peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/_fftlog.py
"""Fast Hankel transforms using the FFTLog algorithm. | |
The implementation closely follows the Fortran code of Hamilton (2000). | |
added: 14/11/2020 Nicolas Tessore <[email protected]> | |
""" | |
from ._basic import _dispatch | |
from scipy._lib.uarray import Dispatchable | |
from ._fftlog_backend import fhtoffset | |
import numpy as np | |
__all__ = ['fht', 'ifht', 'fhtoffset'] | |
def fht(a, dln, mu, offset=0.0, bias=0.0): | |
r'''Compute the fast Hankel transform. | |
Computes the discrete Hankel transform of a logarithmically spaced periodic | |
sequence using the FFTLog algorithm [1]_, [2]_. | |
Parameters | |
---------- | |
a : array_like (..., n) | |
Real periodic input array, uniformly logarithmically spaced. For | |
multidimensional input, the transform is performed over the last axis. | |
dln : float | |
Uniform logarithmic spacing of the input array. | |
mu : float | |
Order of the Hankel transform, any positive or negative real number. | |
offset : float, optional | |
Offset of the uniform logarithmic spacing of the output array. | |
bias : float, optional | |
Exponent of power law bias, any positive or negative real number. | |
Returns | |
------- | |
A : array_like (..., n) | |
The transformed output array, which is real, periodic, uniformly | |
logarithmically spaced, and of the same shape as the input array. | |
See Also | |
-------- | |
ifht : The inverse of `fht`. | |
fhtoffset : Return an optimal offset for `fht`. | |
Notes | |
----- | |
This function computes a discrete version of the Hankel transform | |
.. math:: | |
A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;, | |
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index | |
:math:`\mu` may be any real number, positive or negative. Note that the | |
numerical Hankel transform uses an integrand of :math:`k \, dr`, while the | |
mathematical Hankel transform is commonly defined using :math:`r \, dr`. | |
The input array `a` is a periodic sequence of length :math:`n`, uniformly | |
logarithmically spaced with spacing `dln`, | |
.. math:: | |
a_j = a(r_j) \;, \quad | |
r_j = r_c \exp[(j-j_c) \, \mathtt{dln}] | |
centred about the point :math:`r_c`. Note that the central index | |
:math:`j_c = (n-1)/2` is half-integral if :math:`n` is even, so that | |
:math:`r_c` falls between two input elements. Similarly, the output | |
array `A` is a periodic sequence of length :math:`n`, also uniformly | |
logarithmically spaced with spacing `dln` | |
.. math:: | |
A_j = A(k_j) \;, \quad | |
k_j = k_c \exp[(j-j_c) \, \mathtt{dln}] | |
centred about the point :math:`k_c`. | |
The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may | |
be chosen arbitrarily, but it would be usual to choose the product | |
:math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity. This can be | |
changed using the `offset` parameter, which controls the logarithmic offset | |
:math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array. | |
Choosing an optimal value for `offset` may reduce ringing of the discrete | |
Hankel transform. | |
If the `bias` parameter is nonzero, this function computes a discrete | |
version of the biased Hankel transform | |
.. math:: | |
A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr | |
where :math:`q` is the value of `bias`, and a power law bias | |
:math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence. | |
Biasing the transform can help approximate the continuous transform of | |
:math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is | |
close to a periodic sequence, in which case the resulting :math:`A(k)` will | |
be close to the continuous transform. | |
References | |
---------- | |
.. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35 | |
.. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191) | |
Examples | |
-------- | |
This example is the adapted version of ``fftlogtest.f`` which is provided | |
in [2]_. It evaluates the integral | |
.. math:: | |
\int^\infty_0 r^{\mu+1} \exp(-r^2/2) J_\mu(k, r) k dr | |
= k^{\mu+1} \exp(-k^2/2) . | |
>>> import numpy as np | |
>>> from scipy import fft | |
>>> import matplotlib.pyplot as plt | |
Parameters for the transform. | |
>>> mu = 0.0 # Order mu of Bessel function | |
>>> r = np.logspace(-7, 1, 128) # Input evaluation points | |
>>> dln = np.log(r[1]/r[0]) # Step size | |
>>> offset = fft.fhtoffset(dln, initial=-6*np.log(10), mu=mu) | |
>>> k = np.exp(offset)/r[::-1] # Output evaluation points | |
Define the analytical function. | |
>>> def f(x, mu): | |
... """Analytical function: x^(mu+1) exp(-x^2/2).""" | |
... return x**(mu + 1)*np.exp(-x**2/2) | |
Evaluate the function at ``r`` and compute the corresponding values at | |
``k`` using FFTLog. | |
>>> a_r = f(r, mu) | |
>>> fht = fft.fht(a_r, dln, mu=mu, offset=offset) | |
For this example we can actually compute the analytical response (which in | |
this case is the same as the input function) for comparison and compute the | |
relative error. | |
>>> a_k = f(k, mu) | |
>>> rel_err = abs((fht-a_k)/a_k) | |
Plot the result. | |
>>> figargs = {'sharex': True, 'sharey': True, 'constrained_layout': True} | |
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), **figargs) | |
>>> ax1.set_title(r'$r^{\mu+1}\ \exp(-r^2/2)$') | |
>>> ax1.loglog(r, a_r, 'k', lw=2) | |
>>> ax1.set_xlabel('r') | |
>>> ax2.set_title(r'$k^{\mu+1} \exp(-k^2/2)$') | |
>>> ax2.loglog(k, a_k, 'k', lw=2, label='Analytical') | |
>>> ax2.loglog(k, fht, 'C3--', lw=2, label='FFTLog') | |
>>> ax2.set_xlabel('k') | |
>>> ax2.legend(loc=3, framealpha=1) | |
>>> ax2.set_ylim([1e-10, 1e1]) | |
>>> ax2b = ax2.twinx() | |
>>> ax2b.loglog(k, rel_err, 'C0', label='Rel. Error (-)') | |
>>> ax2b.set_ylabel('Rel. Error (-)', color='C0') | |
>>> ax2b.tick_params(axis='y', labelcolor='C0') | |
>>> ax2b.legend(loc=4, framealpha=1) | |
>>> ax2b.set_ylim([1e-9, 1e-3]) | |
>>> plt.show() | |
''' | |
return (Dispatchable(a, np.ndarray),) | |
def ifht(A, dln, mu, offset=0.0, bias=0.0): | |
r"""Compute the inverse fast Hankel transform. | |
Computes the discrete inverse Hankel transform of a logarithmically spaced | |
periodic sequence. This is the inverse operation to `fht`. | |
Parameters | |
---------- | |
A : array_like (..., n) | |
Real periodic input array, uniformly logarithmically spaced. For | |
multidimensional input, the transform is performed over the last axis. | |
dln : float | |
Uniform logarithmic spacing of the input array. | |
mu : float | |
Order of the Hankel transform, any positive or negative real number. | |
offset : float, optional | |
Offset of the uniform logarithmic spacing of the output array. | |
bias : float, optional | |
Exponent of power law bias, any positive or negative real number. | |
Returns | |
------- | |
a : array_like (..., n) | |
The transformed output array, which is real, periodic, uniformly | |
logarithmically spaced, and of the same shape as the input array. | |
See Also | |
-------- | |
fht : Definition of the fast Hankel transform. | |
fhtoffset : Return an optimal offset for `ifht`. | |
Notes | |
----- | |
This function computes a discrete version of the Hankel transform | |
.. math:: | |
a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;, | |
where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index | |
:math:`\mu` may be any real number, positive or negative. Note that the | |
numerical inverse Hankel transform uses an integrand of :math:`r \, dk`, while the | |
mathematical inverse Hankel transform is commonly defined using :math:`k \, dk`. | |
See `fht` for further details. | |
""" | |
return (Dispatchable(A, np.ndarray),) | |