peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/_ckdtree.pyi
from __future__ import annotations | |
from typing import ( | |
Any, | |
Generic, | |
overload, | |
TypeVar, | |
) | |
import numpy as np | |
import numpy.typing as npt | |
from scipy.sparse import coo_matrix, dok_matrix | |
from typing import Literal | |
# TODO: Replace `ndarray` with a 1D float64 array when possible | |
_BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64]) | |
# Copied from `numpy.typing._scalar_like._ScalarLike` | |
# TODO: Expand with 0D arrays once we have shape support | |
_ArrayLike0D = bool | int | float | complex | str | bytes | np.generic | |
_WeightType = npt.ArrayLike | tuple[npt.ArrayLike | None, npt.ArrayLike | None] | |
class cKDTreeNode: | |
@property | |
def data_points(self) -> npt.NDArray[np.float64]: ... | |
@property | |
def indices(self) -> npt.NDArray[np.intp]: ... | |
# These are read-only attributes in cython, which behave like properties | |
@property | |
def level(self) -> int: ... | |
@property | |
def split_dim(self) -> int: ... | |
@property | |
def children(self) -> int: ... | |
@property | |
def start_idx(self) -> int: ... | |
@property | |
def end_idx(self) -> int: ... | |
@property | |
def split(self) -> float: ... | |
@property | |
def lesser(self) -> cKDTreeNode | None: ... | |
@property | |
def greater(self) -> cKDTreeNode | None: ... | |
class cKDTree(Generic[_BoxType]): | |
@property | |
def n(self) -> int: ... | |
@property | |
def m(self) -> int: ... | |
@property | |
def leafsize(self) -> int: ... | |
@property | |
def size(self) -> int: ... | |
@property | |
def tree(self) -> cKDTreeNode: ... | |
# These are read-only attributes in cython, which behave like properties | |
@property | |
def data(self) -> npt.NDArray[np.float64]: ... | |
@property | |
def maxes(self) -> npt.NDArray[np.float64]: ... | |
@property | |
def mins(self) -> npt.NDArray[np.float64]: ... | |
@property | |
def indices(self) -> npt.NDArray[np.float64]: ... | |
@property | |
def boxsize(self) -> _BoxType: ... | |
# NOTE: In practice `__init__` is used as constructor, not `__new__`. | |
# The latter gives us more flexibility in setting the generic parameter | |
# though. | |
@overload | |
def __new__( # type: ignore[misc] | |
cls, | |
data: npt.ArrayLike, | |
leafsize: int = ..., | |
compact_nodes: bool = ..., | |
copy_data: bool = ..., | |
balanced_tree: bool = ..., | |
boxsize: None = ..., | |
) -> cKDTree[None]: ... | |
@overload | |
def __new__( | |
cls, | |
data: npt.ArrayLike, | |
leafsize: int = ..., | |
compact_nodes: bool = ..., | |
copy_data: bool = ..., | |
balanced_tree: bool = ..., | |
boxsize: npt.ArrayLike = ..., | |
) -> cKDTree[npt.NDArray[np.float64]]: ... | |
# TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`, | |
# returns a 2-tuple of arrays otherwise | |
def query( | |
self, | |
x: npt.ArrayLike, | |
k: npt.ArrayLike = ..., | |
eps: float = ..., | |
p: float = ..., | |
distance_upper_bound: float = ..., | |
workers: int | None = ..., | |
) -> tuple[Any, Any]: ... | |
# TODO: returns a list scalars if `x.ndim <= 1`, | |
# returns an object array of lists otherwise | |
def query_ball_point( | |
self, | |
x: npt.ArrayLike, | |
r: npt.ArrayLike, | |
p: float, | |
eps: float = ..., | |
workers: int | None = ..., | |
return_sorted: bool | None = ..., | |
return_length: bool = ... | |
) -> Any: ... | |
def query_ball_tree( | |
self, | |
other: cKDTree, | |
r: float, | |
p: float, | |
eps: float = ..., | |
) -> list[list[int]]: ... | |
@overload | |
def query_pairs( # type: ignore[misc] | |
self, | |
r: float, | |
p: float = ..., | |
eps: float = ..., | |
output_type: Literal["set"] = ..., | |
) -> set[tuple[int, int]]: ... | |
@overload | |
def query_pairs( | |
self, | |
r: float, | |
p: float = ..., | |
eps: float = ..., | |
output_type: Literal["ndarray"] = ..., | |
) -> npt.NDArray[np.intp]: ... | |
@overload | |
def count_neighbors( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
r: _ArrayLike0D, | |
p: float = ..., | |
weights: None | tuple[None, None] = ..., | |
cumulative: bool = ..., | |
) -> int: ... | |
@overload | |
def count_neighbors( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
r: _ArrayLike0D, | |
p: float = ..., | |
weights: _WeightType = ..., | |
cumulative: bool = ..., | |
) -> np.float64: ... | |
@overload | |
def count_neighbors( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
r: npt.ArrayLike, | |
p: float = ..., | |
weights: None | tuple[None, None] = ..., | |
cumulative: bool = ..., | |
) -> npt.NDArray[np.intp]: ... | |
@overload | |
def count_neighbors( | |
self, | |
other: cKDTree, | |
r: npt.ArrayLike, | |
p: float = ..., | |
weights: _WeightType = ..., | |
cumulative: bool = ..., | |
) -> npt.NDArray[np.float64]: ... | |
@overload | |
def sparse_distance_matrix( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
max_distance: float, | |
p: float = ..., | |
output_type: Literal["dok_matrix"] = ..., | |
) -> dok_matrix: ... | |
@overload | |
def sparse_distance_matrix( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
max_distance: float, | |
p: float = ..., | |
output_type: Literal["coo_matrix"] = ..., | |
) -> coo_matrix: ... | |
@overload | |
def sparse_distance_matrix( # type: ignore[misc] | |
self, | |
other: cKDTree, | |
max_distance: float, | |
p: float = ..., | |
output_type: Literal["dict"] = ..., | |
) -> dict[tuple[int, int], float]: ... | |
@overload | |
def sparse_distance_matrix( | |
self, | |
other: cKDTree, | |
max_distance: float, | |
p: float = ..., | |
output_type: Literal["ndarray"] = ..., | |
) -> npt.NDArray[np.void]: ... | |