
self.strategy = strategy | |
self.fill_value = fill_value | |
self.copy = copy | |
def _validate_input(self, X, in_fit): | |
if self.strategy in ("most_frequent", "constant"): | |
# If input is a list of strings, dtype = object. | |
# Otherwise ValueError is raised in SimpleImputer | |
# with strategy='most_frequent' or 'constant' | |
# because the list is converted to Unicode numpy array | |
if isinstance(X, list) and any( | |
isinstance(elem, str) for row in X for elem in row | |
): | |
dtype = object | |
else: | |
dtype = None | |
else: | |
dtype = FLOAT_DTYPES | |
if not in_fit and self._fit_dtype.kind == "O": | |
# Use object dtype if fitted on object dtypes | |
dtype = self._fit_dtype | |
if _is_pandas_na(self.missing_values) or is_scalar_nan(self.missing_values): | |
force_all_finite = "allow-nan" | |
else: | |
force_all_finite = True | |
try: | |
X = self._validate_data( | |
X, | |
reset=in_fit, | |
accept_sparse="csc", | |
dtype=dtype, | |
force_all_finite=force_all_finite, | |
copy=self.copy, | |
) | |
except ValueError as ve: | |
if "could not convert" in str(ve): | |
new_ve = ValueError( | |
"Cannot use {} strategy with non-numeric data:\n{}".format( | |
self.strategy, ve | |
) | |
) | |
raise new_ve from None | |
else: | |
raise ve | |
if in_fit: | |
# Use the dtype seen in `fit` for non-`fit` conversion | |
self._fit_dtype = X.dtype | |
_check_inputs_dtype(X, self.missing_values) | |
if X.dtype.kind not in ("i", "u", "f", "O"): | |
raise ValueError( | |
"SimpleImputer does not support data with dtype " | |
"{0}. Please provide either a numeric array (with" | |
" a floating point or integer dtype) or " | |
"categorical data represented either as an array " | |
"with integer dtype or an array of string values " | |
"with an object dtype.".format(X.dtype) | |
) | |
if sp.issparse(X) and self.missing_values == 0: | |
# missing_values = 0 not allowed with sparse data as it would | |
# force densification | |
raise ValueError( | |
"Imputation not possible when missing_values " | |
"== 0 and input is sparse. Provide a dense " | |
"array instead." | |
) | |
if self.strategy == "constant": | |
if in_fit and self.fill_value is not None: | |
fill_value_dtype = type(self.fill_value) | |
err_msg = ( | |
f"fill_value={self.fill_value!r} (of type {fill_value_dtype!r}) " | |
f"cannot be cast to the input data that is {X.dtype!r}. Make sure " | |
"that both dtypes are of the same kind." | |
) | |
elif not in_fit: | |
fill_value_dtype = self.statistics_.dtype | |
err_msg = ( | |
f"The dtype of the filling value (i.e. {fill_value_dtype!r}) " | |
f"cannot be cast to the input data that is {X.dtype!r}. Make sure " | |
"that the dtypes of the input data is of the same kind between " | |
"fit and transform." | |
) | |
else: | |
# By default, fill_value=None, and the replacement is always | |
# compatible with the input data | |
fill_value_dtype = X.dtype | |
# Make sure we can safely cast fill_value dtype to the input data dtype | |
if not np.can_cast(fill_value_dtype, X.dtype, casting="same_kind"): | |
raise ValueError(err_msg) | |
return X | |
def fit(self, X, y=None): | |
"""Fit the imputer on `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
X = self._validate_input(X, in_fit=True) | |
# default fill_value is 0 for numerical input and "missing_value" | |
# otherwise | |
if self.fill_value is None: | |
if X.dtype.kind in ("i", "u", "f"): | |
fill_value = 0 | |
else: | |
fill_value = "missing_value" | |
else: | |
fill_value = self.fill_value | |
if sp.issparse(X): | |
self.statistics_ = self._sparse_fit( | |
X, self.strategy, self.missing_values, fill_value | |
) | |
else: | |
self.statistics_ = self._dense_fit( | |
X, self.strategy, self.missing_values, fill_value | |
) | |
return self | |
def _sparse_fit(self, X, strategy, missing_values, fill_value): | |
"""Fit the transformer on sparse data.""" | |
missing_mask = _get_mask(X, missing_values) | |
mask_data = missing_mask.data | |
n_implicit_zeros = X.shape[0] - np.diff(X.indptr) | |
statistics = np.empty(X.shape[1]) | |
if strategy == "constant": | |
# for constant strategy, self.statistics_ is used to store | |
# fill_value in each column | |
statistics.fill(fill_value) | |
else: | |
for i in range(X.shape[1]): | |
column = X.data[X.indptr[i] : X.indptr[i + 1]] | |
mask_column = mask_data[X.indptr[i] : X.indptr[i + 1]] | |
column = column[~mask_column] | |
# combine explicit and implicit zeros | |
mask_zeros = _get_mask(column, 0) | |
column = column[~mask_zeros] | |
n_explicit_zeros = mask_zeros.sum() | |
n_zeros = n_implicit_zeros[i] + n_explicit_zeros | |
if len(column) == 0 and self.keep_empty_features: | |
# in case we want to keep columns with only missing values. | |
statistics[i] = 0 | |
else: | |
if strategy == "mean": | |
s = column.size + n_zeros | |
statistics[i] = np.nan if s == 0 else column.sum() / s | |
elif strategy == "median": | |
statistics[i] = _get_median(column, n_zeros) | |
elif strategy == "most_frequent": | |
statistics[i] = _most_frequent(column, 0, n_zeros) | |
super()._fit_indicator(missing_mask) | |
return statistics | |
def _dense_fit(self, X, strategy, missing_values, fill_value): | |
"""Fit the transformer on dense data.""" | |
missing_mask = _get_mask(X, missing_values) | |
masked_X = ma.masked_array(X, mask=missing_mask) | |
super()._fit_indicator(missing_mask) | |
# Mean | |
if strategy == "mean": | |
mean_masked = np.ma.mean(masked_X, axis=0) | |
# Avoid the warning "Warning: converting a masked element to nan." | |
mean = np.ma.getdata(mean_masked) | |
mean[np.ma.getmask(mean_masked)] = 0 if self.keep_empty_features else np.nan | |
return mean | |
# Median | |
elif strategy == "median": | |
median_masked = np.ma.median(masked_X, axis=0) | |
# Avoid the warning "Warning: converting a masked element to nan." | |
median = np.ma.getdata(median_masked) | |
median[np.ma.getmaskarray(median_masked)] = ( | |
0 if self.keep_empty_features else np.nan | |
) | |
return median | |
# Most frequent | |
elif strategy == "most_frequent": | |
# Avoid use of scipy.stats.mstats.mode due to the required | |
# additional overhead and slow benchmarking performance. | |
# See Issue 14325 and PR 14399 for full discussion. | |
# To be able access the elements by columns | |
X = X.transpose() | |
mask = missing_mask.transpose() | |
if X.dtype.kind == "O": | |
most_frequent = np.empty(X.shape[0], dtype=object) | |
else: | |
most_frequent = np.empty(X.shape[0]) | |
for i, (row, row_mask) in enumerate(zip(X[:], mask[:])): | |
row_mask = np.logical_not(row_mask).astype(bool) | |
row = row[row_mask] | |
if len(row) == 0 and self.keep_empty_features: | |
most_frequent[i] = 0 | |
else: | |
most_frequent[i] = _most_frequent(row, np.nan, 0) | |
return most_frequent | |
# Constant | |
elif strategy == "constant": | |
# for constant strategy, self.statistcs_ is used to store | |
# fill_value in each column | |
return np.full(X.shape[1], fill_value, dtype=X.dtype) | |
def transform(self, X): | |
"""Impute all missing values in `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix}, shape (n_samples, n_features) | |
The input data to complete. | |
Returns | |
------- | |
X_imputed : {ndarray, sparse matrix} of shape \ | |
(n_samples, n_features_out) | |
`X` with imputed values. | |
""" | |
check_is_fitted(self) | |
X = self._validate_input(X, in_fit=False) | |
statistics = self.statistics_ | |
if X.shape[1] != statistics.shape[0]: | |
raise ValueError( | |
"X has %d features per sample, expected %d" | |
% (X.shape[1], self.statistics_.shape[0]) | |
) | |
# compute mask before eliminating invalid features | |
missing_mask = _get_mask(X, self.missing_values) | |
# Decide whether to keep missing features | |
if self.strategy == "constant" or self.keep_empty_features: | |
valid_statistics = statistics | |
valid_statistics_indexes = None | |
else: | |
# same as np.isnan but also works for object dtypes | |
invalid_mask = _get_mask(statistics, np.nan) | |
valid_mask = np.logical_not(invalid_mask) | |
valid_statistics = statistics[valid_mask] | |
valid_statistics_indexes = np.flatnonzero(valid_mask) | |
if invalid_mask.any(): | |
invalid_features = np.arange(X.shape[1])[invalid_mask] | |
# use feature names warning if features are provided | |
if hasattr(self, "feature_names_in_"): | |
invalid_features = self.feature_names_in_[invalid_features] | |
warnings.warn( | |
"Skipping features without any observed values:" | |
f" {invalid_features}. At least one non-missing value is needed" | |
f" for imputation with strategy='{self.strategy}'." | |
) | |
X = X[:, valid_statistics_indexes] | |
# Do actual imputation | |
if sp.issparse(X): | |
if self.missing_values == 0: | |
raise ValueError( | |
"Imputation not possible when missing_values " | |
"== 0 and input is sparse. Provide a dense " | |
"array instead." | |
) | |
else: | |
# if no invalid statistics are found, use the mask computed | |
# before, else recompute mask | |
if valid_statistics_indexes is None: | |
mask = missing_mask.data | |
else: | |
mask = _get_mask(X.data, self.missing_values) | |
indexes = np.repeat( | |
np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr) | |
)[mask] | |
X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False) | |
else: | |
# use mask computed before eliminating invalid mask | |
if valid_statistics_indexes is None: | |
mask_valid_features = missing_mask | |
else: | |
mask_valid_features = missing_mask[:, valid_statistics_indexes] | |
n_missing = np.sum(mask_valid_features, axis=0) | |
values = np.repeat(valid_statistics, n_missing) | |
coordinates = np.where(mask_valid_features.transpose())[::-1] | |
X[coordinates] = values | |
X_indicator = super()._transform_indicator(missing_mask) | |
return super()._concatenate_indicator(X, X_indicator) | |
def inverse_transform(self, X): | |
"""Convert the data back to the original representation. | |
Inverts the `transform` operation performed on an array. | |
This operation can only be performed after :class:`SimpleImputer` is | |
instantiated with `add_indicator=True`. | |
Note that `inverse_transform` can only invert the transform in | |
features that have binary indicators for missing values. If a feature | |
has no missing values at `fit` time, the feature won't have a binary | |
indicator, and the imputation done at `transform` time won't be | |
inverted. | |
.. versionadded:: 0.24 | |
Parameters | |
---------- | |
X : array-like of shape \ | |
(n_samples, n_features + n_features_missing_indicator) | |
The imputed data to be reverted to original data. It has to be | |
an augmented array of imputed data and the missing indicator mask. | |
Returns | |
------- | |
X_original : ndarray of shape (n_samples, n_features) | |
The original `X` with missing values as it was prior | |
to imputation. | |
""" | |
check_is_fitted(self) | |
if not self.add_indicator: | |
raise ValueError( | |
"'inverse_transform' works only when " | |
"'SimpleImputer' is instantiated with " | |
"'add_indicator=True'. " | |
f"Got 'add_indicator={self.add_indicator}' " | |
"instead." | |
) | |
n_features_missing = len(self.indicator_.features_) | |
non_empty_feature_count = X.shape[1] - n_features_missing | |
array_imputed = X[:, :non_empty_feature_count].copy() | |
missing_mask = X[:, non_empty_feature_count:].astype(bool) | |
n_features_original = len(self.statistics_) | |
shape_original = (X.shape[0], n_features_original) | |
X_original = np.zeros(shape_original) | |
X_original[:, self.indicator_.features_] = missing_mask | |
full_mask = X_original.astype(bool) | |
imputed_idx, original_idx = 0, 0 | |
while imputed_idx < len(array_imputed.T): | |
if not np.all(X_original[:, original_idx]): | |
X_original[:, original_idx] = array_imputed.T[imputed_idx] | |
imputed_idx += 1 | |
original_idx += 1 | |
else: | |
original_idx += 1 | |
X_original[full_mask] = self.missing_values | |
return X_original | |
def _more_tags(self): | |
return { | |
"allow_nan": _is_pandas_na(self.missing_values) or is_scalar_nan( | |
self.missing_values | |
) | |
} | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
- If `input_features` is `None`, then `feature_names_in_` is | |
used as feature names in. If `feature_names_in_` is not defined, | |
then the following input feature names are generated: | |
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
- If `input_features` is an array-like, then `input_features` must | |
match `feature_names_in_` if `feature_names_in_` is defined. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in(self, input_features) | |
non_missing_mask = np.logical_not(_get_mask(self.statistics_, np.nan)) | |
names = input_features[non_missing_mask] | |
return self._concatenate_indicator_feature_names_out(names, input_features) | |
class MissingIndicator(TransformerMixin, BaseEstimator): | |
"""Binary indicators for missing values. | |
Note that this component typically should not be used in a vanilla | |
:class:`~sklearn.pipeline.Pipeline` consisting of transformers and a | |
classifier, but rather could be added using a | |
:class:`~sklearn.pipeline.FeatureUnion` or | |
:class:`~sklearn.compose.ColumnTransformer`. | |
Read more in the :ref:`User Guide <impute>`. | |
.. versionadded:: 0.20 | |
Parameters | |
---------- | |
missing_values : int, float, str, np.nan or None, default=np.nan | |
The placeholder for the missing values. All occurrences of | |
`missing_values` will be imputed. For pandas' dataframes with | |
nullable integer dtypes with missing values, `missing_values` | |
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`. | |
features : {'missing-only', 'all'}, default='missing-only' | |
Whether the imputer mask should represent all or a subset of | |
features. | |
- If `'missing-only'` (default), the imputer mask will only represent | |
features containing missing values during fit time. | |
- If `'all'`, the imputer mask will represent all features. | |
sparse : bool or 'auto', default='auto' | |
Whether the imputer mask format should be sparse or dense. | |
- If `'auto'` (default), the imputer mask will be of same type as | |
input. | |
- If `True`, the imputer mask will be a sparse matrix. | |
- If `False`, the imputer mask will be a numpy array. | |
error_on_new : bool, default=True | |
If `True`, :meth:`transform` will raise an error when there are | |
features with missing values that have no missing values in | |
:meth:`fit`. This is applicable only when `features='missing-only'`. | |
Attributes | |
---------- | |
features_ : ndarray of shape (n_missing_features,) or (n_features,) | |
The features indices which will be returned when calling | |
:meth:`transform`. They are computed during :meth:`fit`. If | |
`features='all'`, `features_` is equal to `range(n_features)`. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
SimpleImputer : Univariate imputation of missing values. | |
IterativeImputer : Multivariate imputation of missing values. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.impute import MissingIndicator | |
>>> X1 = np.array([[np.nan, 1, 3], | |
... [4, 0, np.nan], | |
... [8, 1, 0]]) | |
>>> X2 = np.array([[5, 1, np.nan], | |
... [np.nan, 2, 3], | |
... [2, 4, 0]]) | |
>>> indicator = MissingIndicator() | |
>>> indicator.fit(X1) | |
MissingIndicator() | |
>>> X2_tr = indicator.transform(X2) | |
>>> X2_tr | |
array([[False, True], | |
[ True, False], | |
[False, False]]) | |
""" | |
_parameter_constraints: dict = { | |
"missing_values": [MissingValues()], | |
"features": [StrOptions({"missing-only", "all"})], | |
"sparse": ["boolean", StrOptions({"auto"})], | |
"error_on_new": ["boolean"], | |
} | |
def __init__( | |
self, | |
*, | |
missing_values=np.nan, | |
features="missing-only", | |
sparse="auto", | |
error_on_new=True, | |
): | |
self.missing_values = missing_values | |
self.features = features | |
self.sparse = sparse | |
self.error_on_new = error_on_new | |
def _get_missing_features_info(self, X): | |
"""Compute the imputer mask and the indices of the features | |
containing missing values. | |
Parameters | |
---------- | |
X : {ndarray, sparse matrix} of shape (n_samples, n_features) | |
The input data with missing values. Note that `X` has been | |
checked in :meth:`fit` and :meth:`transform` before to call this | |
function. | |
Returns | |
------- | |
imputer_mask : {ndarray, sparse matrix} of shape \ | |
(n_samples, n_features) | |
The imputer mask of the original data. | |
features_with_missing : ndarray of shape (n_features_with_missing) | |
The features containing missing values. | |
""" | |
if not self._precomputed: | |
imputer_mask = _get_mask(X, self.missing_values) | |
else: | |
imputer_mask = X | |
if sp.issparse(X): | |
imputer_mask.eliminate_zeros() | |
if self.features == "missing-only": | |
n_missing = imputer_mask.getnnz(axis=0) | |
if self.sparse is False: | |
imputer_mask = imputer_mask.toarray() | |
elif imputer_mask.format == "csr": | |
imputer_mask = imputer_mask.tocsc() | |
else: | |
if not self._precomputed: | |
imputer_mask = _get_mask(X, self.missing_values) | |
else: | |
imputer_mask = X | |
if self.features == "missing-only": | |
n_missing = imputer_mask.sum(axis=0) | |
if self.sparse is True: | |
imputer_mask = sp.csc_matrix(imputer_mask) | |
if self.features == "all": | |
features_indices = np.arange(X.shape[1]) | |
else: | |
features_indices = np.flatnonzero(n_missing) | |
return imputer_mask, features_indices | |
def _validate_input(self, X, in_fit): | |
if not is_scalar_nan(self.missing_values): | |
force_all_finite = True | |
else: | |
force_all_finite = "allow-nan" | |
X = self._validate_data( | |
X, | |
reset=in_fit, | |
accept_sparse=("csc", "csr"), | |
dtype=None, | |
force_all_finite=force_all_finite, | |
) | |
_check_inputs_dtype(X, self.missing_values) | |
if X.dtype.kind not in ("i", "u", "f", "O"): | |
raise ValueError( | |
"MissingIndicator does not support data with " | |
"dtype {0}. Please provide either a numeric array" | |
" (with a floating point or integer dtype) or " | |
"categorical data represented either as an array " | |
"with integer dtype or an array of string values " | |
"with an object dtype.".format(X.dtype) | |
) | |
if sp.issparse(X) and self.missing_values == 0: | |
# missing_values = 0 not allowed with sparse data as it would | |
# force densification | |
raise ValueError( | |
"Sparse input with missing_values=0 is " | |
"not supported. Provide a dense " | |
"array instead." | |
) | |
return X | |
def _fit(self, X, y=None, precomputed=False): | |
"""Fit the transformer on `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
If `precomputed=True`, then `X` is a mask of the input data. | |
precomputed : bool | |
Whether the input data is a mask. | |
Returns | |
------- | |
imputer_mask : {ndarray, sparse matrix} of shape (n_samples, \ | |
n_features) | |
The imputer mask of the original data. | |
""" | |
if precomputed: | |
if not (hasattr(X, "dtype") and X.dtype.kind == "b"): | |
raise ValueError("precomputed is True but the input data is not a mask") | |
self._precomputed = True | |
else: | |
self._precomputed = False | |
# Need not validate X again as it would have already been validated | |
# in the Imputer calling MissingIndicator | |
if not self._precomputed: | |
X = self._validate_input(X, in_fit=True) | |
else: | |
# only create `n_features_in_` in the precomputed case | |
self._check_n_features(X, reset=True) | |
self._n_features = X.shape[1] | |
missing_features_info = self._get_missing_features_info(X) | |
self.features_ = missing_features_info[1] | |
return missing_features_info[0] | |
def fit(self, X, y=None): | |
"""Fit the transformer on `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
self._fit(X, y) | |
return self | |
def transform(self, X): | |
"""Generate missing values indicator for `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data to complete. | |
Returns | |
------- | |
Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \ | |
or (n_samples, n_features_with_missing) | |
The missing indicator for input data. The data type of `Xt` | |
will be boolean. | |
""" | |
check_is_fitted(self) | |
# Need not validate X again as it would have already been validated | |
# in the Imputer calling MissingIndicator | |
if not self._precomputed: | |
X = self._validate_input(X, in_fit=False) | |
else: | |
if not (hasattr(X, "dtype") and X.dtype.kind == "b"): | |
raise ValueError("precomputed is True but the input data is not a mask") | |
imputer_mask, features = self._get_missing_features_info(X) | |
if self.features == "missing-only": | |
features_diff_fit_trans = np.setdiff1d(features, self.features_) | |
if self.error_on_new and features_diff_fit_trans.size > 0: | |
raise ValueError( | |
"The features {} have missing values " | |
"in transform but have no missing values " | |
"in fit.".format(features_diff_fit_trans) | |
) | |
if self.features_.size < self._n_features: | |
imputer_mask = imputer_mask[:, self.features_] | |
return imputer_mask | |
def fit_transform(self, X, y=None): | |
"""Generate missing values indicator for `X`. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
The input data to complete. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \ | |
or (n_samples, n_features_with_missing) | |
The missing indicator for input data. The data type of `Xt` | |
will be boolean. | |
""" | |
imputer_mask = self._fit(X, y) | |
if self.features_.size < self._n_features: | |
imputer_mask = imputer_mask[:, self.features_] | |
return imputer_mask | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
- If `input_features` is `None`, then `feature_names_in_` is | |
used as feature names in. If `feature_names_in_` is not defined, | |
then the following input feature names are generated: | |
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
- If `input_features` is an array-like, then `input_features` must | |
match `feature_names_in_` if `feature_names_in_` is defined. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in(self, input_features) | |
prefix = self.__class__.__name__.lower() | |
return np.asarray( | |
[ | |
f"{prefix}_{feature_name}" | |
for feature_name in input_features[self.features_] | |
], | |
dtype=object, | |
) | |
def _more_tags(self): | |
return { | |
"allow_nan": True, | |
"X_types": ["2darray", "string"], | |
"preserves_dtype": [], | |
} | |