peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/spatial
/distance.pyi
from __future__ import annotations | |
from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex) | |
import numpy as np | |
from numpy.typing import ArrayLike, NDArray | |
# Anything that can be parsed by `np.float64.__init__` and is thus | |
# compatible with `ndarray.__setitem__` (for a float64 array) | |
_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex | |
class _MetricCallback1(Protocol): | |
def __call__( | |
self, __XA: NDArray[Any], __XB: NDArray[Any] | |
) -> _FloatValue: ... | |
class _MetricCallback2(Protocol): | |
def __call__( | |
self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any | |
) -> _FloatValue: ... | |
# TODO: Use a single protocol with a parameter specification variable | |
# once available (PEP 612) | |
_MetricCallback = _MetricCallback1 | _MetricCallback2 | |
_MetricKind = Literal[ | |
'braycurtis', | |
'canberra', | |
'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch', | |
'cityblock', 'cblock', 'cb', 'c', | |
'correlation', 'co', | |
'cosine', 'cos', | |
'dice', | |
'euclidean', 'euclid', 'eu', 'e', | |
'hamming', 'hamm', 'ha', 'h', | |
'minkowski', 'mi', 'm', 'pnorm', | |
'jaccard', 'jacc', 'ja', 'j', | |
'jensenshannon', 'js', | |
'kulczynski1', | |
'mahalanobis', 'mahal', 'mah', | |
'rogerstanimoto', | |
'russellrao', | |
'seuclidean', 'se', 's', | |
'sokalmichener', | |
'sokalsneath', | |
'sqeuclidean', 'sqe', 'sqeuclid', | |
'yule', | |
] | |
# Function annotations | |
def braycurtis( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def canberra( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
# TODO: Add `metric`-specific overloads | |
# Returns a float64 or float128 array, depending on the input dtype | |
def cdist( | |
XA: ArrayLike, | |
XB: ArrayLike, | |
metric: _MetricKind = ..., | |
*, | |
out: None | NDArray[np.floating[Any]] = ..., | |
p: float = ..., | |
w: ArrayLike | None = ..., | |
V: ArrayLike | None = ..., | |
VI: ArrayLike | None = ..., | |
) -> NDArray[np.floating[Any]]: ... | |
def cdist( | |
XA: ArrayLike, | |
XB: ArrayLike, | |
metric: _MetricCallback, | |
*, | |
out: None | NDArray[np.floating[Any]] = ..., | |
**kwargs: Any, | |
) -> NDArray[np.floating[Any]]: ... | |
# TODO: Wait for dtype support; the return type is | |
# dependent on the input arrays dtype | |
def chebyshev( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> Any: ... | |
# TODO: Wait for dtype support; the return type is | |
# dependent on the input arrays dtype | |
def cityblock( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> Any: ... | |
def correlation( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ... | |
) -> np.float64: ... | |
def cosine( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def dice( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |
def directed_hausdorff( | |
u: ArrayLike, v: ArrayLike, seed: int | None = ... | |
) -> tuple[float, int, int]: ... | |
def euclidean( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |
def hamming( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def is_valid_dm( | |
D: ArrayLike, | |
tol: float = ..., | |
throw: bool = ..., | |
name: str | None = ..., | |
warning: bool = ..., | |
) -> bool: ... | |
def is_valid_y( | |
y: ArrayLike, | |
warning: bool = ..., | |
throw: bool = ..., | |
name: str | None = ..., | |
) -> bool: ... | |
def jaccard( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def jensenshannon( | |
p: ArrayLike, q: ArrayLike, base: float | None = ... | |
) -> np.float64: ... | |
def kulczynski1( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def mahalanobis( | |
u: ArrayLike, v: ArrayLike, VI: ArrayLike | |
) -> np.float64: ... | |
def minkowski( | |
u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ... | |
) -> float: ... | |
def num_obs_dm(d: ArrayLike) -> int: ... | |
def num_obs_y(Y: ArrayLike) -> int: ... | |
# TODO: Add `metric`-specific overloads | |
def pdist( | |
X: ArrayLike, | |
metric: _MetricKind = ..., | |
*, | |
out: None | NDArray[np.floating[Any]] = ..., | |
p: float = ..., | |
w: ArrayLike | None = ..., | |
V: ArrayLike | None = ..., | |
VI: ArrayLike | None = ..., | |
) -> NDArray[np.floating[Any]]: ... | |
def pdist( | |
X: ArrayLike, | |
metric: _MetricCallback, | |
*, | |
out: None | NDArray[np.floating[Any]] = ..., | |
**kwargs: Any, | |
) -> NDArray[np.floating[Any]]: ... | |
def seuclidean( | |
u: ArrayLike, v: ArrayLike, V: ArrayLike | |
) -> float: ... | |
def sokalmichener( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |
def sokalsneath( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def sqeuclidean( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> np.float64: ... | |
def squareform( | |
X: ArrayLike, | |
force: Literal["no", "tomatrix", "tovector"] = ..., | |
checks: bool = ..., | |
) -> NDArray[Any]: ... | |
def rogerstanimoto( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |
def russellrao( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |
def yule( | |
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... | |
) -> float: ... | |