peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_arrayfuncs.py
import numpy as np | |
import pytest | |
from sklearn.utils._testing import assert_allclose | |
from sklearn.utils.arrayfuncs import _all_with_any_reduction_axis_1, min_pos | |
def test_min_pos(): | |
# Check that min_pos returns a positive value and that it's consistent | |
# between float and double | |
X = np.random.RandomState(0).randn(100) | |
min_double = min_pos(X) | |
min_float = min_pos(X.astype(np.float32)) | |
assert_allclose(min_double, min_float) | |
assert min_double >= 0 | |
def test_min_pos_no_positive(dtype): | |
# Check that the return value of min_pos is the maximum representable | |
# value of the input dtype when all input elements are <= 0 (#19328) | |
X = np.full(100, -1.0).astype(dtype, copy=False) | |
assert min_pos(X) == np.finfo(dtype).max | |
def test_all_with_any_reduction_axis_1(dtype, value): | |
# Check that return value is False when there is no row equal to `value` | |
X = np.arange(12, dtype=dtype).reshape(3, 4) | |
assert not _all_with_any_reduction_axis_1(X, value=value) | |
# Make a row equal to `value` | |
X[1, :] = value | |
assert _all_with_any_reduction_axis_1(X, value=value) | |