peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_murmurhash.py
# Author: Olivier Grisel <[email protected]> | |
# | |
# License: BSD 3 clause | |
import numpy as np | |
from numpy.testing import assert_array_almost_equal, assert_array_equal | |
from sklearn.utils.murmurhash import murmurhash3_32 | |
def test_mmhash3_int(): | |
assert murmurhash3_32(3) == 847579505 | |
assert murmurhash3_32(3, seed=0) == 847579505 | |
assert murmurhash3_32(3, seed=42) == -1823081949 | |
assert murmurhash3_32(3, positive=False) == 847579505 | |
assert murmurhash3_32(3, seed=0, positive=False) == 847579505 | |
assert murmurhash3_32(3, seed=42, positive=False) == -1823081949 | |
assert murmurhash3_32(3, positive=True) == 847579505 | |
assert murmurhash3_32(3, seed=0, positive=True) == 847579505 | |
assert murmurhash3_32(3, seed=42, positive=True) == 2471885347 | |
def test_mmhash3_int_array(): | |
rng = np.random.RandomState(42) | |
keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) | |
keys = keys.reshape((3, 2, 1)) | |
for seed in [0, 42]: | |
expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) | |
expected = expected.reshape(keys.shape) | |
assert_array_equal(murmurhash3_32(keys, seed), expected) | |
for seed in [0, 42]: | |
expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) | |
expected = expected.reshape(keys.shape) | |
assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) | |
def test_mmhash3_bytes(): | |
assert murmurhash3_32(b"foo", 0) == -156908512 | |
assert murmurhash3_32(b"foo", 42) == -1322301282 | |
assert murmurhash3_32(b"foo", 0, positive=True) == 4138058784 | |
assert murmurhash3_32(b"foo", 42, positive=True) == 2972666014 | |
def test_mmhash3_unicode(): | |
assert murmurhash3_32("foo", 0) == -156908512 | |
assert murmurhash3_32("foo", 42) == -1322301282 | |
assert murmurhash3_32("foo", 0, positive=True) == 4138058784 | |
assert murmurhash3_32("foo", 42, positive=True) == 2972666014 | |
def test_no_collision_on_byte_range(): | |
previous_hashes = set() | |
for i in range(100): | |
h = murmurhash3_32(" " * i, 0) | |
assert h not in previous_hashes, "Found collision on growing empty string" | |
def test_uniform_distribution(): | |
n_bins, n_samples = 10, 100000 | |
bins = np.zeros(n_bins, dtype=np.float64) | |
for i in range(n_samples): | |
bins[murmurhash3_32(i, positive=True) % n_bins] += 1 | |
means = bins / n_samples | |
expected = np.full(n_bins, 1.0 / n_bins) | |
assert_array_almost_equal(means / expected, np.ones(n_bins), 2) | |