peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/io
/matlab
/_mio.py
""" | |
Module for reading and writing matlab (TM) .mat files | |
""" | |
# Authors: Travis Oliphant, Matthew Brett | |
from contextlib import contextmanager | |
from ._miobase import _get_matfile_version, docfiller | |
from ._mio4 import MatFile4Reader, MatFile4Writer | |
from ._mio5 import MatFile5Reader, MatFile5Writer | |
__all__ = ['mat_reader_factory', 'loadmat', 'savemat', 'whosmat'] | |
def _open_file_context(file_like, appendmat, mode='rb'): | |
f, opened = _open_file(file_like, appendmat, mode) | |
try: | |
yield f | |
finally: | |
if opened: | |
f.close() | |
def _open_file(file_like, appendmat, mode='rb'): | |
""" | |
Open `file_like` and return as file-like object. First, check if object is | |
already file-like; if so, return it as-is. Otherwise, try to pass it | |
to open(). If that fails, and `file_like` is a string, and `appendmat` is true, | |
append '.mat' and try again. | |
""" | |
reqs = {'read'} if set(mode) & set('r+') else set() | |
if set(mode) & set('wax+'): | |
reqs.add('write') | |
if reqs.issubset(dir(file_like)): | |
return file_like, False | |
try: | |
return open(file_like, mode), True | |
except OSError as e: | |
# Probably "not found" | |
if isinstance(file_like, str): | |
if appendmat and not file_like.endswith('.mat'): | |
file_like += '.mat' | |
return open(file_like, mode), True | |
else: | |
raise OSError( | |
'Reader needs file name or open file-like object' | |
) from e | |
def mat_reader_factory(file_name, appendmat=True, **kwargs): | |
""" | |
Create reader for matlab .mat format files. | |
Parameters | |
---------- | |
%(file_arg)s | |
%(append_arg)s | |
%(load_args)s | |
%(struct_arg)s | |
Returns | |
------- | |
matreader : MatFileReader object | |
Initialized instance of MatFileReader class matching the mat file | |
type detected in `filename`. | |
file_opened : bool | |
Whether the file was opened by this routine. | |
""" | |
byte_stream, file_opened = _open_file(file_name, appendmat) | |
mjv, mnv = _get_matfile_version(byte_stream) | |
if mjv == 0: | |
return MatFile4Reader(byte_stream, **kwargs), file_opened | |
elif mjv == 1: | |
return MatFile5Reader(byte_stream, **kwargs), file_opened | |
elif mjv == 2: | |
raise NotImplementedError('Please use HDF reader for matlab v7.3 ' | |
'files, e.g. h5py') | |
else: | |
raise TypeError('Did not recognize version %s' % mjv) | |
def loadmat(file_name, mdict=None, appendmat=True, **kwargs): | |
""" | |
Load MATLAB file. | |
Parameters | |
---------- | |
file_name : str | |
Name of the mat file (do not need .mat extension if | |
appendmat==True). Can also pass open file-like object. | |
mdict : dict, optional | |
Dictionary in which to insert matfile variables. | |
appendmat : bool, optional | |
True to append the .mat extension to the end of the given | |
filename, if not already present. Default is True. | |
byte_order : str or None, optional | |
None by default, implying byte order guessed from mat | |
file. Otherwise can be one of ('native', '=', 'little', '<', | |
'BIG', '>'). | |
mat_dtype : bool, optional | |
If True, return arrays in same dtype as would be loaded into | |
MATLAB (instead of the dtype with which they are saved). | |
squeeze_me : bool, optional | |
Whether to squeeze unit matrix dimensions or not. | |
chars_as_strings : bool, optional | |
Whether to convert char arrays to string arrays. | |
matlab_compatible : bool, optional | |
Returns matrices as would be loaded by MATLAB (implies | |
squeeze_me=False, chars_as_strings=False, mat_dtype=True, | |
struct_as_record=True). | |
struct_as_record : bool, optional | |
Whether to load MATLAB structs as NumPy record arrays, or as | |
old-style NumPy arrays with dtype=object. Setting this flag to | |
False replicates the behavior of scipy version 0.7.x (returning | |
NumPy object arrays). The default setting is True, because it | |
allows easier round-trip load and save of MATLAB files. | |
verify_compressed_data_integrity : bool, optional | |
Whether the length of compressed sequences in the MATLAB file | |
should be checked, to ensure that they are not longer than we expect. | |
It is advisable to enable this (the default) because overlong | |
compressed sequences in MATLAB files generally indicate that the | |
files have experienced some sort of corruption. | |
variable_names : None or sequence | |
If None (the default) - read all variables in file. Otherwise, | |
`variable_names` should be a sequence of strings, giving names of the | |
MATLAB variables to read from the file. The reader will skip any | |
variable with a name not in this sequence, possibly saving some read | |
processing. | |
simplify_cells : False, optional | |
If True, return a simplified dict structure (which is useful if the mat | |
file contains cell arrays). Note that this only affects the structure | |
of the result and not its contents (which is identical for both output | |
structures). If True, this automatically sets `struct_as_record` to | |
False and `squeeze_me` to True, which is required to simplify cells. | |
Returns | |
------- | |
mat_dict : dict | |
dictionary with variable names as keys, and loaded matrices as | |
values. | |
Notes | |
----- | |
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported. | |
You will need an HDF5 Python library to read MATLAB 7.3 format mat | |
files. Because SciPy does not supply one, we do not implement the | |
HDF5 / 7.3 interface here. | |
Examples | |
-------- | |
>>> from os.path import dirname, join as pjoin | |
>>> import scipy.io as sio | |
Get the filename for an example .mat file from the tests/data directory. | |
>>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data') | |
>>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat') | |
Load the .mat file contents. | |
>>> mat_contents = sio.loadmat(mat_fname) | |
The result is a dictionary, one key/value pair for each variable: | |
>>> sorted(mat_contents.keys()) | |
['__globals__', '__header__', '__version__', 'testdouble'] | |
>>> mat_contents['testdouble'] | |
array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265, | |
3.92699082, 4.71238898, 5.49778714, 6.28318531]]) | |
By default SciPy reads MATLAB structs as structured NumPy arrays where the | |
dtype fields are of type `object` and the names correspond to the MATLAB | |
struct field names. This can be disabled by setting the optional argument | |
`struct_as_record=False`. | |
Get the filename for an example .mat file that contains a MATLAB struct | |
called `teststruct` and load the contents. | |
>>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat') | |
>>> matstruct_contents = sio.loadmat(matstruct_fname) | |
>>> teststruct = matstruct_contents['teststruct'] | |
>>> teststruct.dtype | |
dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O')]) | |
The size of the structured array is the size of the MATLAB struct, not the | |
number of elements in any particular field. The shape defaults to 2-D | |
unless the optional argument `squeeze_me=True`, in which case all length 1 | |
dimensions are removed. | |
>>> teststruct.size | |
1 | |
>>> teststruct.shape | |
(1, 1) | |
Get the 'stringfield' of the first element in the MATLAB struct. | |
>>> teststruct[0, 0]['stringfield'] | |
array(['Rats live on no evil star.'], | |
dtype='<U26') | |
Get the first element of the 'doublefield'. | |
>>> teststruct['doublefield'][0, 0] | |
array([[ 1.41421356, 2.71828183, 3.14159265]]) | |
Load the MATLAB struct, squeezing out length 1 dimensions, and get the item | |
from the 'complexfield'. | |
>>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True) | |
>>> matstruct_squeezed['teststruct'].shape | |
() | |
>>> matstruct_squeezed['teststruct']['complexfield'].shape | |
() | |
>>> matstruct_squeezed['teststruct']['complexfield'].item() | |
array([ 1.41421356+1.41421356j, 2.71828183+2.71828183j, | |
3.14159265+3.14159265j]) | |
""" | |
variable_names = kwargs.pop('variable_names', None) | |
with _open_file_context(file_name, appendmat) as f: | |
MR, _ = mat_reader_factory(f, **kwargs) | |
matfile_dict = MR.get_variables(variable_names) | |
if mdict is not None: | |
mdict.update(matfile_dict) | |
else: | |
mdict = matfile_dict | |
return mdict | |
def savemat(file_name, mdict, | |
appendmat=True, | |
format='5', | |
long_field_names=False, | |
do_compression=False, | |
oned_as='row'): | |
""" | |
Save a dictionary of names and arrays into a MATLAB-style .mat file. | |
This saves the array objects in the given dictionary to a MATLAB- | |
style .mat file. | |
Parameters | |
---------- | |
file_name : str or file-like object | |
Name of the .mat file (.mat extension not needed if ``appendmat == | |
True``). | |
Can also pass open file_like object. | |
mdict : dict | |
Dictionary from which to save matfile variables. | |
appendmat : bool, optional | |
True (the default) to append the .mat extension to the end of the | |
given filename, if not already present. | |
format : {'5', '4'}, string, optional | |
'5' (the default) for MATLAB 5 and up (to 7.2), | |
'4' for MATLAB 4 .mat files. | |
long_field_names : bool, optional | |
False (the default) - maximum field name length in a structure is | |
31 characters which is the documented maximum length. | |
True - maximum field name length in a structure is 63 characters | |
which works for MATLAB 7.6+. | |
do_compression : bool, optional | |
Whether or not to compress matrices on write. Default is False. | |
oned_as : {'row', 'column'}, optional | |
If 'column', write 1-D NumPy arrays as column vectors. | |
If 'row', write 1-D NumPy arrays as row vectors. | |
Examples | |
-------- | |
>>> from scipy.io import savemat | |
>>> import numpy as np | |
>>> a = np.arange(20) | |
>>> mdic = {"a": a, "label": "experiment"} | |
>>> mdic | |
{'a': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, | |
17, 18, 19]), | |
'label': 'experiment'} | |
>>> savemat("matlab_matrix.mat", mdic) | |
""" | |
with _open_file_context(file_name, appendmat, 'wb') as file_stream: | |
if format == '4': | |
if long_field_names: | |
message = "Long field names are not available for version 4 files" | |
raise ValueError(message) | |
MW = MatFile4Writer(file_stream, oned_as) | |
elif format == '5': | |
MW = MatFile5Writer(file_stream, | |
do_compression=do_compression, | |
unicode_strings=True, | |
long_field_names=long_field_names, | |
oned_as=oned_as) | |
else: | |
raise ValueError("Format should be '4' or '5'") | |
MW.put_variables(mdict) | |
def whosmat(file_name, appendmat=True, **kwargs): | |
""" | |
List variables inside a MATLAB file. | |
Parameters | |
---------- | |
%(file_arg)s | |
%(append_arg)s | |
%(load_args)s | |
%(struct_arg)s | |
Returns | |
------- | |
variables : list of tuples | |
A list of tuples, where each tuple holds the matrix name (a string), | |
its shape (tuple of ints), and its data class (a string). | |
Possible data classes are: int8, uint8, int16, uint16, int32, uint32, | |
int64, uint64, single, double, cell, struct, object, char, sparse, | |
function, opaque, logical, unknown. | |
Notes | |
----- | |
v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported. | |
You will need an HDF5 python library to read matlab 7.3 format mat | |
files (e.g. h5py). Because SciPy does not supply one, we do not implement the | |
HDF5 / 7.3 interface here. | |
.. versionadded:: 0.12.0 | |
Examples | |
-------- | |
>>> from io import BytesIO | |
>>> import numpy as np | |
>>> from scipy.io import savemat, whosmat | |
Create some arrays, and use `savemat` to write them to a ``BytesIO`` | |
instance. | |
>>> a = np.array([[10, 20, 30], [11, 21, 31]], dtype=np.int32) | |
>>> b = np.geomspace(1, 10, 5) | |
>>> f = BytesIO() | |
>>> savemat(f, {'a': a, 'b': b}) | |
Use `whosmat` to inspect ``f``. Each tuple in the output list gives | |
the name, shape and data type of the array in ``f``. | |
>>> whosmat(f) | |
[('a', (2, 3), 'int32'), ('b', (1, 5), 'double')] | |
""" | |
with _open_file_context(file_name, appendmat) as f: | |
ML, file_opened = mat_reader_factory(f, **kwargs) | |
variables = ML.list_variables() | |
return variables | |