peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/_geometric_slerp.py
from __future__ import annotations | |
__all__ = ['geometric_slerp'] | |
import warnings | |
from typing import TYPE_CHECKING | |
import numpy as np | |
from scipy.spatial.distance import euclidean | |
if TYPE_CHECKING: | |
import numpy.typing as npt | |
def _geometric_slerp(start, end, t): | |
# create an orthogonal basis using QR decomposition | |
basis = np.vstack([start, end]) | |
Q, R = np.linalg.qr(basis.T) | |
signs = 2 * (np.diag(R) >= 0) - 1 | |
Q = Q.T * signs.T[:, np.newaxis] | |
R = R.T * signs.T[:, np.newaxis] | |
# calculate the angle between `start` and `end` | |
c = np.dot(start, end) | |
s = np.linalg.det(R) | |
omega = np.arctan2(s, c) | |
# interpolate | |
start, end = Q | |
s = np.sin(t * omega) | |
c = np.cos(t * omega) | |
return start * c[:, np.newaxis] + end * s[:, np.newaxis] | |
def geometric_slerp( | |
start: npt.ArrayLike, | |
end: npt.ArrayLike, | |
t: npt.ArrayLike, | |
tol: float = 1e-7, | |
) -> np.ndarray: | |
""" | |
Geometric spherical linear interpolation. | |
The interpolation occurs along a unit-radius | |
great circle arc in arbitrary dimensional space. | |
Parameters | |
---------- | |
start : (n_dimensions, ) array-like | |
Single n-dimensional input coordinate in a 1-D array-like | |
object. `n` must be greater than 1. | |
end : (n_dimensions, ) array-like | |
Single n-dimensional input coordinate in a 1-D array-like | |
object. `n` must be greater than 1. | |
t : float or (n_points,) 1D array-like | |
A float or 1D array-like of doubles representing interpolation | |
parameters, with values required in the inclusive interval | |
between 0 and 1. A common approach is to generate the array | |
with ``np.linspace(0, 1, n_pts)`` for linearly spaced points. | |
Ascending, descending, and scrambled orders are permitted. | |
tol : float | |
The absolute tolerance for determining if the start and end | |
coordinates are antipodes. | |
Returns | |
------- | |
result : (t.size, D) | |
An array of doubles containing the interpolated | |
spherical path and including start and | |
end when 0 and 1 t are used. The | |
interpolated values should correspond to the | |
same sort order provided in the t array. The result | |
may be 1-dimensional if ``t`` is a float. | |
Raises | |
------ | |
ValueError | |
If ``start`` and ``end`` are antipodes, not on the | |
unit n-sphere, or for a variety of degenerate conditions. | |
See Also | |
-------- | |
scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions | |
Notes | |
----- | |
The implementation is based on the mathematical formula provided in [1]_, | |
and the first known presentation of this algorithm, derived from study of | |
4-D geometry, is credited to Glenn Davis in a footnote of the original | |
quaternion Slerp publication by Ken Shoemake [2]_. | |
.. versionadded:: 1.5.0 | |
References | |
---------- | |
.. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp | |
.. [2] Ken Shoemake (1985) Animating rotation with quaternion curves. | |
ACM SIGGRAPH Computer Graphics, 19(3): 245-254. | |
Examples | |
-------- | |
Interpolate four linearly-spaced values on the circumference of | |
a circle spanning 90 degrees: | |
>>> import numpy as np | |
>>> from scipy.spatial import geometric_slerp | |
>>> import matplotlib.pyplot as plt | |
>>> fig = plt.figure() | |
>>> ax = fig.add_subplot(111) | |
>>> start = np.array([1, 0]) | |
>>> end = np.array([0, 1]) | |
>>> t_vals = np.linspace(0, 1, 4) | |
>>> result = geometric_slerp(start, | |
... end, | |
... t_vals) | |
The interpolated results should be at 30 degree intervals | |
recognizable on the unit circle: | |
>>> ax.scatter(result[...,0], result[...,1], c='k') | |
>>> circle = plt.Circle((0, 0), 1, color='grey') | |
>>> ax.add_artist(circle) | |
>>> ax.set_aspect('equal') | |
>>> plt.show() | |
Attempting to interpolate between antipodes on a circle is | |
ambiguous because there are two possible paths, and on a | |
sphere there are infinite possible paths on the geodesic surface. | |
Nonetheless, one of the ambiguous paths is returned along | |
with a warning: | |
>>> opposite_pole = np.array([-1, 0]) | |
>>> with np.testing.suppress_warnings() as sup: | |
... sup.filter(UserWarning) | |
... geometric_slerp(start, | |
... opposite_pole, | |
... t_vals) | |
array([[ 1.00000000e+00, 0.00000000e+00], | |
[ 5.00000000e-01, 8.66025404e-01], | |
[-5.00000000e-01, 8.66025404e-01], | |
[-1.00000000e+00, 1.22464680e-16]]) | |
Extend the original example to a sphere and plot interpolation | |
points in 3D: | |
>>> from mpl_toolkits.mplot3d import proj3d | |
>>> fig = plt.figure() | |
>>> ax = fig.add_subplot(111, projection='3d') | |
Plot the unit sphere for reference (optional): | |
>>> u = np.linspace(0, 2 * np.pi, 100) | |
>>> v = np.linspace(0, np.pi, 100) | |
>>> x = np.outer(np.cos(u), np.sin(v)) | |
>>> y = np.outer(np.sin(u), np.sin(v)) | |
>>> z = np.outer(np.ones(np.size(u)), np.cos(v)) | |
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1) | |
Interpolating over a larger number of points | |
may provide the appearance of a smooth curve on | |
the surface of the sphere, which is also useful | |
for discretized integration calculations on a | |
sphere surface: | |
>>> start = np.array([1, 0, 0]) | |
>>> end = np.array([0, 0, 1]) | |
>>> t_vals = np.linspace(0, 1, 200) | |
>>> result = geometric_slerp(start, | |
... end, | |
... t_vals) | |
>>> ax.plot(result[...,0], | |
... result[...,1], | |
... result[...,2], | |
... c='k') | |
>>> plt.show() | |
""" | |
start = np.asarray(start, dtype=np.float64) | |
end = np.asarray(end, dtype=np.float64) | |
t = np.asarray(t) | |
if t.ndim > 1: | |
raise ValueError("The interpolation parameter " | |
"value must be one dimensional.") | |
if start.ndim != 1 or end.ndim != 1: | |
raise ValueError("Start and end coordinates " | |
"must be one-dimensional") | |
if start.size != end.size: | |
raise ValueError("The dimensions of start and " | |
"end must match (have same size)") | |
if start.size < 2 or end.size < 2: | |
raise ValueError("The start and end coordinates must " | |
"both be in at least two-dimensional " | |
"space") | |
if np.array_equal(start, end): | |
return np.linspace(start, start, t.size) | |
# for points that violate equation for n-sphere | |
for coord in [start, end]: | |
if not np.allclose(np.linalg.norm(coord), 1.0, | |
rtol=1e-9, | |
atol=0): | |
raise ValueError("start and end are not" | |
" on a unit n-sphere") | |
if not isinstance(tol, float): | |
raise ValueError("tol must be a float") | |
else: | |
tol = np.fabs(tol) | |
coord_dist = euclidean(start, end) | |
# diameter of 2 within tolerance means antipodes, which is a problem | |
# for all unit n-spheres (even the 0-sphere would have an ambiguous path) | |
if np.allclose(coord_dist, 2.0, rtol=0, atol=tol): | |
warnings.warn("start and end are antipodes " | |
"using the specified tolerance; " | |
"this may cause ambiguous slerp paths", | |
stacklevel=2) | |
t = np.asarray(t, dtype=np.float64) | |
if t.size == 0: | |
return np.empty((0, start.size)) | |
if t.min() < 0 or t.max() > 1: | |
raise ValueError("interpolation parameter must be in [0, 1]") | |
if t.ndim == 0: | |
return _geometric_slerp(start, | |
end, | |
np.atleast_1d(t)).ravel() | |
else: | |
return _geometric_slerp(start, | |
end, | |
t) | |