peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/io
/tests
/test_netcdf.py
''' Tests for netcdf ''' | |
import os | |
from os.path import join as pjoin, dirname | |
import shutil | |
import tempfile | |
import warnings | |
from io import BytesIO | |
from glob import glob | |
from contextlib import contextmanager | |
import numpy as np | |
from numpy.testing import (assert_, assert_allclose, assert_equal, | |
break_cycles, suppress_warnings, IS_PYPY) | |
from pytest import raises as assert_raises | |
from scipy.io import netcdf_file | |
from scipy._lib._tmpdirs import in_tempdir | |
TEST_DATA_PATH = pjoin(dirname(__file__), 'data') | |
N_EG_ELS = 11 # number of elements for example variable | |
VARTYPE_EG = 'b' # var type for example variable | |
def make_simple(*args, **kwargs): | |
f = netcdf_file(*args, **kwargs) | |
f.history = 'Created for a test' | |
f.createDimension('time', N_EG_ELS) | |
time = f.createVariable('time', VARTYPE_EG, ('time',)) | |
time[:] = np.arange(N_EG_ELS) | |
time.units = 'days since 2008-01-01' | |
f.flush() | |
yield f | |
f.close() | |
def check_simple(ncfileobj): | |
'''Example fileobj tests ''' | |
assert_equal(ncfileobj.history, b'Created for a test') | |
time = ncfileobj.variables['time'] | |
assert_equal(time.units, b'days since 2008-01-01') | |
assert_equal(time.shape, (N_EG_ELS,)) | |
assert_equal(time[-1], N_EG_ELS-1) | |
def assert_mask_matches(arr, expected_mask): | |
''' | |
Asserts that the mask of arr is effectively the same as expected_mask. | |
In contrast to numpy.ma.testutils.assert_mask_equal, this function allows | |
testing the 'mask' of a standard numpy array (the mask in this case is treated | |
as all False). | |
Parameters | |
---------- | |
arr : ndarray or MaskedArray | |
Array to test. | |
expected_mask : array_like of booleans | |
A list giving the expected mask. | |
''' | |
mask = np.ma.getmaskarray(arr) | |
assert_equal(mask, expected_mask) | |
def test_read_write_files(): | |
# test round trip for example file | |
cwd = os.getcwd() | |
try: | |
tmpdir = tempfile.mkdtemp() | |
os.chdir(tmpdir) | |
with make_simple('simple.nc', 'w') as f: | |
pass | |
# read the file we just created in 'a' mode | |
with netcdf_file('simple.nc', 'a') as f: | |
check_simple(f) | |
# add something | |
f._attributes['appendRan'] = 1 | |
# To read the NetCDF file we just created:: | |
with netcdf_file('simple.nc') as f: | |
# Using mmap is the default (but not on pypy) | |
assert_equal(f.use_mmap, not IS_PYPY) | |
check_simple(f) | |
assert_equal(f._attributes['appendRan'], 1) | |
# Read it in append (and check mmap is off) | |
with netcdf_file('simple.nc', 'a') as f: | |
assert_(not f.use_mmap) | |
check_simple(f) | |
assert_equal(f._attributes['appendRan'], 1) | |
# Now without mmap | |
with netcdf_file('simple.nc', mmap=False) as f: | |
# Using mmap is the default | |
assert_(not f.use_mmap) | |
check_simple(f) | |
# To read the NetCDF file we just created, as file object, no | |
# mmap. When n * n_bytes(var_type) is not divisible by 4, this | |
# raised an error in pupynere 1.0.12 and scipy rev 5893, because | |
# calculated vsize was rounding up in units of 4 - see | |
# https://www.unidata.ucar.edu/software/netcdf/guide_toc.html | |
with open('simple.nc', 'rb') as fobj: | |
with netcdf_file(fobj) as f: | |
# by default, don't use mmap for file-like | |
assert_(not f.use_mmap) | |
check_simple(f) | |
# Read file from fileobj, with mmap | |
with suppress_warnings() as sup: | |
if IS_PYPY: | |
sup.filter(RuntimeWarning, | |
"Cannot close a netcdf_file opened with mmap=True.*") | |
with open('simple.nc', 'rb') as fobj: | |
with netcdf_file(fobj, mmap=True) as f: | |
assert_(f.use_mmap) | |
check_simple(f) | |
# Again read it in append mode (adding another att) | |
with open('simple.nc', 'r+b') as fobj: | |
with netcdf_file(fobj, 'a') as f: | |
assert_(not f.use_mmap) | |
check_simple(f) | |
f.createDimension('app_dim', 1) | |
var = f.createVariable('app_var', 'i', ('app_dim',)) | |
var[:] = 42 | |
# And... check that app_var made it in... | |
with netcdf_file('simple.nc') as f: | |
check_simple(f) | |
assert_equal(f.variables['app_var'][:], 42) | |
finally: | |
if IS_PYPY: | |
# windows cannot remove a dead file held by a mmap | |
# that has not been collected in PyPy | |
break_cycles() | |
break_cycles() | |
os.chdir(cwd) | |
shutil.rmtree(tmpdir) | |
def test_read_write_sio(): | |
eg_sio1 = BytesIO() | |
with make_simple(eg_sio1, 'w'): | |
str_val = eg_sio1.getvalue() | |
eg_sio2 = BytesIO(str_val) | |
with netcdf_file(eg_sio2) as f2: | |
check_simple(f2) | |
# Test that error is raised if attempting mmap for sio | |
eg_sio3 = BytesIO(str_val) | |
assert_raises(ValueError, netcdf_file, eg_sio3, 'r', True) | |
# Test 64-bit offset write / read | |
eg_sio_64 = BytesIO() | |
with make_simple(eg_sio_64, 'w', version=2) as f_64: | |
str_val = eg_sio_64.getvalue() | |
eg_sio_64 = BytesIO(str_val) | |
with netcdf_file(eg_sio_64) as f_64: | |
check_simple(f_64) | |
assert_equal(f_64.version_byte, 2) | |
# also when version 2 explicitly specified | |
eg_sio_64 = BytesIO(str_val) | |
with netcdf_file(eg_sio_64, version=2) as f_64: | |
check_simple(f_64) | |
assert_equal(f_64.version_byte, 2) | |
def test_bytes(): | |
raw_file = BytesIO() | |
f = netcdf_file(raw_file, mode='w') | |
# Dataset only has a single variable, dimension and attribute to avoid | |
# any ambiguity related to order. | |
f.a = 'b' | |
f.createDimension('dim', 1) | |
var = f.createVariable('var', np.int16, ('dim',)) | |
var[0] = -9999 | |
var.c = 'd' | |
f.sync() | |
actual = raw_file.getvalue() | |
expected = (b'CDF\x01' | |
b'\x00\x00\x00\x00' | |
b'\x00\x00\x00\x0a' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x03' | |
b'dim\x00' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x0c' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x01' | |
b'a\x00\x00\x00' | |
b'\x00\x00\x00\x02' | |
b'\x00\x00\x00\x01' | |
b'b\x00\x00\x00' | |
b'\x00\x00\x00\x0b' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x03' | |
b'var\x00' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x00' | |
b'\x00\x00\x00\x0c' | |
b'\x00\x00\x00\x01' | |
b'\x00\x00\x00\x01' | |
b'c\x00\x00\x00' | |
b'\x00\x00\x00\x02' | |
b'\x00\x00\x00\x01' | |
b'd\x00\x00\x00' | |
b'\x00\x00\x00\x03' | |
b'\x00\x00\x00\x04' | |
b'\x00\x00\x00\x78' | |
b'\xd8\xf1\x80\x01') | |
assert_equal(actual, expected) | |
def test_encoded_fill_value(): | |
with netcdf_file(BytesIO(), mode='w') as f: | |
f.createDimension('x', 1) | |
var = f.createVariable('var', 'S1', ('x',)) | |
assert_equal(var._get_encoded_fill_value(), b'\x00') | |
var._FillValue = b'\x01' | |
assert_equal(var._get_encoded_fill_value(), b'\x01') | |
var._FillValue = b'\x00\x00' # invalid, wrong size | |
assert_equal(var._get_encoded_fill_value(), b'\x00') | |
def test_read_example_data(): | |
# read any example data files | |
for fname in glob(pjoin(TEST_DATA_PATH, '*.nc')): | |
with netcdf_file(fname, 'r'): | |
pass | |
with netcdf_file(fname, 'r', mmap=False): | |
pass | |
def test_itemset_no_segfault_on_readonly(): | |
# Regression test for ticket #1202. | |
# Open the test file in read-only mode. | |
filename = pjoin(TEST_DATA_PATH, 'example_1.nc') | |
with suppress_warnings() as sup: | |
message = ("Cannot close a netcdf_file opened with mmap=True, when " | |
"netcdf_variables or arrays referring to its data still exist") | |
sup.filter(RuntimeWarning, message) | |
with netcdf_file(filename, 'r', mmap=True) as f: | |
time_var = f.variables['time'] | |
# time_var.assignValue(42) should raise a RuntimeError--not seg. fault! | |
assert_raises(RuntimeError, time_var.assignValue, 42) | |
def test_appending_issue_gh_8625(): | |
stream = BytesIO() | |
with make_simple(stream, mode='w') as f: | |
f.createDimension('x', 2) | |
f.createVariable('x', float, ('x',)) | |
f.variables['x'][...] = 1 | |
f.flush() | |
contents = stream.getvalue() | |
stream = BytesIO(contents) | |
with netcdf_file(stream, mode='a') as f: | |
f.variables['x'][...] = 2 | |
def test_write_invalid_dtype(): | |
dtypes = ['int64', 'uint64'] | |
if np.dtype('int').itemsize == 8: # 64-bit machines | |
dtypes.append('int') | |
if np.dtype('uint').itemsize == 8: # 64-bit machines | |
dtypes.append('uint') | |
with netcdf_file(BytesIO(), 'w') as f: | |
f.createDimension('time', N_EG_ELS) | |
for dt in dtypes: | |
assert_raises(ValueError, f.createVariable, 'time', dt, ('time',)) | |
def test_flush_rewind(): | |
stream = BytesIO() | |
with make_simple(stream, mode='w') as f: | |
f.createDimension('x',4) # x is used in createVariable | |
v = f.createVariable('v', 'i2', ['x']) | |
v[:] = 1 | |
f.flush() | |
len_single = len(stream.getvalue()) | |
f.flush() | |
len_double = len(stream.getvalue()) | |
assert_(len_single == len_double) | |
def test_dtype_specifiers(): | |
# Numpy 1.7.0-dev had a bug where 'i2' wouldn't work. | |
# Specifying np.int16 or similar only works from the same commit as this | |
# comment was made. | |
with make_simple(BytesIO(), mode='w') as f: | |
f.createDimension('x',4) | |
f.createVariable('v1', 'i2', ['x']) | |
f.createVariable('v2', np.int16, ['x']) | |
f.createVariable('v3', np.dtype(np.int16), ['x']) | |
def test_ticket_1720(): | |
io = BytesIO() | |
items = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] | |
with netcdf_file(io, 'w') as f: | |
f.history = 'Created for a test' | |
f.createDimension('float_var', 10) | |
float_var = f.createVariable('float_var', 'f', ('float_var',)) | |
float_var[:] = items | |
float_var.units = 'metres' | |
f.flush() | |
contents = io.getvalue() | |
io = BytesIO(contents) | |
with netcdf_file(io, 'r') as f: | |
assert_equal(f.history, b'Created for a test') | |
float_var = f.variables['float_var'] | |
assert_equal(float_var.units, b'metres') | |
assert_equal(float_var.shape, (10,)) | |
assert_allclose(float_var[:], items) | |
def test_mmaps_segfault(): | |
filename = pjoin(TEST_DATA_PATH, 'example_1.nc') | |
if not IS_PYPY: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with netcdf_file(filename, mmap=True) as f: | |
x = f.variables['lat'][:] | |
# should not raise warnings | |
del x | |
def doit(): | |
with netcdf_file(filename, mmap=True) as f: | |
return f.variables['lat'][:] | |
# should not crash | |
with suppress_warnings() as sup: | |
message = ("Cannot close a netcdf_file opened with mmap=True, when " | |
"netcdf_variables or arrays referring to its data still exist") | |
sup.filter(RuntimeWarning, message) | |
x = doit() | |
x.sum() | |
def test_zero_dimensional_var(): | |
io = BytesIO() | |
with make_simple(io, 'w') as f: | |
v = f.createVariable('zerodim', 'i2', []) | |
# This is checking that .isrec returns a boolean - don't simplify it | |
# to 'assert not ...' | |
assert v.isrec is False, v.isrec | |
f.flush() | |
def test_byte_gatts(): | |
# Check that global "string" atts work like they did before py3k | |
# unicode and general bytes confusion | |
with in_tempdir(): | |
filename = 'g_byte_atts.nc' | |
f = netcdf_file(filename, 'w') | |
f._attributes['holy'] = b'grail' | |
f._attributes['witch'] = 'floats' | |
f.close() | |
f = netcdf_file(filename, 'r') | |
assert_equal(f._attributes['holy'], b'grail') | |
assert_equal(f._attributes['witch'], b'floats') | |
f.close() | |
def test_open_append(): | |
# open 'w' put one attr | |
with in_tempdir(): | |
filename = 'append_dat.nc' | |
f = netcdf_file(filename, 'w') | |
f._attributes['Kilroy'] = 'was here' | |
f.close() | |
# open again in 'a', read the att and a new one | |
f = netcdf_file(filename, 'a') | |
assert_equal(f._attributes['Kilroy'], b'was here') | |
f._attributes['naughty'] = b'Zoot' | |
f.close() | |
# open yet again in 'r' and check both atts | |
f = netcdf_file(filename, 'r') | |
assert_equal(f._attributes['Kilroy'], b'was here') | |
assert_equal(f._attributes['naughty'], b'Zoot') | |
f.close() | |
def test_append_recordDimension(): | |
dataSize = 100 | |
with in_tempdir(): | |
# Create file with record time dimension | |
with netcdf_file('withRecordDimension.nc', 'w') as f: | |
f.createDimension('time', None) | |
f.createVariable('time', 'd', ('time',)) | |
f.createDimension('x', dataSize) | |
x = f.createVariable('x', 'd', ('x',)) | |
x[:] = np.array(range(dataSize)) | |
f.createDimension('y', dataSize) | |
y = f.createVariable('y', 'd', ('y',)) | |
y[:] = np.array(range(dataSize)) | |
f.createVariable('testData', 'i', ('time', 'x', 'y')) | |
f.flush() | |
f.close() | |
for i in range(2): | |
# Open the file in append mode and add data | |
with netcdf_file('withRecordDimension.nc', 'a') as f: | |
f.variables['time'].data = np.append(f.variables["time"].data, i) | |
f.variables['testData'][i, :, :] = np.full((dataSize, dataSize), i) | |
f.flush() | |
# Read the file and check that append worked | |
with netcdf_file('withRecordDimension.nc') as f: | |
assert_equal(f.variables['time'][-1], i) | |
assert_equal(f.variables['testData'][-1, :, :].copy(), | |
np.full((dataSize, dataSize), i)) | |
assert_equal(f.variables['time'].data.shape[0], i+1) | |
assert_equal(f.variables['testData'].data.shape[0], i+1) | |
# Read the file and check that 'data' was not saved as user defined | |
# attribute of testData variable during append operation | |
with netcdf_file('withRecordDimension.nc') as f: | |
with assert_raises(KeyError) as ar: | |
f.variables['testData']._attributes['data'] | |
ex = ar.value | |
assert_equal(ex.args[0], 'data') | |
def test_maskandscale(): | |
t = np.linspace(20, 30, 15) | |
t[3] = 100 | |
tm = np.ma.masked_greater(t, 99) | |
fname = pjoin(TEST_DATA_PATH, 'example_2.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
Temp = f.variables['Temperature'] | |
assert_equal(Temp.missing_value, 9999) | |
assert_equal(Temp.add_offset, 20) | |
assert_equal(Temp.scale_factor, np.float32(0.01)) | |
found = Temp[:].compressed() | |
del Temp # Remove ref to mmap, so file can be closed. | |
expected = np.round(tm.compressed(), 2) | |
assert_allclose(found, expected) | |
with in_tempdir(): | |
newfname = 'ms.nc' | |
f = netcdf_file(newfname, 'w', maskandscale=True) | |
f.createDimension('Temperature', len(tm)) | |
temp = f.createVariable('Temperature', 'i', ('Temperature',)) | |
temp.missing_value = 9999 | |
temp.scale_factor = 0.01 | |
temp.add_offset = 20 | |
temp[:] = tm | |
f.close() | |
with netcdf_file(newfname, maskandscale=True) as f: | |
Temp = f.variables['Temperature'] | |
assert_equal(Temp.missing_value, 9999) | |
assert_equal(Temp.add_offset, 20) | |
assert_equal(Temp.scale_factor, np.float32(0.01)) | |
expected = np.round(tm.compressed(), 2) | |
found = Temp[:].compressed() | |
del Temp | |
assert_allclose(found, expected) | |
# ------------------------------------------------------------------------ | |
# Test reading with masked values (_FillValue / missing_value) | |
# ------------------------------------------------------------------------ | |
def test_read_withValuesNearFillValue(): | |
# Regression test for ticket #5626 | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var1_fillval0'][:] | |
assert_mask_matches(vardata, [False, True, False]) | |
def test_read_withNoFillValue(): | |
# For a variable with no fill value, reading data with maskandscale=True | |
# should return unmasked data | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var2_noFillval'][:] | |
assert_mask_matches(vardata, [False, False, False]) | |
assert_equal(vardata, [1,2,3]) | |
def test_read_withFillValueAndMissingValue(): | |
# For a variable with both _FillValue and missing_value, the _FillValue | |
# should be used | |
IRRELEVANT_VALUE = 9999 | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var3_fillvalAndMissingValue'][:] | |
assert_mask_matches(vardata, [True, False, False]) | |
assert_equal(vardata, [IRRELEVANT_VALUE, 2, 3]) | |
def test_read_withMissingValue(): | |
# For a variable with missing_value but not _FillValue, the missing_value | |
# should be used | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var4_missingValue'][:] | |
assert_mask_matches(vardata, [False, True, False]) | |
def test_read_withFillValNaN(): | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var5_fillvalNaN'][:] | |
assert_mask_matches(vardata, [False, True, False]) | |
def test_read_withChar(): | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var6_char'][:] | |
assert_mask_matches(vardata, [False, True, False]) | |
def test_read_with2dVar(): | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
with netcdf_file(fname, maskandscale=True) as f: | |
vardata = f.variables['var7_2d'][:] | |
assert_mask_matches(vardata, [[True, False], [False, False], [False, True]]) | |
def test_read_withMaskAndScaleFalse(): | |
# If a variable has a _FillValue (or missing_value) attribute, but is read | |
# with maskandscale set to False, the result should be unmasked | |
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') | |
# Open file with mmap=False to avoid problems with closing a mmap'ed file | |
# when arrays referring to its data still exist: | |
with netcdf_file(fname, maskandscale=False, mmap=False) as f: | |
vardata = f.variables['var3_fillvalAndMissingValue'][:] | |
assert_mask_matches(vardata, [False, False, False]) | |
assert_equal(vardata, [1, 2, 3]) | |