peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/tests
/test_basic.py
import queue | |
import threading | |
import multiprocessing | |
import numpy as np | |
import pytest | |
from numpy.random import random | |
from numpy.testing import assert_array_almost_equal, assert_allclose | |
from pytest import raises as assert_raises | |
import scipy.fft as fft | |
from scipy.conftest import array_api_compatible | |
from scipy._lib._array_api import ( | |
array_namespace, size, xp_assert_close, xp_assert_equal | |
) | |
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")] | |
skip_if_array_api = pytest.mark.skip_if_array_api | |
# Expected input dtypes. Note that `scipy.fft` is more flexible for numpy, | |
# but for C2C transforms like `fft.fft`, the array API standard only mandates | |
# that complex dtypes should work, float32/float64 aren't guaranteed to. | |
def get_expected_input_dtype(func, xp): | |
if func in [fft.fft, fft.fftn, fft.fft2, | |
fft.ifft, fft.ifftn, fft.ifft2, | |
fft.hfft, fft.hfftn, fft.hfft2, | |
fft.irfft, fft.irfftn, fft.irfft2]: | |
dtype = xp.complex128 | |
elif func in [fft.rfft, fft.rfftn, fft.rfft2, | |
fft.ihfft, fft.ihfftn, fft.ihfft2]: | |
dtype = xp.float64 | |
else: | |
raise ValueError(f'Unknown FFT function: {func}') | |
return dtype | |
def fft1(x): | |
L = len(x) | |
phase = -2j*np.pi*(np.arange(L)/float(L)) | |
phase = np.arange(L).reshape(-1, 1) * phase | |
return np.sum(x*np.exp(phase), axis=1) | |
class TestFFTShift: | |
def test_fft_n(self, xp): | |
x = xp.asarray([1, 2, 3], dtype=xp.complex128) | |
if xp.__name__ == 'torch': | |
assert_raises(RuntimeError, fft.fft, x, 0) | |
else: | |
assert_raises(ValueError, fft.fft, x, 0) | |
class TestFFT1D: | |
def test_identity(self, xp): | |
maxlen = 512 | |
x = xp.asarray(random(maxlen) + 1j*random(maxlen)) | |
xr = xp.asarray(random(maxlen)) | |
for i in range(1, maxlen): | |
xp_assert_close(fft.ifft(fft.fft(x[0:i])), x[0:i], rtol=1e-9, atol=0) | |
xp_assert_close(fft.irfft(fft.rfft(xr[0:i]), i), xr[0:i], rtol=1e-9, atol=0) | |
def test_fft(self, xp): | |
x = random(30) + 1j*random(30) | |
expect = xp.asarray(fft1(x)) | |
x = xp.asarray(x) | |
xp_assert_close(fft.fft(x), expect) | |
xp_assert_close(fft.fft(x, norm="backward"), expect) | |
xp_assert_close(fft.fft(x, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64)),) | |
xp_assert_close(fft.fft(x, norm="forward"), expect / 30) | |
def test_ifft(self, xp): | |
x = xp.asarray(random(30) + 1j*random(30)) | |
xp_assert_close(fft.ifft(fft.fft(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.ifft(fft.fft(x, norm=norm), norm=norm), x) | |
def test_fft2(self, xp): | |
x = xp.asarray(random((30, 20)) + 1j*random((30, 20))) | |
expect = fft.fft(fft.fft(x, axis=1), axis=0) | |
xp_assert_close(fft.fft2(x), expect) | |
xp_assert_close(fft.fft2(x, norm="backward"), expect) | |
xp_assert_close(fft.fft2(x, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) | |
xp_assert_close(fft.fft2(x, norm="forward"), expect / (30 * 20)) | |
def test_ifft2(self, xp): | |
x = xp.asarray(random((30, 20)) + 1j*random((30, 20))) | |
expect = fft.ifft(fft.ifft(x, axis=1), axis=0) | |
xp_assert_close(fft.ifft2(x), expect) | |
xp_assert_close(fft.ifft2(x, norm="backward"), expect) | |
xp_assert_close(fft.ifft2(x, norm="ortho"), | |
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) | |
xp_assert_close(fft.ifft2(x, norm="forward"), expect * (30 * 20)) | |
def test_fftn(self, xp): | |
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10))) | |
expect = fft.fft(fft.fft(fft.fft(x, axis=2), axis=1), axis=0) | |
xp_assert_close(fft.fftn(x), expect) | |
xp_assert_close(fft.fftn(x, norm="backward"), expect) | |
xp_assert_close(fft.fftn(x, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))) | |
xp_assert_close(fft.fftn(x, norm="forward"), expect / (30 * 20 * 10)) | |
def test_ifftn(self, xp): | |
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10))) | |
expect = fft.ifft(fft.ifft(fft.ifft(x, axis=2), axis=1), axis=0) | |
xp_assert_close(fft.ifftn(x), expect) | |
xp_assert_close(fft.ifftn(x, norm="backward"), expect) | |
xp_assert_close( | |
fft.ifftn(x, norm="ortho"), | |
fft.ifftn(x) * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)) | |
) | |
xp_assert_close(fft.ifftn(x, norm="forward"), expect * (30 * 20 * 10)) | |
def test_rfft(self, xp): | |
x = xp.asarray(random(29), dtype=xp.float64) | |
for n in [size(x), 2*size(x)]: | |
for norm in [None, "backward", "ortho", "forward"]: | |
xp_assert_close(fft.rfft(x, n=n, norm=norm), | |
fft.fft(xp.asarray(x, dtype=xp.complex128), | |
n=n, norm=norm)[:(n//2 + 1)]) | |
xp_assert_close( | |
fft.rfft(x, n=n, norm="ortho"), | |
fft.rfft(x, n=n) / xp.sqrt(xp.asarray(n, dtype=xp.float64)) | |
) | |
def test_irfft(self, xp): | |
x = xp.asarray(random(30)) | |
xp_assert_close(fft.irfft(fft.rfft(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.irfft(fft.rfft(x, norm=norm), norm=norm), x) | |
def test_rfft2(self, xp): | |
x = xp.asarray(random((30, 20)), dtype=xp.float64) | |
expect = fft.fft2(xp.asarray(x, dtype=xp.complex128))[:, :11] | |
xp_assert_close(fft.rfft2(x), expect) | |
xp_assert_close(fft.rfft2(x, norm="backward"), expect) | |
xp_assert_close(fft.rfft2(x, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) | |
xp_assert_close(fft.rfft2(x, norm="forward"), expect / (30 * 20)) | |
def test_irfft2(self, xp): | |
x = xp.asarray(random((30, 20))) | |
xp_assert_close(fft.irfft2(fft.rfft2(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.irfft2(fft.rfft2(x, norm=norm), norm=norm), x) | |
def test_rfftn(self, xp): | |
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64) | |
expect = fft.fftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6] | |
xp_assert_close(fft.rfftn(x), expect) | |
xp_assert_close(fft.rfftn(x, norm="backward"), expect) | |
xp_assert_close(fft.rfftn(x, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))) | |
xp_assert_close(fft.rfftn(x, norm="forward"), expect / (30 * 20 * 10)) | |
def test_irfftn(self, xp): | |
x = xp.asarray(random((30, 20, 10))) | |
xp_assert_close(fft.irfftn(fft.rfftn(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.irfftn(fft.rfftn(x, norm=norm), norm=norm), x) | |
def test_hfft(self, xp): | |
x = random(14) + 1j*random(14) | |
x_herm = np.concatenate((random(1), x, random(1))) | |
x = np.concatenate((x_herm, x[::-1].conj())) | |
x = xp.asarray(x) | |
x_herm = xp.asarray(x_herm) | |
expect = xp.real(fft.fft(x)) | |
xp_assert_close(fft.hfft(x_herm), expect) | |
xp_assert_close(fft.hfft(x_herm, norm="backward"), expect) | |
xp_assert_close(fft.hfft(x_herm, norm="ortho"), | |
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64))) | |
xp_assert_close(fft.hfft(x_herm, norm="forward"), expect / 30) | |
def test_ihfft(self, xp): | |
x = random(14) + 1j*random(14) | |
x_herm = np.concatenate((random(1), x, random(1))) | |
x = np.concatenate((x_herm, x[::-1].conj())) | |
x = xp.asarray(x) | |
x_herm = xp.asarray(x_herm) | |
xp_assert_close(fft.ihfft(fft.hfft(x_herm)), x_herm) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.ihfft(fft.hfft(x_herm, norm=norm), norm=norm), x_herm) | |
def test_hfft2(self, xp): | |
x = xp.asarray(random((30, 20))) | |
xp_assert_close(fft.hfft2(fft.ihfft2(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.hfft2(fft.ihfft2(x, norm=norm), norm=norm), x) | |
def test_ihfft2(self, xp): | |
x = xp.asarray(random((30, 20)), dtype=xp.float64) | |
expect = fft.ifft2(xp.asarray(x, dtype=xp.complex128))[:, :11] | |
xp_assert_close(fft.ihfft2(x), expect) | |
xp_assert_close(fft.ihfft2(x, norm="backward"), expect) | |
xp_assert_close( | |
fft.ihfft2(x, norm="ortho"), | |
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64)) | |
) | |
xp_assert_close(fft.ihfft2(x, norm="forward"), expect * (30 * 20)) | |
def test_hfftn(self, xp): | |
x = xp.asarray(random((30, 20, 10))) | |
xp_assert_close(fft.hfftn(fft.ihfftn(x)), x) | |
for norm in ["backward", "ortho", "forward"]: | |
xp_assert_close(fft.hfftn(fft.ihfftn(x, norm=norm), norm=norm), x) | |
def test_ihfftn(self, xp): | |
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64) | |
expect = fft.ifftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6] | |
xp_assert_close(expect, fft.ihfftn(x)) | |
xp_assert_close(expect, fft.ihfftn(x, norm="backward")) | |
xp_assert_close( | |
fft.ihfftn(x, norm="ortho"), | |
expect * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)) | |
) | |
xp_assert_close(fft.ihfftn(x, norm="forward"), expect * (30 * 20 * 10)) | |
def _check_axes(self, op, xp): | |
dtype = get_expected_input_dtype(op, xp) | |
x = xp.asarray(random((30, 20, 10)), dtype=dtype) | |
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] | |
xp_test = array_namespace(x) | |
for a in axes: | |
op_tr = op(xp_test.permute_dims(x, axes=a)) | |
tr_op = xp_test.permute_dims(op(x, axes=a), axes=a) | |
xp_assert_close(op_tr, tr_op) | |
def test_axes_standard(self, op, xp): | |
self._check_axes(op, xp) | |
def test_axes_non_standard(self, op, xp): | |
self._check_axes(op, xp) | |
def test_axes_subset_with_shape_standard(self, op, xp): | |
dtype = get_expected_input_dtype(op, xp) | |
x = xp.asarray(random((16, 8, 4)), dtype=dtype) | |
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)] | |
xp_test = array_namespace(x) | |
for a in axes: | |
# different shape on the first two axes | |
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax] | |
for ax in range(x.ndim)]) | |
# transform only the first two axes | |
op_tr = op(xp_test.permute_dims(x, axes=a), | |
s=shape[:2], axes=(0, 1)) | |
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]), | |
axes=a) | |
xp_assert_close(op_tr, tr_op) | |
def test_axes_subset_with_shape_non_standard(self, op, xp): | |
dtype = get_expected_input_dtype(op, xp) | |
x = xp.asarray(random((16, 8, 4)), dtype=dtype) | |
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)] | |
xp_test = array_namespace(x) | |
for a in axes: | |
# different shape on the first two axes | |
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax] | |
for ax in range(x.ndim)]) | |
# transform only the first two axes | |
op_tr = op(xp_test.permute_dims(x, axes=a), s=shape[:2], axes=(0, 1)) | |
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]), axes=a) | |
xp_assert_close(op_tr, tr_op) | |
def test_all_1d_norm_preserving(self, xp): | |
# verify that round-trip transforms are norm-preserving | |
x = xp.asarray(random(30), dtype=xp.float64) | |
xp_test = array_namespace(x) | |
x_norm = xp_test.linalg.vector_norm(x) | |
n = size(x) * 2 | |
func_pairs = [(fft.rfft, fft.irfft), | |
# hfft: order so the first function takes x.size samples | |
# (necessary for comparison to x_norm above) | |
(fft.ihfft, fft.hfft), | |
# functions that expect complex dtypes at the end | |
(fft.fft, fft.ifft), | |
] | |
for forw, back in func_pairs: | |
if forw == fft.fft: | |
x = xp.asarray(x, dtype=xp.complex128) | |
x_norm = xp_test.linalg.vector_norm(x) | |
for n in [size(x), 2*size(x)]: | |
for norm in ['backward', 'ortho', 'forward']: | |
tmp = forw(x, n=n, norm=norm) | |
tmp = back(tmp, n=n, norm=norm) | |
xp_assert_close(xp_test.linalg.vector_norm(tmp), x_norm) | |
def test_dtypes_nonstandard(self, dtype): | |
x = random(30).astype(dtype) | |
out_dtypes = {np.float16: np.complex64, np.longdouble: np.clongdouble} | |
x_complex = x.astype(out_dtypes[dtype]) | |
res_fft = fft.ifft(fft.fft(x)) | |
res_rfft = fft.irfft(fft.rfft(x)) | |
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0]) | |
# Check both numerical results and exact dtype matches | |
assert_array_almost_equal(res_fft, x_complex) | |
assert_array_almost_equal(res_rfft, x) | |
assert_array_almost_equal(res_hfft, x) | |
assert res_fft.dtype == x_complex.dtype | |
assert res_rfft.dtype == np.result_type(np.float32, x.dtype) | |
assert res_hfft.dtype == np.result_type(np.float32, x.dtype) | |
def test_dtypes_real(self, dtype, xp): | |
x = xp.asarray(random(30), dtype=getattr(xp, dtype)) | |
res_rfft = fft.irfft(fft.rfft(x)) | |
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0]) | |
# Check both numerical results and exact dtype matches | |
rtol = {"float32": 1.2e-4, "float64": 1e-8}[dtype] | |
xp_assert_close(res_rfft, x, rtol=rtol, atol=0) | |
xp_assert_close(res_hfft, x, rtol=rtol, atol=0) | |
def test_dtypes_complex(self, dtype, xp): | |
x = xp.asarray(random(30), dtype=getattr(xp, dtype)) | |
res_fft = fft.ifft(fft.fft(x)) | |
# Check both numerical results and exact dtype matches | |
rtol = {"complex64": 1.2e-4, "complex128": 1e-8}[dtype] | |
xp_assert_close(res_fft, x, rtol=rtol, atol=0) | |
def test_fft_with_order(dtype, order, fft): | |
# Check that FFT/IFFT produces identical results for C, Fortran and | |
# non contiguous arrays | |
rng = np.random.RandomState(42) | |
X = rng.rand(8, 7, 13).astype(dtype, copy=False) | |
if order == 'F': | |
Y = np.asfortranarray(X) | |
else: | |
# Make a non contiguous array | |
Y = X[::-1] | |
X = np.ascontiguousarray(X[::-1]) | |
if fft.__name__.endswith('fft'): | |
for axis in range(3): | |
X_res = fft(X, axis=axis) | |
Y_res = fft(Y, axis=axis) | |
assert_array_almost_equal(X_res, Y_res) | |
elif fft.__name__.endswith(('fft2', 'fftn')): | |
axes = [(0, 1), (1, 2), (0, 2)] | |
if fft.__name__.endswith('fftn'): | |
axes.extend([(0,), (1,), (2,), None]) | |
for ax in axes: | |
X_res = fft(X, axes=ax) | |
Y_res = fft(Y, axes=ax) | |
assert_array_almost_equal(X_res, Y_res) | |
else: | |
raise ValueError | |
class TestFFTThreadSafe: | |
threads = 16 | |
input_shape = (800, 200) | |
def _test_mtsame(self, func, *args, xp=None): | |
def worker(args, q): | |
q.put(func(*args)) | |
q = queue.Queue() | |
expected = func(*args) | |
# Spin off a bunch of threads to call the same function simultaneously | |
t = [threading.Thread(target=worker, args=(args, q)) | |
for i in range(self.threads)] | |
[x.start() for x in t] | |
[x.join() for x in t] | |
# Make sure all threads returned the correct value | |
for i in range(self.threads): | |
xp_assert_equal( | |
q.get(timeout=5), expected, | |
err_msg='Function returned wrong value in multithreaded context' | |
) | |
def test_fft(self, xp): | |
a = xp.ones(self.input_shape, dtype=xp.complex128) | |
self._test_mtsame(fft.fft, a, xp=xp) | |
def test_ifft(self, xp): | |
a = xp.full(self.input_shape, 1+0j) | |
self._test_mtsame(fft.ifft, a, xp=xp) | |
def test_rfft(self, xp): | |
a = xp.ones(self.input_shape) | |
self._test_mtsame(fft.rfft, a, xp=xp) | |
def test_irfft(self, xp): | |
a = xp.full(self.input_shape, 1+0j) | |
self._test_mtsame(fft.irfft, a, xp=xp) | |
def test_hfft(self, xp): | |
a = xp.ones(self.input_shape, dtype=xp.complex64) | |
self._test_mtsame(fft.hfft, a, xp=xp) | |
def test_ihfft(self, xp): | |
a = xp.ones(self.input_shape) | |
self._test_mtsame(fft.ihfft, a, xp=xp) | |
def test_multiprocess(func): | |
# Test that fft still works after fork (gh-10422) | |
with multiprocessing.Pool(2) as p: | |
res = p.map(func, [np.ones(100) for _ in range(4)]) | |
expect = func(np.ones(100)) | |
for x in res: | |
assert_allclose(x, expect) | |
class TestIRFFTN: | |
def test_not_last_axis_success(self, xp): | |
ar, ai = np.random.random((2, 16, 8, 32)) | |
a = ar + 1j*ai | |
a = xp.asarray(a) | |
axes = (-2,) | |
# Should not raise error | |
fft.irfftn(a, axes=axes) | |
def test_non_standard_params(func, xp): | |
if func in [fft.rfft, fft.rfftn, fft.ihfft]: | |
dtype = xp.float64 | |
else: | |
dtype = xp.complex128 | |
if xp.__name__ != 'numpy': | |
x = xp.asarray([1, 2, 3], dtype=dtype) | |
# func(x) should not raise an exception | |
func(x) | |
assert_raises(ValueError, func, x, workers=2) | |
# `plan` param is not tested since SciPy does not use it currently | |
# but should be tested if it comes into use | |