peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_stats.py
import numpy as np | |
from numpy.testing import assert_allclose | |
from pytest import approx | |
from sklearn.utils.stats import _weighted_percentile | |
def test_weighted_percentile(): | |
y = np.empty(102, dtype=np.float64) | |
y[:50] = 0 | |
y[-51:] = 2 | |
y[-1] = 100000 | |
y[50] = 1 | |
sw = np.ones(102, dtype=np.float64) | |
sw[-1] = 0.0 | |
score = _weighted_percentile(y, sw, 50) | |
assert approx(score) == 1 | |
def test_weighted_percentile_equal(): | |
y = np.empty(102, dtype=np.float64) | |
y.fill(0.0) | |
sw = np.ones(102, dtype=np.float64) | |
sw[-1] = 0.0 | |
score = _weighted_percentile(y, sw, 50) | |
assert score == 0 | |
def test_weighted_percentile_zero_weight(): | |
y = np.empty(102, dtype=np.float64) | |
y.fill(1.0) | |
sw = np.ones(102, dtype=np.float64) | |
sw.fill(0.0) | |
score = _weighted_percentile(y, sw, 50) | |
assert approx(score) == 1.0 | |
def test_weighted_percentile_zero_weight_zero_percentile(): | |
y = np.array([0, 1, 2, 3, 4, 5]) | |
sw = np.array([0, 0, 1, 1, 1, 0]) | |
score = _weighted_percentile(y, sw, 0) | |
assert approx(score) == 2 | |
score = _weighted_percentile(y, sw, 50) | |
assert approx(score) == 3 | |
score = _weighted_percentile(y, sw, 100) | |
assert approx(score) == 4 | |
def test_weighted_median_equal_weights(): | |
# Checks weighted percentile=0.5 is same as median when weights equal | |
rng = np.random.RandomState(0) | |
# Odd size as _weighted_percentile takes lower weighted percentile | |
x = rng.randint(10, size=11) | |
weights = np.ones(x.shape) | |
median = np.median(x) | |
w_median = _weighted_percentile(x, weights) | |
assert median == approx(w_median) | |
def test_weighted_median_integer_weights(): | |
# Checks weighted percentile=0.5 is same as median when manually weight | |
# data | |
rng = np.random.RandomState(0) | |
x = rng.randint(20, size=10) | |
weights = rng.choice(5, size=10) | |
x_manual = np.repeat(x, weights) | |
median = np.median(x_manual) | |
w_median = _weighted_percentile(x, weights) | |
assert median == approx(w_median) | |
def test_weighted_percentile_2d(): | |
# Check for when array 2D and sample_weight 1D | |
rng = np.random.RandomState(0) | |
x1 = rng.randint(10, size=10) | |
w1 = rng.choice(5, size=10) | |
x2 = rng.randint(20, size=10) | |
x_2d = np.vstack((x1, x2)).T | |
w_median = _weighted_percentile(x_2d, w1) | |
p_axis_0 = [_weighted_percentile(x_2d[:, i], w1) for i in range(x_2d.shape[1])] | |
assert_allclose(w_median, p_axis_0) | |
# Check when array and sample_weight boht 2D | |
w2 = rng.choice(5, size=10) | |
w_2d = np.vstack((w1, w2)).T | |
w_median = _weighted_percentile(x_2d, w_2d) | |
p_axis_0 = [ | |
_weighted_percentile(x_2d[:, i], w_2d[:, i]) for i in range(x_2d.shape[1]) | |
] | |
assert_allclose(w_median, p_axis_0) | |