peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/interpolate
/_fitpack_impl.py
""" | |
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx). | |
FITPACK is a collection of FORTRAN programs for curve and surface | |
fitting with splines and tensor product splines. | |
See | |
https://web.archive.org/web/20010524124604/http://www.cs.kuleuven.ac.be:80/cwis/research/nalag/research/topics/fitpack.html | |
or | |
http://www.netlib.org/dierckx/ | |
Copyright 2002 Pearu Peterson all rights reserved, | |
Pearu Peterson <[email protected]> | |
Permission to use, modify, and distribute this software is given under the | |
terms of the SciPy (BSD style) license. See LICENSE.txt that came with | |
this distribution for specifics. | |
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. | |
TODO: Make interfaces to the following fitpack functions: | |
For univariate splines: cocosp, concon, fourco, insert | |
For bivariate splines: profil, regrid, parsur, surev | |
""" | |
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde', | |
'bisplrep', 'bisplev', 'insert', 'splder', 'splantider'] | |
import warnings | |
import numpy as np | |
from . import _fitpack | |
from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose, | |
empty, iinfo, asarray) | |
# Try to replace _fitpack interface with | |
# f2py-generated version | |
from . import dfitpack | |
dfitpack_int = dfitpack.types.intvar.dtype | |
def _int_overflow(x, exception, msg=None): | |
"""Cast the value to an dfitpack_int and raise an OverflowError if the value | |
cannot fit. | |
""" | |
if x > iinfo(dfitpack_int).max: | |
if msg is None: | |
msg = f'{x!r} cannot fit into an {dfitpack_int!r}' | |
raise exception(msg) | |
return dfitpack_int.type(x) | |
_iermess = { | |
0: ["The spline has a residual sum of squares fp such that " | |
"abs(fp-s)/s<=0.001", None], | |
-1: ["The spline is an interpolating spline (fp=0)", None], | |
-2: ["The spline is weighted least-squares polynomial of degree k.\n" | |
"fp gives the upper bound fp0 for the smoothing factor s", None], | |
1: ["The required storage space exceeds the available storage space.\n" | |
"Probable causes: data (x,y) size is too small or smoothing parameter" | |
"\ns is too small (fp>s).", ValueError], | |
2: ["A theoretically impossible result when finding a smoothing spline\n" | |
"with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)", | |
ValueError], | |
3: ["The maximal number of iterations (20) allowed for finding smoothing\n" | |
"spline with fp=s has been reached. Probable cause: s too small.\n" | |
"(abs(fp-s)/s>0.001)", ValueError], | |
10: ["Error on input data", ValueError], | |
'unknown': ["An error occurred", TypeError] | |
} | |
_iermess2 = { | |
0: ["The spline has a residual sum of squares fp such that " | |
"abs(fp-s)/s<=0.001", None], | |
-1: ["The spline is an interpolating spline (fp=0)", None], | |
-2: ["The spline is weighted least-squares polynomial of degree kx and ky." | |
"\nfp gives the upper bound fp0 for the smoothing factor s", None], | |
-3: ["Warning. The coefficients of the spline have been computed as the\n" | |
"minimal norm least-squares solution of a rank deficient system.", | |
None], | |
1: ["The required storage space exceeds the available storage space.\n" | |
"Probable causes: nxest or nyest too small or s is too small. (fp>s)", | |
ValueError], | |
2: ["A theoretically impossible result when finding a smoothing spline\n" | |
"with fp = s. Probable causes: s too small or badly chosen eps.\n" | |
"(abs(fp-s)/s>0.001)", ValueError], | |
3: ["The maximal number of iterations (20) allowed for finding smoothing\n" | |
"spline with fp=s has been reached. Probable cause: s too small.\n" | |
"(abs(fp-s)/s>0.001)", ValueError], | |
4: ["No more knots can be added because the number of B-spline\n" | |
"coefficients already exceeds the number of data points m.\n" | |
"Probable causes: either s or m too small. (fp>s)", ValueError], | |
5: ["No more knots can be added because the additional knot would\n" | |
"coincide with an old one. Probable cause: s too small or too large\n" | |
"a weight to an inaccurate data point. (fp>s)", ValueError], | |
10: ["Error on input data", ValueError], | |
11: ["rwrk2 too small, i.e., there is not enough workspace for computing\n" | |
"the minimal least-squares solution of a rank deficient system of\n" | |
"linear equations.", ValueError], | |
'unknown': ["An error occurred", TypeError] | |
} | |
_parcur_cache = {'t': array([], float), 'wrk': array([], float), | |
'iwrk': array([], dfitpack_int), 'u': array([], float), | |
'ub': 0, 'ue': 1} | |
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, | |
full_output=0, nest=None, per=0, quiet=1): | |
# see the docstring of `_fitpack_py/splprep` | |
if task <= 0: | |
_parcur_cache = {'t': array([], float), 'wrk': array([], float), | |
'iwrk': array([], dfitpack_int), 'u': array([], float), | |
'ub': 0, 'ue': 1} | |
x = atleast_1d(x) | |
idim, m = x.shape | |
if per: | |
for i in range(idim): | |
if x[i][0] != x[i][-1]: | |
if not quiet: | |
warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' % | |
(i, m, i)), | |
stacklevel=2) | |
x[i][-1] = x[i][0] | |
if not 0 < idim < 11: | |
raise TypeError('0 < idim < 11 must hold') | |
if w is None: | |
w = ones(m, float) | |
else: | |
w = atleast_1d(w) | |
ipar = (u is not None) | |
if ipar: | |
_parcur_cache['u'] = u | |
if ub is None: | |
_parcur_cache['ub'] = u[0] | |
else: | |
_parcur_cache['ub'] = ub | |
if ue is None: | |
_parcur_cache['ue'] = u[-1] | |
else: | |
_parcur_cache['ue'] = ue | |
else: | |
_parcur_cache['u'] = zeros(m, float) | |
if not (1 <= k <= 5): | |
raise TypeError('1 <= k= %d <=5 must hold' % k) | |
if not (-1 <= task <= 1): | |
raise TypeError('task must be -1, 0 or 1') | |
if (not len(w) == m) or (ipar == 1 and (not len(u) == m)): | |
raise TypeError('Mismatch of input dimensions') | |
if s is None: | |
s = m - sqrt(2*m) | |
if t is None and task == -1: | |
raise TypeError('Knots must be given for task=-1') | |
if t is not None: | |
_parcur_cache['t'] = atleast_1d(t) | |
n = len(_parcur_cache['t']) | |
if task == -1 and n < 2*k + 2: | |
raise TypeError('There must be at least 2*k+2 knots for task=-1') | |
if m <= k: | |
raise TypeError('m > k must hold') | |
if nest is None: | |
nest = m + 2*k | |
if (task >= 0 and s == 0) or (nest < 0): | |
if per: | |
nest = m + 2*k | |
else: | |
nest = m + k + 1 | |
nest = max(nest, 2*k + 3) | |
u = _parcur_cache['u'] | |
ub = _parcur_cache['ub'] | |
ue = _parcur_cache['ue'] | |
t = _parcur_cache['t'] | |
wrk = _parcur_cache['wrk'] | |
iwrk = _parcur_cache['iwrk'] | |
t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k, | |
task, ipar, s, t, nest, wrk, iwrk, per) | |
_parcur_cache['u'] = o['u'] | |
_parcur_cache['ub'] = o['ub'] | |
_parcur_cache['ue'] = o['ue'] | |
_parcur_cache['t'] = t | |
_parcur_cache['wrk'] = o['wrk'] | |
_parcur_cache['iwrk'] = o['iwrk'] | |
ier = o['ier'] | |
fp = o['fp'] | |
n = len(t) | |
u = o['u'] | |
c.shape = idim, n - k - 1 | |
tcku = [t, list(c), k], u | |
if ier <= 0 and not quiet: | |
warnings.warn(RuntimeWarning(_iermess[ier][0] + | |
"\tk=%d n=%d m=%d fp=%f s=%f" % | |
(k, len(t), m, fp, s)), | |
stacklevel=2) | |
if ier > 0 and not full_output: | |
if ier in [1, 2, 3]: | |
warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2) | |
else: | |
try: | |
raise _iermess[ier][1](_iermess[ier][0]) | |
except KeyError as e: | |
raise _iermess['unknown'][1](_iermess['unknown'][0]) from e | |
if full_output: | |
try: | |
return tcku, fp, ier, _iermess[ier][0] | |
except KeyError: | |
return tcku, fp, ier, _iermess['unknown'][0] | |
else: | |
return tcku | |
_curfit_cache = {'t': array([], float), 'wrk': array([], float), | |
'iwrk': array([], dfitpack_int)} | |
def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, | |
full_output=0, per=0, quiet=1): | |
# see the docstring of `_fitpack_py/splrep` | |
if task <= 0: | |
_curfit_cache = {} | |
x, y = map(atleast_1d, [x, y]) | |
m = len(x) | |
if w is None: | |
w = ones(m, float) | |
if s is None: | |
s = 0.0 | |
else: | |
w = atleast_1d(w) | |
if s is None: | |
s = m - sqrt(2*m) | |
if not len(w) == m: | |
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) | |
if (m != len(y)) or (m != len(w)): | |
raise TypeError('Lengths of the first three arguments (x,y,w) must ' | |
'be equal') | |
if not (1 <= k <= 5): | |
raise TypeError('Given degree of the spline (k=%d) is not supported. ' | |
'(1<=k<=5)' % k) | |
if m <= k: | |
raise TypeError('m > k must hold') | |
if xb is None: | |
xb = x[0] | |
if xe is None: | |
xe = x[-1] | |
if not (-1 <= task <= 1): | |
raise TypeError('task must be -1, 0 or 1') | |
if t is not None: | |
task = -1 | |
if task == -1: | |
if t is None: | |
raise TypeError('Knots must be given for task=-1') | |
numknots = len(t) | |
_curfit_cache['t'] = empty((numknots + 2*k + 2,), float) | |
_curfit_cache['t'][k+1:-k-1] = t | |
nest = len(_curfit_cache['t']) | |
elif task == 0: | |
if per: | |
nest = max(m + 2*k, 2*k + 3) | |
else: | |
nest = max(m + k + 1, 2*k + 3) | |
t = empty((nest,), float) | |
_curfit_cache['t'] = t | |
if task <= 0: | |
if per: | |
_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(8 + 5*k),), float) | |
else: | |
_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(7 + 3*k),), float) | |
_curfit_cache['iwrk'] = empty((nest,), dfitpack_int) | |
try: | |
t = _curfit_cache['t'] | |
wrk = _curfit_cache['wrk'] | |
iwrk = _curfit_cache['iwrk'] | |
except KeyError as e: | |
raise TypeError("must call with task=1 only after" | |
" call with task=0,-1") from e | |
if not per: | |
n, c, fp, ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk, | |
xb, xe, k, s) | |
else: | |
n, c, fp, ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s) | |
tck = (t[:n], c[:n], k) | |
if ier <= 0 and not quiet: | |
_mess = (_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" % | |
(k, len(t), m, fp, s)) | |
warnings.warn(RuntimeWarning(_mess), stacklevel=2) | |
if ier > 0 and not full_output: | |
if ier in [1, 2, 3]: | |
warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2) | |
else: | |
try: | |
raise _iermess[ier][1](_iermess[ier][0]) | |
except KeyError as e: | |
raise _iermess['unknown'][1](_iermess['unknown'][0]) from e | |
if full_output: | |
try: | |
return tck, fp, ier, _iermess[ier][0] | |
except KeyError: | |
return tck, fp, ier, _iermess['unknown'][0] | |
else: | |
return tck | |
def splev(x, tck, der=0, ext=0): | |
# see the docstring of `_fitpack_py/splev` | |
t, c, k = tck | |
try: | |
c[0][0] | |
parametric = True | |
except Exception: | |
parametric = False | |
if parametric: | |
return list(map(lambda c, x=x, t=t, k=k, der=der: | |
splev(x, [t, c, k], der, ext), c)) | |
else: | |
if not (0 <= der <= k): | |
raise ValueError("0<=der=%d<=k=%d must hold" % (der, k)) | |
if ext not in (0, 1, 2, 3): | |
raise ValueError("ext = %s not in (0, 1, 2, 3) " % ext) | |
x = asarray(x) | |
shape = x.shape | |
x = atleast_1d(x).ravel() | |
if der == 0: | |
y, ier = dfitpack.splev(t, c, k, x, ext) | |
else: | |
y, ier = dfitpack.splder(t, c, k, x, der, ext) | |
if ier == 10: | |
raise ValueError("Invalid input data") | |
if ier == 1: | |
raise ValueError("Found x value not in the domain") | |
if ier: | |
raise TypeError("An error occurred") | |
return y.reshape(shape) | |
def splint(a, b, tck, full_output=0): | |
# see the docstring of `_fitpack_py/splint` | |
t, c, k = tck | |
try: | |
c[0][0] | |
parametric = True | |
except Exception: | |
parametric = False | |
if parametric: | |
return list(map(lambda c, a=a, b=b, t=t, k=k: | |
splint(a, b, [t, c, k]), c)) | |
else: | |
aint, wrk = dfitpack.splint(t, c, k, a, b) | |
if full_output: | |
return aint, wrk | |
else: | |
return aint | |
def sproot(tck, mest=10): | |
# see the docstring of `_fitpack_py/sproot` | |
t, c, k = tck | |
if k != 3: | |
raise ValueError("sproot works only for cubic (k=3) splines") | |
try: | |
c[0][0] | |
parametric = True | |
except Exception: | |
parametric = False | |
if parametric: | |
return list(map(lambda c, t=t, k=k, mest=mest: | |
sproot([t, c, k], mest), c)) | |
else: | |
if len(t) < 8: | |
raise TypeError("The number of knots %d>=8" % len(t)) | |
z, m, ier = dfitpack.sproot(t, c, mest) | |
if ier == 10: | |
raise TypeError("Invalid input data. " | |
"t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.") | |
if ier == 0: | |
return z[:m] | |
if ier == 1: | |
warnings.warn(RuntimeWarning("The number of zeros exceeds mest"), | |
stacklevel=2) | |
return z[:m] | |
raise TypeError("Unknown error") | |
def spalde(x, tck): | |
# see the docstring of `_fitpack_py/spalde` | |
t, c, k = tck | |
try: | |
c[0][0] | |
parametric = True | |
except Exception: | |
parametric = False | |
if parametric: | |
return list(map(lambda c, x=x, t=t, k=k: | |
spalde(x, [t, c, k]), c)) | |
else: | |
x = atleast_1d(x) | |
if len(x) > 1: | |
return list(map(lambda x, tck=tck: spalde(x, tck), x)) | |
d, ier = dfitpack.spalde(t, c, k+1, x[0]) | |
if ier == 0: | |
return d | |
if ier == 10: | |
raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.") | |
raise TypeError("Unknown error") | |
# def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None, | |
# full_output=0,nest=None,per=0,quiet=1): | |
_surfit_cache = {'tx': array([], float), 'ty': array([], float), | |
'wrk': array([], float), 'iwrk': array([], dfitpack_int)} | |
def bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, | |
kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None, | |
full_output=0, nxest=None, nyest=None, quiet=1): | |
""" | |
Find a bivariate B-spline representation of a surface. | |
Given a set of data points (x[i], y[i], z[i]) representing a surface | |
z=f(x,y), compute a B-spline representation of the surface. Based on | |
the routine SURFIT from FITPACK. | |
Parameters | |
---------- | |
x, y, z : ndarray | |
Rank-1 arrays of data points. | |
w : ndarray, optional | |
Rank-1 array of weights. By default ``w=np.ones(len(x))``. | |
xb, xe : float, optional | |
End points of approximation interval in `x`. | |
By default ``xb = x.min(), xe=x.max()``. | |
yb, ye : float, optional | |
End points of approximation interval in `y`. | |
By default ``yb=y.min(), ye = y.max()``. | |
kx, ky : int, optional | |
The degrees of the spline (1 <= kx, ky <= 5). | |
Third order (kx=ky=3) is recommended. | |
task : int, optional | |
If task=0, find knots in x and y and coefficients for a given | |
smoothing factor, s. | |
If task=1, find knots and coefficients for another value of the | |
smoothing factor, s. bisplrep must have been previously called | |
with task=0 or task=1. | |
If task=-1, find coefficients for a given set of knots tx, ty. | |
s : float, optional | |
A non-negative smoothing factor. If weights correspond | |
to the inverse of the standard-deviation of the errors in z, | |
then a good s-value should be found in the range | |
``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x). | |
eps : float, optional | |
A threshold for determining the effective rank of an | |
over-determined linear system of equations (0 < eps < 1). | |
`eps` is not likely to need changing. | |
tx, ty : ndarray, optional | |
Rank-1 arrays of the knots of the spline for task=-1 | |
full_output : int, optional | |
Non-zero to return optional outputs. | |
nxest, nyest : int, optional | |
Over-estimates of the total number of knots. If None then | |
``nxest = max(kx+sqrt(m/2),2*kx+3)``, | |
``nyest = max(ky+sqrt(m/2),2*ky+3)``. | |
quiet : int, optional | |
Non-zero to suppress printing of messages. | |
Returns | |
------- | |
tck : array_like | |
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and | |
coefficients (c) of the bivariate B-spline representation of the | |
surface along with the degree of the spline. | |
fp : ndarray | |
The weighted sum of squared residuals of the spline approximation. | |
ier : int | |
An integer flag about splrep success. Success is indicated if | |
ier<=0. If ier in [1,2,3] an error occurred but was not raised. | |
Otherwise an error is raised. | |
msg : str | |
A message corresponding to the integer flag, ier. | |
See Also | |
-------- | |
splprep, splrep, splint, sproot, splev | |
UnivariateSpline, BivariateSpline | |
Notes | |
----- | |
See `bisplev` to evaluate the value of the B-spline given its tck | |
representation. | |
If the input data is such that input dimensions have incommensurate | |
units and differ by many orders of magnitude, the interpolant may have | |
numerical artifacts. Consider rescaling the data before interpolation. | |
References | |
---------- | |
.. [1] Dierckx P.:An algorithm for surface fitting with spline functions | |
Ima J. Numer. Anal. 1 (1981) 267-283. | |
.. [2] Dierckx P.:An algorithm for surface fitting with spline functions | |
report tw50, Dept. Computer Science,K.U.Leuven, 1980. | |
.. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on | |
Numerical Analysis, Oxford University Press, 1993. | |
Examples | |
-------- | |
Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`. | |
""" | |
x, y, z = map(ravel, [x, y, z]) # ensure 1-d arrays. | |
m = len(x) | |
if not (m == len(y) == len(z)): | |
raise TypeError('len(x)==len(y)==len(z) must hold.') | |
if w is None: | |
w = ones(m, float) | |
else: | |
w = atleast_1d(w) | |
if not len(w) == m: | |
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) | |
if xb is None: | |
xb = x.min() | |
if xe is None: | |
xe = x.max() | |
if yb is None: | |
yb = y.min() | |
if ye is None: | |
ye = y.max() | |
if not (-1 <= task <= 1): | |
raise TypeError('task must be -1, 0 or 1') | |
if s is None: | |
s = m - sqrt(2*m) | |
if tx is None and task == -1: | |
raise TypeError('Knots_x must be given for task=-1') | |
if tx is not None: | |
_surfit_cache['tx'] = atleast_1d(tx) | |
nx = len(_surfit_cache['tx']) | |
if ty is None and task == -1: | |
raise TypeError('Knots_y must be given for task=-1') | |
if ty is not None: | |
_surfit_cache['ty'] = atleast_1d(ty) | |
ny = len(_surfit_cache['ty']) | |
if task == -1 and nx < 2*kx+2: | |
raise TypeError('There must be at least 2*kx+2 knots_x for task=-1') | |
if task == -1 and ny < 2*ky+2: | |
raise TypeError('There must be at least 2*ky+2 knots_x for task=-1') | |
if not ((1 <= kx <= 5) and (1 <= ky <= 5)): | |
raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not ' | |
'supported. (1<=k<=5)' % (kx, ky)) | |
if m < (kx + 1)*(ky + 1): | |
raise TypeError('m >= (kx+1)(ky+1) must hold') | |
if nxest is None: | |
nxest = int(kx + sqrt(m/2)) | |
if nyest is None: | |
nyest = int(ky + sqrt(m/2)) | |
nxest, nyest = max(nxest, 2*kx + 3), max(nyest, 2*ky + 3) | |
if task >= 0 and s == 0: | |
nxest = int(kx + sqrt(3*m)) | |
nyest = int(ky + sqrt(3*m)) | |
if task == -1: | |
_surfit_cache['tx'] = atleast_1d(tx) | |
_surfit_cache['ty'] = atleast_1d(ty) | |
tx, ty = _surfit_cache['tx'], _surfit_cache['ty'] | |
wrk = _surfit_cache['wrk'] | |
u = nxest - kx - 1 | |
v = nyest - ky - 1 | |
km = max(kx, ky) + 1 | |
ne = max(nxest, nyest) | |
bx, by = kx*v + ky + 1, ky*u + kx + 1 | |
b1, b2 = bx, bx + v - ky | |
if bx > by: | |
b1, b2 = by, by + u - kx | |
msg = "Too many data points to interpolate" | |
lwrk1 = _int_overflow(u*v*(2 + b1 + b2) + | |
2*(u + v + km*(m + ne) + ne - kx - ky) + b2 + 1, | |
OverflowError, | |
msg=msg) | |
lwrk2 = _int_overflow(u*v*(b2 + 1) + b2, OverflowError, msg=msg) | |
tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky, | |
task, s, eps, tx, ty, nxest, nyest, | |
wrk, lwrk1, lwrk2) | |
_curfit_cache['tx'] = tx | |
_curfit_cache['ty'] = ty | |
_curfit_cache['wrk'] = o['wrk'] | |
ier, fp = o['ier'], o['fp'] | |
tck = [tx, ty, c, kx, ky] | |
ierm = min(11, max(-3, ier)) | |
if ierm <= 0 and not quiet: | |
_mess = (_iermess2[ierm][0] + | |
"\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % | |
(kx, ky, len(tx), len(ty), m, fp, s)) | |
warnings.warn(RuntimeWarning(_mess), stacklevel=2) | |
if ierm > 0 and not full_output: | |
if ier in [1, 2, 3, 4, 5]: | |
_mess = ("\n\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % | |
(kx, ky, len(tx), len(ty), m, fp, s)) | |
warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess), stacklevel=2) | |
else: | |
try: | |
raise _iermess2[ierm][1](_iermess2[ierm][0]) | |
except KeyError as e: | |
raise _iermess2['unknown'][1](_iermess2['unknown'][0]) from e | |
if full_output: | |
try: | |
return tck, fp, ier, _iermess2[ierm][0] | |
except KeyError: | |
return tck, fp, ier, _iermess2['unknown'][0] | |
else: | |
return tck | |
def bisplev(x, y, tck, dx=0, dy=0): | |
""" | |
Evaluate a bivariate B-spline and its derivatives. | |
Return a rank-2 array of spline function values (or spline derivative | |
values) at points given by the cross-product of the rank-1 arrays `x` and | |
`y`. In special cases, return an array or just a float if either `x` or | |
`y` or both are floats. Based on BISPEV and PARDER from FITPACK. | |
Parameters | |
---------- | |
x, y : ndarray | |
Rank-1 arrays specifying the domain over which to evaluate the | |
spline or its derivative. | |
tck : tuple | |
A sequence of length 5 returned by `bisplrep` containing the knot | |
locations, the coefficients, and the degree of the spline: | |
[tx, ty, c, kx, ky]. | |
dx, dy : int, optional | |
The orders of the partial derivatives in `x` and `y` respectively. | |
Returns | |
------- | |
vals : ndarray | |
The B-spline or its derivative evaluated over the set formed by | |
the cross-product of `x` and `y`. | |
See Also | |
-------- | |
splprep, splrep, splint, sproot, splev | |
UnivariateSpline, BivariateSpline | |
Notes | |
----- | |
See `bisplrep` to generate the `tck` representation. | |
References | |
---------- | |
.. [1] Dierckx P. : An algorithm for surface fitting | |
with spline functions | |
Ima J. Numer. Anal. 1 (1981) 267-283. | |
.. [2] Dierckx P. : An algorithm for surface fitting | |
with spline functions | |
report tw50, Dept. Computer Science,K.U.Leuven, 1980. | |
.. [3] Dierckx P. : Curve and surface fitting with splines, | |
Monographs on Numerical Analysis, Oxford University Press, 1993. | |
Examples | |
-------- | |
Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`. | |
""" | |
tx, ty, c, kx, ky = tck | |
if not (0 <= dx < kx): | |
raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx)) | |
if not (0 <= dy < ky): | |
raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky)) | |
x, y = map(atleast_1d, [x, y]) | |
if (len(x.shape) != 1) or (len(y.shape) != 1): | |
raise ValueError("First two entries should be rank-1 arrays.") | |
msg = "Too many data points to interpolate." | |
_int_overflow(x.size * y.size, MemoryError, msg=msg) | |
if dx != 0 or dy != 0: | |
_int_overflow((tx.size - kx - 1)*(ty.size - ky - 1), | |
MemoryError, msg=msg) | |
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y) | |
else: | |
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y) | |
if ier == 10: | |
raise ValueError("Invalid input data") | |
if ier: | |
raise TypeError("An error occurred") | |
z.shape = len(x), len(y) | |
if len(z) > 1: | |
return z | |
if len(z[0]) > 1: | |
return z[0] | |
return z[0][0] | |
def dblint(xa, xb, ya, yb, tck): | |
"""Evaluate the integral of a spline over area [xa,xb] x [ya,yb]. | |
Parameters | |
---------- | |
xa, xb : float | |
The end-points of the x integration interval. | |
ya, yb : float | |
The end-points of the y integration interval. | |
tck : list [tx, ty, c, kx, ky] | |
A sequence of length 5 returned by bisplrep containing the knot | |
locations tx, ty, the coefficients c, and the degrees kx, ky | |
of the spline. | |
Returns | |
------- | |
integ : float | |
The value of the resulting integral. | |
""" | |
tx, ty, c, kx, ky = tck | |
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb) | |
def insert(x, tck, m=1, per=0): | |
# see the docstring of `_fitpack_py/insert` | |
t, c, k = tck | |
try: | |
c[0][0] | |
parametric = True | |
except Exception: | |
parametric = False | |
if parametric: | |
cc = [] | |
for c_vals in c: | |
tt, cc_val, kk = insert(x, [t, c_vals, k], m) | |
cc.append(cc_val) | |
return (tt, cc, kk) | |
else: | |
tt, cc, ier = _fitpack._insert(per, t, c, k, x, m) | |
if ier == 10: | |
raise ValueError("Invalid input data") | |
if ier: | |
raise TypeError("An error occurred") | |
return (tt, cc, k) | |
def splder(tck, n=1): | |
# see the docstring of `_fitpack_py/splder` | |
if n < 0: | |
return splantider(tck, -n) | |
t, c, k = tck | |
if n > k: | |
raise ValueError(f"Order of derivative (n = {n!r}) must be <= " | |
f"order of spline (k = {tck[2]!r})") | |
# Extra axes for the trailing dims of the `c` array: | |
sh = (slice(None),) + ((None,)*len(c.shape[1:])) | |
with np.errstate(invalid='raise', divide='raise'): | |
try: | |
for j in range(n): | |
# See e.g. Schumaker, Spline Functions: Basic Theory, Chapter 5 | |
# Compute the denominator in the differentiation formula. | |
# (and append trailing dims, if necessary) | |
dt = t[k+1:-1] - t[1:-k-1] | |
dt = dt[sh] | |
# Compute the new coefficients | |
c = (c[1:-1-k] - c[:-2-k]) * k / dt | |
# Pad coefficient array to same size as knots (FITPACK | |
# convention) | |
c = np.r_[c, np.zeros((k,) + c.shape[1:])] | |
# Adjust knots | |
t = t[1:-1] | |
k -= 1 | |
except FloatingPointError as e: | |
raise ValueError(("The spline has internal repeated knots " | |
"and is not differentiable %d times") % n) from e | |
return t, c, k | |
def splantider(tck, n=1): | |
# see the docstring of `_fitpack_py/splantider` | |
if n < 0: | |
return splder(tck, -n) | |
t, c, k = tck | |
# Extra axes for the trailing dims of the `c` array: | |
sh = (slice(None),) + (None,)*len(c.shape[1:]) | |
for j in range(n): | |
# This is the inverse set of operations to splder. | |
# Compute the multiplier in the antiderivative formula. | |
dt = t[k+1:] - t[:-k-1] | |
dt = dt[sh] | |
# Compute the new coefficients | |
c = np.cumsum(c[:-k-1] * dt, axis=0) / (k + 1) | |
c = np.r_[np.zeros((1,) + c.shape[1:]), | |
c, | |
[c[-1]] * (k+2)] | |
# New knots | |
t = np.r_[t[0], t, t[-1]] | |
k += 1 | |
return t, c, k | |