peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/_mask.py
from contextlib import suppress | |
import numpy as np | |
from scipy import sparse as sp | |
from . import is_scalar_nan | |
from .fixes import _object_dtype_isnan | |
def _get_dense_mask(X, value_to_mask): | |
with suppress(ImportError, AttributeError): | |
# We also suppress `AttributeError` because older versions of pandas do | |
# not have `NA`. | |
import pandas | |
if value_to_mask is pandas.NA: | |
return pandas.isna(X) | |
if is_scalar_nan(value_to_mask): | |
if X.dtype.kind == "f": | |
Xt = np.isnan(X) | |
elif X.dtype.kind in ("i", "u"): | |
# can't have NaNs in integer array. | |
Xt = np.zeros(X.shape, dtype=bool) | |
else: | |
# np.isnan does not work on object dtypes. | |
Xt = _object_dtype_isnan(X) | |
else: | |
Xt = X == value_to_mask | |
return Xt | |
def _get_mask(X, value_to_mask): | |
"""Compute the boolean mask X == value_to_mask. | |
Parameters | |
---------- | |
X : {ndarray, sparse matrix} of shape (n_samples, n_features) | |
Input data, where ``n_samples`` is the number of samples and | |
``n_features`` is the number of features. | |
value_to_mask : {int, float} | |
The value which is to be masked in X. | |
Returns | |
------- | |
X_mask : {ndarray, sparse matrix} of shape (n_samples, n_features) | |
Missing mask. | |
""" | |
if not sp.issparse(X): | |
# For all cases apart of a sparse input where we need to reconstruct | |
# a sparse output | |
return _get_dense_mask(X, value_to_mask) | |
Xt = _get_dense_mask(X.data, value_to_mask) | |
sparse_constructor = sp.csr_matrix if X.format == "csr" else sp.csc_matrix | |
Xt_sparse = sparse_constructor( | |
(Xt, X.indices.copy(), X.indptr.copy()), shape=X.shape, dtype=bool | |
) | |
return Xt_sparse | |