peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/linear_model
/_ransac.py
# Author: Johannes Schönberger | |
# | |
# License: BSD 3 clause | |
import warnings | |
from numbers import Integral, Real | |
import numpy as np | |
from ..base import ( | |
BaseEstimator, | |
MetaEstimatorMixin, | |
MultiOutputMixin, | |
RegressorMixin, | |
_fit_context, | |
clone, | |
) | |
from ..exceptions import ConvergenceWarning | |
from ..utils import check_consistent_length, check_random_state | |
from ..utils._param_validation import ( | |
HasMethods, | |
Interval, | |
Options, | |
RealNotInt, | |
StrOptions, | |
) | |
from ..utils.metadata_routing import ( | |
_raise_for_unsupported_routing, | |
_RoutingNotSupportedMixin, | |
) | |
from ..utils.random import sample_without_replacement | |
from ..utils.validation import _check_sample_weight, check_is_fitted, has_fit_parameter | |
from ._base import LinearRegression | |
_EPSILON = np.spacing(1) | |
def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): | |
"""Determine number trials such that at least one outlier-free subset is | |
sampled for the given inlier/outlier ratio. | |
Parameters | |
---------- | |
n_inliers : int | |
Number of inliers in the data. | |
n_samples : int | |
Total number of samples in the data. | |
min_samples : int | |
Minimum number of samples chosen randomly from original data. | |
probability : float | |
Probability (confidence) that one outlier-free sample is generated. | |
Returns | |
------- | |
trials : int | |
Number of trials. | |
""" | |
inlier_ratio = n_inliers / float(n_samples) | |
nom = max(_EPSILON, 1 - probability) | |
denom = max(_EPSILON, 1 - inlier_ratio**min_samples) | |
if nom == 1: | |
return 0 | |
if denom == 1: | |
return float("inf") | |
return abs(float(np.ceil(np.log(nom) / np.log(denom)))) | |
class RANSACRegressor( | |
_RoutingNotSupportedMixin, | |
MetaEstimatorMixin, | |
RegressorMixin, | |
MultiOutputMixin, | |
BaseEstimator, | |
): | |
"""RANSAC (RANdom SAmple Consensus) algorithm. | |
RANSAC is an iterative algorithm for the robust estimation of parameters | |
from a subset of inliers from the complete data set. | |
Read more in the :ref:`User Guide <ransac_regression>`. | |
Parameters | |
---------- | |
estimator : object, default=None | |
Base estimator object which implements the following methods: | |
* `fit(X, y)`: Fit model to given training data and target values. | |
* `score(X, y)`: Returns the mean accuracy on the given test data, | |
which is used for the stop criterion defined by `stop_score`. | |
Additionally, the score is used to decide which of two equally | |
large consensus sets is chosen as the better one. | |
* `predict(X)`: Returns predicted values using the linear model, | |
which is used to compute residual error using loss function. | |
If `estimator` is None, then | |
:class:`~sklearn.linear_model.LinearRegression` is used for | |
target values of dtype float. | |
Note that the current implementation only supports regression | |
estimators. | |
min_samples : int (>= 1) or float ([0, 1]), default=None | |
Minimum number of samples chosen randomly from original data. Treated | |
as an absolute number of samples for `min_samples >= 1`, treated as a | |
relative number `ceil(min_samples * X.shape[0])` for | |
`min_samples < 1`. This is typically chosen as the minimal number of | |
samples necessary to estimate the given `estimator`. By default a | |
:class:`~sklearn.linear_model.LinearRegression` estimator is assumed and | |
`min_samples` is chosen as ``X.shape[1] + 1``. This parameter is highly | |
dependent upon the model, so if a `estimator` other than | |
:class:`~sklearn.linear_model.LinearRegression` is used, the user must | |
provide a value. | |
residual_threshold : float, default=None | |
Maximum residual for a data sample to be classified as an inlier. | |
By default the threshold is chosen as the MAD (median absolute | |
deviation) of the target values `y`. Points whose residuals are | |
strictly equal to the threshold are considered as inliers. | |
is_data_valid : callable, default=None | |
This function is called with the randomly selected data before the | |
model is fitted to it: `is_data_valid(X, y)`. If its return value is | |
False the current randomly chosen sub-sample is skipped. | |
is_model_valid : callable, default=None | |
This function is called with the estimated model and the randomly | |
selected data: `is_model_valid(model, X, y)`. If its return value is | |
False the current randomly chosen sub-sample is skipped. | |
Rejecting samples with this function is computationally costlier than | |
with `is_data_valid`. `is_model_valid` should therefore only be used if | |
the estimated model is needed for making the rejection decision. | |
max_trials : int, default=100 | |
Maximum number of iterations for random sample selection. | |
max_skips : int, default=np.inf | |
Maximum number of iterations that can be skipped due to finding zero | |
inliers or invalid data defined by ``is_data_valid`` or invalid models | |
defined by ``is_model_valid``. | |
.. versionadded:: 0.19 | |
stop_n_inliers : int, default=np.inf | |
Stop iteration if at least this number of inliers are found. | |
stop_score : float, default=np.inf | |
Stop iteration if score is greater equal than this threshold. | |
stop_probability : float in range [0, 1], default=0.99 | |
RANSAC iteration stops if at least one outlier-free set of the training | |
data is sampled in RANSAC. This requires to generate at least N | |
samples (iterations):: | |
N >= log(1 - probability) / log(1 - e**m) | |
where the probability (confidence) is typically set to high value such | |
as 0.99 (the default) and e is the current fraction of inliers w.r.t. | |
the total number of samples. | |
loss : str, callable, default='absolute_error' | |
String inputs, 'absolute_error' and 'squared_error' are supported which | |
find the absolute error and squared error per sample respectively. | |
If ``loss`` is a callable, then it should be a function that takes | |
two arrays as inputs, the true and predicted value and returns a 1-D | |
array with the i-th value of the array corresponding to the loss | |
on ``X[i]``. | |
If the loss on a sample is greater than the ``residual_threshold``, | |
then this sample is classified as an outlier. | |
.. versionadded:: 0.18 | |
random_state : int, RandomState instance, default=None | |
The generator used to initialize the centers. | |
Pass an int for reproducible output across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
estimator_ : object | |
Best fitted model (copy of the `estimator` object). | |
n_trials_ : int | |
Number of random selection trials until one of the stop criteria is | |
met. It is always ``<= max_trials``. | |
inlier_mask_ : bool array of shape [n_samples] | |
Boolean mask of inliers classified as ``True``. | |
n_skips_no_inliers_ : int | |
Number of iterations skipped due to finding zero inliers. | |
.. versionadded:: 0.19 | |
n_skips_invalid_data_ : int | |
Number of iterations skipped due to invalid data defined by | |
``is_data_valid``. | |
.. versionadded:: 0.19 | |
n_skips_invalid_model_ : int | |
Number of iterations skipped due to an invalid model defined by | |
``is_model_valid``. | |
.. versionadded:: 0.19 | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
HuberRegressor : Linear regression model that is robust to outliers. | |
TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model. | |
SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD. | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/RANSAC | |
.. [2] https://www.sri.com/wp-content/uploads/2021/12/ransac-publication.pdf | |
.. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf | |
Examples | |
-------- | |
>>> from sklearn.linear_model import RANSACRegressor | |
>>> from sklearn.datasets import make_regression | |
>>> X, y = make_regression( | |
... n_samples=200, n_features=2, noise=4.0, random_state=0) | |
>>> reg = RANSACRegressor(random_state=0).fit(X, y) | |
>>> reg.score(X, y) | |
0.9885... | |
>>> reg.predict(X[:1,]) | |
array([-31.9417...]) | |
""" # noqa: E501 | |
_parameter_constraints: dict = { | |
"estimator": [HasMethods(["fit", "score", "predict"]), None], | |
"min_samples": [ | |
Interval(Integral, 1, None, closed="left"), | |
Interval(RealNotInt, 0, 1, closed="both"), | |
None, | |
], | |
"residual_threshold": [Interval(Real, 0, None, closed="left"), None], | |
"is_data_valid": [callable, None], | |
"is_model_valid": [callable, None], | |
"max_trials": [ | |
Interval(Integral, 0, None, closed="left"), | |
Options(Real, {np.inf}), | |
], | |
"max_skips": [ | |
Interval(Integral, 0, None, closed="left"), | |
Options(Real, {np.inf}), | |
], | |
"stop_n_inliers": [ | |
Interval(Integral, 0, None, closed="left"), | |
Options(Real, {np.inf}), | |
], | |
"stop_score": [Interval(Real, None, None, closed="both")], | |
"stop_probability": [Interval(Real, 0, 1, closed="both")], | |
"loss": [StrOptions({"absolute_error", "squared_error"}), callable], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
min_samples=None, | |
residual_threshold=None, | |
is_data_valid=None, | |
is_model_valid=None, | |
max_trials=100, | |
max_skips=np.inf, | |
stop_n_inliers=np.inf, | |
stop_score=np.inf, | |
stop_probability=0.99, | |
loss="absolute_error", | |
random_state=None, | |
): | |
self.estimator = estimator | |
self.min_samples = min_samples | |
self.residual_threshold = residual_threshold | |
self.is_data_valid = is_data_valid | |
self.is_model_valid = is_model_valid | |
self.max_trials = max_trials | |
self.max_skips = max_skips | |
self.stop_n_inliers = stop_n_inliers | |
self.stop_score = stop_score | |
self.stop_probability = stop_probability | |
self.random_state = random_state | |
self.loss = loss | |
def fit(self, X, y, sample_weight=None): | |
"""Fit estimator using RANSAC algorithm. | |
Parameters | |
---------- | |
X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
Training data. | |
y : array-like of shape (n_samples,) or (n_samples, n_targets) | |
Target values. | |
sample_weight : array-like of shape (n_samples,), default=None | |
Individual weights for each sample | |
raises error if sample_weight is passed and estimator | |
fit method does not support it. | |
.. versionadded:: 0.18 | |
Returns | |
------- | |
self : object | |
Fitted `RANSACRegressor` estimator. | |
Raises | |
------ | |
ValueError | |
If no valid consensus set could be found. This occurs if | |
`is_data_valid` and `is_model_valid` return False for all | |
`max_trials` randomly chosen sub-samples. | |
""" | |
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight) | |
# Need to validate separately here. We can't pass multi_output=True | |
# because that would allow y to be csr. Delay expensive finiteness | |
# check to the estimator's own input validation. | |
check_X_params = dict(accept_sparse="csr", force_all_finite=False) | |
check_y_params = dict(ensure_2d=False) | |
X, y = self._validate_data( | |
X, y, validate_separately=(check_X_params, check_y_params) | |
) | |
check_consistent_length(X, y) | |
if self.estimator is not None: | |
estimator = clone(self.estimator) | |
else: | |
estimator = LinearRegression() | |
if self.min_samples is None: | |
if not isinstance(estimator, LinearRegression): | |
raise ValueError( | |
"`min_samples` needs to be explicitly set when estimator " | |
"is not a LinearRegression." | |
) | |
min_samples = X.shape[1] + 1 | |
elif 0 < self.min_samples < 1: | |
min_samples = np.ceil(self.min_samples * X.shape[0]) | |
elif self.min_samples >= 1: | |
min_samples = self.min_samples | |
if min_samples > X.shape[0]: | |
raise ValueError( | |
"`min_samples` may not be larger than number " | |
"of samples: n_samples = %d." % (X.shape[0]) | |
) | |
if self.residual_threshold is None: | |
# MAD (median absolute deviation) | |
residual_threshold = np.median(np.abs(y - np.median(y))) | |
else: | |
residual_threshold = self.residual_threshold | |
if self.loss == "absolute_error": | |
if y.ndim == 1: | |
loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred) | |
else: | |
loss_function = lambda y_true, y_pred: np.sum( | |
np.abs(y_true - y_pred), axis=1 | |
) | |
elif self.loss == "squared_error": | |
if y.ndim == 1: | |
loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2 | |
else: | |
loss_function = lambda y_true, y_pred: np.sum( | |
(y_true - y_pred) ** 2, axis=1 | |
) | |
elif callable(self.loss): | |
loss_function = self.loss | |
random_state = check_random_state(self.random_state) | |
try: # Not all estimator accept a random_state | |
estimator.set_params(random_state=random_state) | |
except ValueError: | |
pass | |
estimator_fit_has_sample_weight = has_fit_parameter(estimator, "sample_weight") | |
estimator_name = type(estimator).__name__ | |
if sample_weight is not None and not estimator_fit_has_sample_weight: | |
raise ValueError( | |
"%s does not support sample_weight. Samples" | |
" weights are only used for the calibration" | |
" itself." % estimator_name | |
) | |
if sample_weight is not None: | |
sample_weight = _check_sample_weight(sample_weight, X) | |
n_inliers_best = 1 | |
score_best = -np.inf | |
inlier_mask_best = None | |
X_inlier_best = None | |
y_inlier_best = None | |
inlier_best_idxs_subset = None | |
self.n_skips_no_inliers_ = 0 | |
self.n_skips_invalid_data_ = 0 | |
self.n_skips_invalid_model_ = 0 | |
# number of data samples | |
n_samples = X.shape[0] | |
sample_idxs = np.arange(n_samples) | |
self.n_trials_ = 0 | |
max_trials = self.max_trials | |
while self.n_trials_ < max_trials: | |
self.n_trials_ += 1 | |
if ( | |
self.n_skips_no_inliers_ | |
+ self.n_skips_invalid_data_ | |
+ self.n_skips_invalid_model_ | |
) > self.max_skips: | |
break | |
# choose random sample set | |
subset_idxs = sample_without_replacement( | |
n_samples, min_samples, random_state=random_state | |
) | |
X_subset = X[subset_idxs] | |
y_subset = y[subset_idxs] | |
# check if random sample set is valid | |
if self.is_data_valid is not None and not self.is_data_valid( | |
X_subset, y_subset | |
): | |
self.n_skips_invalid_data_ += 1 | |
continue | |
# fit model for current random sample set | |
if sample_weight is None: | |
estimator.fit(X_subset, y_subset) | |
else: | |
estimator.fit( | |
X_subset, y_subset, sample_weight=sample_weight[subset_idxs] | |
) | |
# check if estimated model is valid | |
if self.is_model_valid is not None and not self.is_model_valid( | |
estimator, X_subset, y_subset | |
): | |
self.n_skips_invalid_model_ += 1 | |
continue | |
# residuals of all data for current random sample model | |
y_pred = estimator.predict(X) | |
residuals_subset = loss_function(y, y_pred) | |
# classify data into inliers and outliers | |
inlier_mask_subset = residuals_subset <= residual_threshold | |
n_inliers_subset = np.sum(inlier_mask_subset) | |
# less inliers -> skip current random sample | |
if n_inliers_subset < n_inliers_best: | |
self.n_skips_no_inliers_ += 1 | |
continue | |
# extract inlier data set | |
inlier_idxs_subset = sample_idxs[inlier_mask_subset] | |
X_inlier_subset = X[inlier_idxs_subset] | |
y_inlier_subset = y[inlier_idxs_subset] | |
# score of inlier data set | |
score_subset = estimator.score(X_inlier_subset, y_inlier_subset) | |
# same number of inliers but worse score -> skip current random | |
# sample | |
if n_inliers_subset == n_inliers_best and score_subset < score_best: | |
continue | |
# save current random sample as best sample | |
n_inliers_best = n_inliers_subset | |
score_best = score_subset | |
inlier_mask_best = inlier_mask_subset | |
X_inlier_best = X_inlier_subset | |
y_inlier_best = y_inlier_subset | |
inlier_best_idxs_subset = inlier_idxs_subset | |
max_trials = min( | |
max_trials, | |
_dynamic_max_trials( | |
n_inliers_best, n_samples, min_samples, self.stop_probability | |
), | |
) | |
# break if sufficient number of inliers or score is reached | |
if n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score: | |
break | |
# if none of the iterations met the required criteria | |
if inlier_mask_best is None: | |
if ( | |
self.n_skips_no_inliers_ | |
+ self.n_skips_invalid_data_ | |
+ self.n_skips_invalid_model_ | |
) > self.max_skips: | |
raise ValueError( | |
"RANSAC skipped more iterations than `max_skips` without" | |
" finding a valid consensus set. Iterations were skipped" | |
" because each randomly chosen sub-sample failed the" | |
" passing criteria. See estimator attributes for" | |
" diagnostics (n_skips*)." | |
) | |
else: | |
raise ValueError( | |
"RANSAC could not find a valid consensus set. All" | |
" `max_trials` iterations were skipped because each" | |
" randomly chosen sub-sample failed the passing criteria." | |
" See estimator attributes for diagnostics (n_skips*)." | |
) | |
else: | |
if ( | |
self.n_skips_no_inliers_ | |
+ self.n_skips_invalid_data_ | |
+ self.n_skips_invalid_model_ | |
) > self.max_skips: | |
warnings.warn( | |
( | |
"RANSAC found a valid consensus set but exited" | |
" early due to skipping more iterations than" | |
" `max_skips`. See estimator attributes for" | |
" diagnostics (n_skips*)." | |
), | |
ConvergenceWarning, | |
) | |
# estimate final model using all inliers | |
if sample_weight is None: | |
estimator.fit(X_inlier_best, y_inlier_best) | |
else: | |
estimator.fit( | |
X_inlier_best, | |
y_inlier_best, | |
sample_weight=sample_weight[inlier_best_idxs_subset], | |
) | |
self.estimator_ = estimator | |
self.inlier_mask_ = inlier_mask_best | |
return self | |
def predict(self, X): | |
"""Predict using the estimated model. | |
This is a wrapper for `estimator_.predict(X)`. | |
Parameters | |
---------- | |
X : {array-like or sparse matrix} of shape (n_samples, n_features) | |
Input data. | |
Returns | |
------- | |
y : array, shape = [n_samples] or [n_samples, n_targets] | |
Returns predicted values. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data( | |
X, | |
force_all_finite=False, | |
accept_sparse=True, | |
reset=False, | |
) | |
return self.estimator_.predict(X) | |
def score(self, X, y): | |
"""Return the score of the prediction. | |
This is a wrapper for `estimator_.score(X, y)`. | |
Parameters | |
---------- | |
X : (array-like or sparse matrix} of shape (n_samples, n_features) | |
Training data. | |
y : array-like of shape (n_samples,) or (n_samples, n_targets) | |
Target values. | |
Returns | |
------- | |
z : float | |
Score of the prediction. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data( | |
X, | |
force_all_finite=False, | |
accept_sparse=True, | |
reset=False, | |
) | |
return self.estimator_.score(X, y) | |
def _more_tags(self): | |
return { | |
"_xfail_checks": { | |
"check_sample_weights_invariance": ( | |
"zero sample_weight is not equivalent to removing samples" | |
), | |
} | |
} | |