peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_pprint.py
import re | |
from pprint import PrettyPrinter | |
import numpy as np | |
from sklearn.utils._pprint import _EstimatorPrettyPrinter | |
from sklearn.linear_model import LogisticRegressionCV | |
from sklearn.pipeline import make_pipeline | |
from sklearn.base import BaseEstimator, TransformerMixin | |
from sklearn.feature_selection import SelectKBest, chi2 | |
from sklearn import config_context | |
# Ignore flake8 (lots of line too long issues) | |
# ruff: noqa | |
# Constructors excerpted to test pprinting | |
class LogisticRegression(BaseEstimator): | |
def __init__( | |
self, | |
penalty="l2", | |
dual=False, | |
tol=1e-4, | |
C=1.0, | |
fit_intercept=True, | |
intercept_scaling=1, | |
class_weight=None, | |
random_state=None, | |
solver="warn", | |
max_iter=100, | |
multi_class="warn", | |
verbose=0, | |
warm_start=False, | |
n_jobs=None, | |
l1_ratio=None, | |
): | |
self.penalty = penalty | |
self.dual = dual | |
self.tol = tol | |
self.C = C | |
self.fit_intercept = fit_intercept | |
self.intercept_scaling = intercept_scaling | |
self.class_weight = class_weight | |
self.random_state = random_state | |
self.solver = solver | |
self.max_iter = max_iter | |
self.multi_class = multi_class | |
self.verbose = verbose | |
self.warm_start = warm_start | |
self.n_jobs = n_jobs | |
self.l1_ratio = l1_ratio | |
def fit(self, X, y): | |
return self | |
class StandardScaler(TransformerMixin, BaseEstimator): | |
def __init__(self, copy=True, with_mean=True, with_std=True): | |
self.with_mean = with_mean | |
self.with_std = with_std | |
self.copy = copy | |
def transform(self, X, copy=None): | |
return self | |
class RFE(BaseEstimator): | |
def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0): | |
self.estimator = estimator | |
self.n_features_to_select = n_features_to_select | |
self.step = step | |
self.verbose = verbose | |
class GridSearchCV(BaseEstimator): | |
def __init__( | |
self, | |
estimator, | |
param_grid, | |
scoring=None, | |
n_jobs=None, | |
iid="warn", | |
refit=True, | |
cv="warn", | |
verbose=0, | |
pre_dispatch="2*n_jobs", | |
error_score="raise-deprecating", | |
return_train_score=False, | |
): | |
self.estimator = estimator | |
self.param_grid = param_grid | |
self.scoring = scoring | |
self.n_jobs = n_jobs | |
self.iid = iid | |
self.refit = refit | |
self.cv = cv | |
self.verbose = verbose | |
self.pre_dispatch = pre_dispatch | |
self.error_score = error_score | |
self.return_train_score = return_train_score | |
class CountVectorizer(BaseEstimator): | |
def __init__( | |
self, | |
input="content", | |
encoding="utf-8", | |
decode_error="strict", | |
strip_accents=None, | |
lowercase=True, | |
preprocessor=None, | |
tokenizer=None, | |
stop_words=None, | |
token_pattern=r"(?u)\b\w\w+\b", | |
ngram_range=(1, 1), | |
analyzer="word", | |
max_df=1.0, | |
min_df=1, | |
max_features=None, | |
vocabulary=None, | |
binary=False, | |
dtype=np.int64, | |
): | |
self.input = input | |
self.encoding = encoding | |
self.decode_error = decode_error | |
self.strip_accents = strip_accents | |
self.preprocessor = preprocessor | |
self.tokenizer = tokenizer | |
self.analyzer = analyzer | |
self.lowercase = lowercase | |
self.token_pattern = token_pattern | |
self.stop_words = stop_words | |
self.max_df = max_df | |
self.min_df = min_df | |
self.max_features = max_features | |
self.ngram_range = ngram_range | |
self.vocabulary = vocabulary | |
self.binary = binary | |
self.dtype = dtype | |
class Pipeline(BaseEstimator): | |
def __init__(self, steps, memory=None): | |
self.steps = steps | |
self.memory = memory | |
class SVC(BaseEstimator): | |
def __init__( | |
self, | |
C=1.0, | |
kernel="rbf", | |
degree=3, | |
gamma="auto_deprecated", | |
coef0=0.0, | |
shrinking=True, | |
probability=False, | |
tol=1e-3, | |
cache_size=200, | |
class_weight=None, | |
verbose=False, | |
max_iter=-1, | |
decision_function_shape="ovr", | |
random_state=None, | |
): | |
self.kernel = kernel | |
self.degree = degree | |
self.gamma = gamma | |
self.coef0 = coef0 | |
self.tol = tol | |
self.C = C | |
self.shrinking = shrinking | |
self.probability = probability | |
self.cache_size = cache_size | |
self.class_weight = class_weight | |
self.verbose = verbose | |
self.max_iter = max_iter | |
self.decision_function_shape = decision_function_shape | |
self.random_state = random_state | |
class PCA(BaseEstimator): | |
def __init__( | |
self, | |
n_components=None, | |
copy=True, | |
whiten=False, | |
svd_solver="auto", | |
tol=0.0, | |
iterated_power="auto", | |
random_state=None, | |
): | |
self.n_components = n_components | |
self.copy = copy | |
self.whiten = whiten | |
self.svd_solver = svd_solver | |
self.tol = tol | |
self.iterated_power = iterated_power | |
self.random_state = random_state | |
class NMF(BaseEstimator): | |
def __init__( | |
self, | |
n_components=None, | |
init=None, | |
solver="cd", | |
beta_loss="frobenius", | |
tol=1e-4, | |
max_iter=200, | |
random_state=None, | |
alpha=0.0, | |
l1_ratio=0.0, | |
verbose=0, | |
shuffle=False, | |
): | |
self.n_components = n_components | |
self.init = init | |
self.solver = solver | |
self.beta_loss = beta_loss | |
self.tol = tol | |
self.max_iter = max_iter | |
self.random_state = random_state | |
self.alpha = alpha | |
self.l1_ratio = l1_ratio | |
self.verbose = verbose | |
self.shuffle = shuffle | |
class SimpleImputer(BaseEstimator): | |
def __init__( | |
self, | |
missing_values=np.nan, | |
strategy="mean", | |
fill_value=None, | |
verbose=0, | |
copy=True, | |
): | |
self.missing_values = missing_values | |
self.strategy = strategy | |
self.fill_value = fill_value | |
self.verbose = verbose | |
self.copy = copy | |
def test_basic(print_changed_only_false): | |
# Basic pprint test | |
lr = LogisticRegression() | |
expected = """ | |
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, | |
intercept_scaling=1, l1_ratio=None, max_iter=100, | |
multi_class='warn', n_jobs=None, penalty='l2', | |
random_state=None, solver='warn', tol=0.0001, verbose=0, | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert lr.__repr__() == expected | |
def test_changed_only(): | |
# Make sure the changed_only param is correctly used when True (default) | |
lr = LogisticRegression(C=99) | |
expected = """LogisticRegression(C=99)""" | |
assert lr.__repr__() == expected | |
# Check with a repr that doesn't fit on a single line | |
lr = LogisticRegression( | |
C=99, class_weight=0.4, fit_intercept=False, tol=1234, verbose=True | |
) | |
expected = """ | |
LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234, | |
verbose=True)""" | |
expected = expected[1:] # remove first \n | |
assert lr.__repr__() == expected | |
imputer = SimpleImputer(missing_values=0) | |
expected = """SimpleImputer(missing_values=0)""" | |
assert imputer.__repr__() == expected | |
# Defaults to np.nan, trying with float('NaN') | |
imputer = SimpleImputer(missing_values=float("NaN")) | |
expected = """SimpleImputer()""" | |
assert imputer.__repr__() == expected | |
# make sure array parameters don't throw error (see #13583) | |
repr(LogisticRegressionCV(Cs=np.array([0.1, 1]))) | |
def test_pipeline(print_changed_only_false): | |
# Render a pipeline object | |
pipeline = make_pipeline(StandardScaler(), LogisticRegression(C=999)) | |
expected = """ | |
Pipeline(memory=None, | |
steps=[('standardscaler', | |
StandardScaler(copy=True, with_mean=True, with_std=True)), | |
('logisticregression', | |
LogisticRegression(C=999, class_weight=None, dual=False, | |
fit_intercept=True, intercept_scaling=1, | |
l1_ratio=None, max_iter=100, | |
multi_class='warn', n_jobs=None, | |
penalty='l2', random_state=None, | |
solver='warn', tol=0.0001, verbose=0, | |
warm_start=False))], | |
verbose=False)""" | |
expected = expected[1:] # remove first \n | |
assert pipeline.__repr__() == expected | |
def test_deeply_nested(print_changed_only_false): | |
# Render a deeply nested estimator | |
rfe = RFE(RFE(RFE(RFE(RFE(RFE(RFE(LogisticRegression()))))))) | |
expected = """ | |
RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=RFE(estimator=LogisticRegression(C=1.0, | |
class_weight=None, | |
dual=False, | |
fit_intercept=True, | |
intercept_scaling=1, | |
l1_ratio=None, | |
max_iter=100, | |
multi_class='warn', | |
n_jobs=None, | |
penalty='l2', | |
random_state=None, | |
solver='warn', | |
tol=0.0001, | |
verbose=0, | |
warm_start=False), | |
n_features_to_select=None, | |
step=1, | |
verbose=0), | |
n_features_to_select=None, | |
step=1, | |
verbose=0), | |
n_features_to_select=None, | |
step=1, verbose=0), | |
n_features_to_select=None, step=1, | |
verbose=0), | |
n_features_to_select=None, step=1, verbose=0), | |
n_features_to_select=None, step=1, verbose=0), | |
n_features_to_select=None, step=1, verbose=0)""" | |
expected = expected[1:] # remove first \n | |
assert rfe.__repr__() == expected | |
def test_gridsearch(print_changed_only_false): | |
# render a gridsearch | |
param_grid = [ | |
{"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]}, | |
{"kernel": ["linear"], "C": [1, 10, 100, 1000]}, | |
] | |
gs = GridSearchCV(SVC(), param_grid, cv=5) | |
expected = """ | |
GridSearchCV(cv=5, error_score='raise-deprecating', | |
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, | |
decision_function_shape='ovr', degree=3, | |
gamma='auto_deprecated', kernel='rbf', max_iter=-1, | |
probability=False, random_state=None, shrinking=True, | |
tol=0.001, verbose=False), | |
iid='warn', n_jobs=None, | |
param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], | |
'kernel': ['rbf']}, | |
{'C': [1, 10, 100, 1000], 'kernel': ['linear']}], | |
pre_dispatch='2*n_jobs', refit=True, return_train_score=False, | |
scoring=None, verbose=0)""" | |
expected = expected[1:] # remove first \n | |
assert gs.__repr__() == expected | |
def test_gridsearch_pipeline(print_changed_only_false): | |
# render a pipeline inside a gridsearch | |
pp = _EstimatorPrettyPrinter(compact=True, indent=1, indent_at_name=True) | |
pipeline = Pipeline([("reduce_dim", PCA()), ("classify", SVC())]) | |
N_FEATURES_OPTIONS = [2, 4, 8] | |
C_OPTIONS = [1, 10, 100, 1000] | |
param_grid = [ | |
{ | |
"reduce_dim": [PCA(iterated_power=7), NMF()], | |
"reduce_dim__n_components": N_FEATURES_OPTIONS, | |
"classify__C": C_OPTIONS, | |
}, | |
{ | |
"reduce_dim": [SelectKBest(chi2)], | |
"reduce_dim__k": N_FEATURES_OPTIONS, | |
"classify__C": C_OPTIONS, | |
}, | |
] | |
gspipline = GridSearchCV(pipeline, cv=3, n_jobs=1, param_grid=param_grid) | |
expected = """ | |
GridSearchCV(cv=3, error_score='raise-deprecating', | |
estimator=Pipeline(memory=None, | |
steps=[('reduce_dim', | |
PCA(copy=True, iterated_power='auto', | |
n_components=None, | |
random_state=None, | |
svd_solver='auto', tol=0.0, | |
whiten=False)), | |
('classify', | |
SVC(C=1.0, cache_size=200, | |
class_weight=None, coef0=0.0, | |
decision_function_shape='ovr', | |
degree=3, gamma='auto_deprecated', | |
kernel='rbf', max_iter=-1, | |
probability=False, | |
random_state=None, shrinking=True, | |
tol=0.001, verbose=False))]), | |
iid='warn', n_jobs=1, | |
param_grid=[{'classify__C': [1, 10, 100, 1000], | |
'reduce_dim': [PCA(copy=True, iterated_power=7, | |
n_components=None, | |
random_state=None, | |
svd_solver='auto', tol=0.0, | |
whiten=False), | |
NMF(alpha=0.0, beta_loss='frobenius', | |
init=None, l1_ratio=0.0, | |
max_iter=200, n_components=None, | |
random_state=None, shuffle=False, | |
solver='cd', tol=0.0001, | |
verbose=0)], | |
'reduce_dim__n_components': [2, 4, 8]}, | |
{'classify__C': [1, 10, 100, 1000], | |
'reduce_dim': [SelectKBest(k=10, | |
score_func=<function chi2 at some_address>)], | |
'reduce_dim__k': [2, 4, 8]}], | |
pre_dispatch='2*n_jobs', refit=True, return_train_score=False, | |
scoring=None, verbose=0)""" | |
expected = expected[1:] # remove first \n | |
repr_ = pp.pformat(gspipline) | |
# Remove address of '<function chi2 at 0x.....>' for reproducibility | |
repr_ = re.sub("function chi2 at 0x.*>", "function chi2 at some_address>", repr_) | |
assert repr_ == expected | |
def test_n_max_elements_to_show(print_changed_only_false): | |
n_max_elements_to_show = 30 | |
pp = _EstimatorPrettyPrinter( | |
compact=True, | |
indent=1, | |
indent_at_name=True, | |
n_max_elements_to_show=n_max_elements_to_show, | |
) | |
# No ellipsis | |
vocabulary = {i: i for i in range(n_max_elements_to_show)} | |
vectorizer = CountVectorizer(vocabulary=vocabulary) | |
expected = r""" | |
CountVectorizer(analyzer='word', binary=False, decode_error='strict', | |
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content', | |
lowercase=True, max_df=1.0, max_features=None, min_df=1, | |
ngram_range=(1, 1), preprocessor=None, stop_words=None, | |
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b', | |
tokenizer=None, | |
vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, | |
8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, | |
15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, | |
21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26, | |
27: 27, 28: 28, 29: 29})""" | |
expected = expected[1:] # remove first \n | |
assert pp.pformat(vectorizer) == expected | |
# Now with ellipsis | |
vocabulary = {i: i for i in range(n_max_elements_to_show + 1)} | |
vectorizer = CountVectorizer(vocabulary=vocabulary) | |
expected = r""" | |
CountVectorizer(analyzer='word', binary=False, decode_error='strict', | |
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content', | |
lowercase=True, max_df=1.0, max_features=None, min_df=1, | |
ngram_range=(1, 1), preprocessor=None, stop_words=None, | |
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b', | |
tokenizer=None, | |
vocabulary={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, | |
8: 8, 9: 9, 10: 10, 11: 11, 12: 12, 13: 13, 14: 14, | |
15: 15, 16: 16, 17: 17, 18: 18, 19: 19, 20: 20, | |
21: 21, 22: 22, 23: 23, 24: 24, 25: 25, 26: 26, | |
27: 27, 28: 28, 29: 29, ...})""" | |
expected = expected[1:] # remove first \n | |
assert pp.pformat(vectorizer) == expected | |
# Also test with lists | |
param_grid = {"C": list(range(n_max_elements_to_show))} | |
gs = GridSearchCV(SVC(), param_grid) | |
expected = """ | |
GridSearchCV(cv='warn', error_score='raise-deprecating', | |
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, | |
decision_function_shape='ovr', degree=3, | |
gamma='auto_deprecated', kernel='rbf', max_iter=-1, | |
probability=False, random_state=None, shrinking=True, | |
tol=0.001, verbose=False), | |
iid='warn', n_jobs=None, | |
param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, | |
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, | |
27, 28, 29]}, | |
pre_dispatch='2*n_jobs', refit=True, return_train_score=False, | |
scoring=None, verbose=0)""" | |
expected = expected[1:] # remove first \n | |
assert pp.pformat(gs) == expected | |
# Now with ellipsis | |
param_grid = {"C": list(range(n_max_elements_to_show + 1))} | |
gs = GridSearchCV(SVC(), param_grid) | |
expected = """ | |
GridSearchCV(cv='warn', error_score='raise-deprecating', | |
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, | |
decision_function_shape='ovr', degree=3, | |
gamma='auto_deprecated', kernel='rbf', max_iter=-1, | |
probability=False, random_state=None, shrinking=True, | |
tol=0.001, verbose=False), | |
iid='warn', n_jobs=None, | |
param_grid={'C': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, | |
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, | |
27, 28, 29, ...]}, | |
pre_dispatch='2*n_jobs', refit=True, return_train_score=False, | |
scoring=None, verbose=0)""" | |
expected = expected[1:] # remove first \n | |
assert pp.pformat(gs) == expected | |
def test_bruteforce_ellipsis(print_changed_only_false): | |
# Check that the bruteforce ellipsis (used when the number of non-blank | |
# characters exceeds N_CHAR_MAX) renders correctly. | |
lr = LogisticRegression() | |
# test when the left and right side of the ellipsis aren't on the same | |
# line. | |
expected = """ | |
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, | |
in... | |
multi_class='warn', n_jobs=None, penalty='l2', | |
random_state=None, solver='warn', tol=0.0001, verbose=0, | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert expected == lr.__repr__(N_CHAR_MAX=150) | |
# test with very small N_CHAR_MAX | |
# Note that N_CHAR_MAX is not strictly enforced, but it's normal: to avoid | |
# weird reprs we still keep the whole line of the right part (after the | |
# ellipsis). | |
expected = """ | |
Lo... | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert expected == lr.__repr__(N_CHAR_MAX=4) | |
# test with N_CHAR_MAX == number of non-blank characters: In this case we | |
# don't want ellipsis | |
full_repr = lr.__repr__(N_CHAR_MAX=float("inf")) | |
n_nonblank = len("".join(full_repr.split())) | |
assert lr.__repr__(N_CHAR_MAX=n_nonblank) == full_repr | |
assert "..." not in full_repr | |
# test with N_CHAR_MAX == number of non-blank characters - 10: the left and | |
# right side of the ellispsis are on different lines. In this case we | |
# want to expend the whole line of the right side | |
expected = """ | |
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, | |
intercept_scaling=1, l1_ratio=None, max_i... | |
multi_class='warn', n_jobs=None, penalty='l2', | |
random_state=None, solver='warn', tol=0.0001, verbose=0, | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 10) | |
# test with N_CHAR_MAX == number of non-blank characters - 10: the left and | |
# right side of the ellispsis are on the same line. In this case we don't | |
# want to expend the whole line of the right side, just add the ellispsis | |
# between the 2 sides. | |
expected = """ | |
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, | |
intercept_scaling=1, l1_ratio=None, max_iter..., | |
multi_class='warn', n_jobs=None, penalty='l2', | |
random_state=None, solver='warn', tol=0.0001, verbose=0, | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 4) | |
# test with N_CHAR_MAX == number of non-blank characters - 2: the left and | |
# right side of the ellispsis are on the same line, but adding the ellipsis | |
# would actually make the repr longer. So we don't add the ellipsis. | |
expected = """ | |
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, | |
intercept_scaling=1, l1_ratio=None, max_iter=100, | |
multi_class='warn', n_jobs=None, penalty='l2', | |
random_state=None, solver='warn', tol=0.0001, verbose=0, | |
warm_start=False)""" | |
expected = expected[1:] # remove first \n | |
assert expected == lr.__repr__(N_CHAR_MAX=n_nonblank - 2) | |
def test_builtin_prettyprinter(): | |
# non regression test than ensures we can still use the builtin | |
# PrettyPrinter class for estimators (as done e.g. by joblib). | |
# Used to be a bug | |
PrettyPrinter().pprint(LogisticRegression()) | |
def test_kwargs_in_init(): | |
# Make sure the changed_only=True mode is OK when an argument is passed as | |
# kwargs. | |
# Non-regression test for | |
# https://github.com/scikit-learn/scikit-learn/issues/17206 | |
class WithKWargs(BaseEstimator): | |
# Estimator with a kwargs argument. These need to hack around | |
# set_params and get_params. Here we mimic what LightGBM does. | |
def __init__(self, a="willchange", b="unchanged", **kwargs): | |
self.a = a | |
self.b = b | |
self._other_params = {} | |
self.set_params(**kwargs) | |
def get_params(self, deep=True): | |
params = super().get_params(deep=deep) | |
params.update(self._other_params) | |
return params | |
def set_params(self, **params): | |
for key, value in params.items(): | |
setattr(self, key, value) | |
self._other_params[key] = value | |
return self | |
est = WithKWargs(a="something", c="abcd", d=None) | |
expected = "WithKWargs(a='something', c='abcd', d=None)" | |
assert expected == est.__repr__() | |
with config_context(print_changed_only=False): | |
expected = "WithKWargs(a='something', b='unchanged', c='abcd', d=None)" | |
assert expected == est.__repr__() | |
def test_complexity_print_changed_only(): | |
# Make sure `__repr__` is called the same amount of times | |
# whether `print_changed_only` is True or False | |
# Non-regression test for | |
# https://github.com/scikit-learn/scikit-learn/issues/18490 | |
class DummyEstimator(TransformerMixin, BaseEstimator): | |
nb_times_repr_called = 0 | |
def __init__(self, estimator=None): | |
self.estimator = estimator | |
def __repr__(self): | |
DummyEstimator.nb_times_repr_called += 1 | |
return super().__repr__() | |
def transform(self, X, copy=None): # pragma: no cover | |
return X | |
estimator = DummyEstimator( | |
make_pipeline(DummyEstimator(DummyEstimator()), DummyEstimator(), "passthrough") | |
) | |
with config_context(print_changed_only=False): | |
repr(estimator) | |
nb_repr_print_changed_only_false = DummyEstimator.nb_times_repr_called | |
DummyEstimator.nb_times_repr_called = 0 | |
with config_context(print_changed_only=True): | |
repr(estimator) | |
nb_repr_print_changed_only_true = DummyEstimator.nb_times_repr_called | |
assert nb_repr_print_changed_only_false == nb_repr_print_changed_only_true | |